Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment including Packaging-Related Food Losses and Waste and Circularity Assessment
Abstract
:1. Introduction
- Direct environmental impacts caused by the production and disposal of packaging.
- Indirect environmental impacts caused by, e.g., packaging-related FLW.
- Circularity of packaging.
2. State-Of-The-Art
2.1. Existing Methodological Frameworks for Packaging Sustainability
- Specialist literature
- Business (including guidance documents from industry associations or retailers)
- Policy (including legislation and Extended Producer Responsibility Schemes)
- What is the focus of the framework?
- How is the environmental sustainability of packaging defined?
- Which environmental indicators are proposed?
- Is it explained, how these indicators have to be calculated?
2.1.1. Specialist literature
2.1.2. Business
2.1.3. Policy
2.1.4. Summary
2.2. Life Cycle Assessment of Packaging
2.3. Inclusion of Packaging-Related Food Losses and Waste into Packaging LCA
- Inclusion of lost and wasted food in packaging LCA.
- Calculation of the food-to-packaging (FTP) ratio.
2.4. Measuring the Circularity of Packaging
2.4.1. Input-Related Indicators
2.4.2. Output—Related Indicators
2.4.3. Energy Indicators
2.5. Conflict of Interest between Different Sustainability Objectives
3. Proposed Methodological Framework
3.1. Guiding Principles for Methodological Choices
3.2. Basic Information Concerning the Packaging
- the weight, construction, and material composition of the packaging
- the functional unit of the studied system (quantified performance of packaging)
- the spatial and temporal validity of the calculated values
3.3. Recommendations for the Calculation of the Environmental Impacts Directly Caused by Packaging
- Raw material acquisition and preprocessing.
- Manufacturing of packaging.
- Distribution.
- End-of-life.
3.4. Recommended Indicators for Packaging-Related FLW
3.5. Recommended Circularity Indicators
3.6. Recommendations for the Interpretation of Results
4. Discussion
4.1. Demand for Standardization
4.2. Reasons for Including Packaging-Related FLW
4.3. Reasons for Including Circularity
4.4. Future Research and Data Requirements
4.5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, P.; Wani, A.A.; Langowski, H.-C. Introduction: Food Packaging Materials. In Food Packaging Materials: Testing & Quality Assurance; Singh, P., Wani, A.A., Langowski, H.-C., Eds.; Taylor & Francis Group: London, UK, 2017; pp. 1–9. [Google Scholar]
- Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. The Role of Packaging in Minimising Food Waste in the Supply Chain; CHEP Australia: Melbourne, Australia, 2013. [Google Scholar]
- Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. Packaging’s Role in Minimizing Food Loss and Waste Across the Supply Chain. Packag. Technol. Sci. 2015, 28, 603–620. [Google Scholar] [CrossRef]
- Flanagan, L.; Frischknecht, R.; Montalba, T. An Analysis of Life Cycle Assessment in Packaging for Food & Beverage Applications; UNEP/SETAC Life Cycle Initiative: Nairobi, Kenia, 2013. [Google Scholar]
- Pongrácz, E. The environmental impacts of packaging. In Environmentally Conscious Materials and Chemicals Processing; Kutz, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 237–278. [Google Scholar]
- Gustavsson, J. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Wohner, B.; Pauer, E.; Heinrich, V.; Tacker, M. Packaging-Related Food Losses and Waste: An Overview of Drivers and Issues. Sustainability 2019, 11, 264. [Google Scholar] [CrossRef]
- Molina-Besch, K.; Wikström, F.; Williams, H. The environmental impact of packaging in food supply chains—Does life cycle assessment of food provide the full picture? Int. J. Life Cycle Assess. 2018, 21, 492. [Google Scholar] [CrossRef]
- Pilz, H. Vermeidung von Lebensmittelabfällen durch Verpackung; denkstatt GmbH: Vienna, Austria, 2017. [Google Scholar]
- Grant, T.; Barichello, V.; Fitzpatrick, L. Accounting the Impacts of Waste Product in Package Design. Procedia CIRP 2015, 29, 568–572. [Google Scholar] [CrossRef]
- Büsser, S.; Jungbluth, N. The role of flexible packaging in the life cycle of coffee and butter. Int. J. Life Cycle Assess. 2009, 14, 80–91. [Google Scholar] [CrossRef]
- Cyclos-HTP. Verification and Examination of Recyclability: Revision 3.6; HTTP: Aachen, Germany, 2018. [Google Scholar]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W. Cradle to Cradle–Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Parliament and Council. Directive 94/62/EC on Packaging and Packaging Waste; European Parliament and Council: Brussels, Belgium, 1994. [Google Scholar]
- European Commission. Circular Economy: New Rules Will Make EU the Global Front-Runner in Waste Management and Recycling; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Ellen MacArthur Foundation. Eleven Companies Take Major Step towards a New Plastics Economy. 2018. Available online: https://www.ellenmacarthurfoundation.org/news/11-companies-take-major-step-towards-a-new-plastics-economy (accessed on 18 December 2018).
- European Parliament and Council. Directive 2008/98/EC on Waste and Repealing Certain Directives; European Parliament and Council: Brussels, Belgium, 2008. [Google Scholar]
- Schmidt, J.H.; Holm, P.; Merrild, A.; Christensen, P. Life cycle assessment of the waste hierarchy-a Danish case study on waste paper. Waste Manag. 2007, 27, 1519–1530. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and the Environment: Eco-Informed Material Choice; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Arena, U.; Mastellone, M.L.; Perugini, F.; Clift, R. Environmental Assessment of Paper Waste Management Options by Means of LCA Methodology. Ind. Eng. Chem. Res. 2004, 43, 5702–5714. [Google Scholar] [CrossRef]
- Wellenreuther, F. Potential Packaging Waste Prevention by the Usage of Flexible Packaging and Its Consequences for the Environment: Executive Summary Commissioned by Flexible Packaging Europe (FPE); FPE: Heidelberg, Germany, 2014. [Google Scholar]
- Franklin Associates. LCI Summary for 8 Coffee Packaging Systems; American Chemistry Council: Prairie Village, USA, 2008. [Google Scholar]
- Steiner, R.; Jungbluth, N.; Büsser, S. LCA of Packed Food Products the Function of Flexible Packaging—Case Study; Butter: Uster, Switzerland, 2008. [Google Scholar]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Joint Research Center. The FOR-LEARN Online Foresight Guide. 2008. Available online: http://forlearn.jrc.ec.europa.eu/guide/4_methodology/framework.htm (accessed on 7 January 2019).
- Verghese, K.; Lewis, H.; Fitzpatrick, L. Packaging for Sustainability; Springer: London, UK, 2012. [Google Scholar]
- The Consumer Goods Forum. Global Protocol on Packaging Sustainability 2.0; The Consumer Goods Forum: Issy-les-Moulineaux, France, 2011. [Google Scholar]
- Sustainable Packaging Coalition. Definition of Sustainable Packaging; Sustainable Packaging Coalition: Charlottesville, VA, USA, 2011. [Google Scholar]
- Walmart. Sustainable Packaging Playbook: A Guidebook for Suppliers to Improve Packaging Sustainability; Walmart: Bentonville, AR, USA, 2016. [Google Scholar]
- NEPC. National Environment Protection (Used Packaging Materials) Measure 2011; NEPC: Sydney, Australia, 2011. [Google Scholar]
- Australian Packaging Covenant. Sustainable Packaging Guidelines; Australian Packaging Covenant: Sydney, Australia, 2011. [Google Scholar]
- CEN/TC 261. Packaging—Requirements for Packaging Recoverable by Material Recycling: EN 13430:2004; European Committee for Standardization: Brussels, Belgium, 2004.
- CEN/TC 261. Packaging. Requirements for Packaging Recoverable through Composting and Biodegradation. Test Scheme and Evaluation Criteria for the Final Acceptance: EN 13432:2000; European Committee for Standardization: Brussels, Belgium, 2000.
- CEN/TC 261. Packaging—Requirements Specific to Manufacturing and Composition—Prevention by Source Reduction: EN 13428:2004; European Committee for Standardization: Brussels, Belgium, 2004.
- CEN/TC 261. Packaging—Requirements for Packaging Recoverable in the Form of Energy Recovery, Including Specification of Minimum Inferior Calorific Value: EN 13431:2004; European Committee for Standardization: Brussels, Belgium, 2004.
- CEN/TC 261. Packaging–Reuse: EN 13429:2004; European Committee for Standardization: Brussels, Belgium, 2004.
- ISO. Life Cycle Assessment–Principles and Framework: 14040:2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Hunt, R.G.; Franklin William, E. LCA–How it came about. Int. J. Life Cycle Assess. 1996, 1, 4–7. [Google Scholar] [CrossRef]
- Schonert, M.; Motz, G.; Meckel, H.; Detzel, A.; Giegrich, J.; Ostermayer, A.; Schorb, A.; Schmitz, S. Ökobilanz für Getränkeverpackungen II; Umweltbundesamt: Berlin, Germany, 2002. [Google Scholar]
- Von Falkenstein, E.; Wellenreuther, F.; Detzel, A. LCA studies comparing beverage cartons and alternative packaging: Can overall conclusions be drawn? Int. J. Life Cycle Assess. 2010, 15, 938–945. [Google Scholar] [CrossRef]
- Humbert, S.; Rossi, V.; Margni, M.; Jolliet, O.; Loerincik, Y. Life cycle assessment of two baby food packaging alternatives: Glass jars vs. plastic pots. Int. J. Life Cycle Assess. 2009, 14, 95–106. [Google Scholar] [CrossRef]
- Dinkel, F.; Kägi, T. Ökobilanz Getränkeverpackungen; Bundesamt für Umwelt Schweiz: Bern, Switzerland, 2014. [Google Scholar]
- Brander, M.; Tipper, R.; Hutchison, C.; Davis, G. Consequential and Attributional Approaches to LCA; Springer: Edinburgh, UK, 2010. [Google Scholar]
- Ekvall, T.; Azapagic, A.; Finnveden, G.; Rydberg, T.; Weidema, B.P.; Zamagni, A. Attributional and consequential LCA in the ILCD handbook. Int. J. Life Cycle Assess. 2016, 21, 293–296. [Google Scholar] [CrossRef]
- Allacker, K.; Mathieux, F.; Manfredi, S.; Pelletier, N.; de Camillis, C.; Ardente, F.; Pant, R. Allocation solutions for secondary material production and end of life recovery: Proposals for product policy initiatives. Resour. Conserv. Recycl. 2014, 88, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Allacker, K.; Mathieux, F.; Pennington, D.; Pant, R. The search for an appropriate end-of-life formula for the purpose of the European Commission Environmental Footprint initiative. Int. J. Life Cycle Assess. 2017, 22, 1441–1458. [Google Scholar] [CrossRef] [Green Version]
- Kägi, T. Implementation of Recycling Systems: The Delusive Role of LCA. In Proceedings of the 25th SETAC Europe Annual Meeting, Barcelona, Spain, 3–7 May 2015. [Google Scholar]
- Koffler, C.; Finkbeiner, M. Are we still keeping it “real”?: Proposing a revised paradigm for recycling credits in attributional life cycle assessment. Int. J. Life Cycle Assess. 2018, 23, 181–190. [Google Scholar] [CrossRef]
- Schrijvers, D.L.; Loubet, P.; Sonnemann, G. Critical review of guidelines against a systematic framework with regard to consistency on allocation procedures for recycling in LCA. Int. J. Life Cycle Assess. 2016, 21, 994–1008. [Google Scholar] [CrossRef]
- Nicholson, A.L.; Olivetti, E.A.; Gregory, J.R.; Field, F.R.; Kirchain, R.E. End-of-life LCA allocation methods: Open loop recycling impacts on robustness of material selection decisions. In Proceedings of the 2009 IEEE International Symposium on Sustainable Systems and Technology (ISSST), Phoenix, AZ, USA, 18–20 May 2009; pp. 1–6. [Google Scholar]
- Miller, S.; Theis, T. Comparison of Life-Cycle Inventory Databases: A Case Study Using Soybean Production. J. Ind. Ecol. 2008, 10, 133–147. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Sonnemann, G.; Vigon, B. Global Guidance Principles for Life Cycle Assessment Databases: Shonan Guidance Principles; United Nations Environment Programme: Nairobi, Kenia, 2011. [Google Scholar]
- Baitz, M. GaBi Database & Modelling Principles 2013; Version 1.0; PE International: Stuttgart, Germany, 2013. [Google Scholar]
- Joint Research Centre (JRC); Institute for Environment and Sustainability (IES). ILCD Handbook–Background Document: Analysis of Existing Environmental Impact Assessment Methodologies for Use in Life Cycle Assessment; JRC: Ispra, Italy, 2010. [Google Scholar]
- Li, T.; Zhang, H.; Liu, Z.; Ke, Q.; Alting, L. A system boundary identification method for life cycle assessment. Int. J. Life Cycle Assess. 2014, 19, 646–660. [Google Scholar] [CrossRef]
- Ekvall, T.; Weidema, B.P. System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess. 2004, 9, 161–171. [Google Scholar] [CrossRef]
- Van Hoof, G.; Vieira, M.; Gausman, M.; Weisbrod, A. Indicator selection in life cycle assessment to enable decision making: Issues and solutions. Int. J. Life Cycle Assess. 2013, 18, 1568–1580. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Huijbregts, M.A.J. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? Environ. Sci. Technol. 2016, 50, 3913–3919. [Google Scholar] [CrossRef] [PubMed]
- Klöpffer, W.; Grahl, B. Life Cycle Assessment: A Guide to Best Practice; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Hunsager, E.A.; Bach, M.; Breuer, L. An institutional analysis of EPD programs and a global PCR registry. Int. J. Life Cycle Assess. 2014, 19, 786–795. [Google Scholar] [CrossRef]
- Palminger, A. Closable Flexible Plastic Packaging; Product Category Classification: Un CPC 36490; CPC: Stockholm, Sweden, 2017. [Google Scholar]
- Milà i Canals, L.; Vigon, B.; Wang, F. Global Guidance for Life Cycle Impact Assessment Indicators; UNEP/SETAC Life Cycle Initiative: Nairobi, Kenia, 2016; Volume 1. [Google Scholar]
- European Commission. Commission Recommendation of 9 April 2013 on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Bruijn, P. Proposal for a New PEF EoL Formulas; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Weidema, B. Harnessing the End-of-Life Formula. 2015. Available online: https://lca-net.com/blog/harnessing-the-end-of-life-formula/ (accessed on 17 May 2018).
- Wolf, M.-A.; Chomkhamsri, K. Integrated Approach and Formula for Recycling, Reuse and Energy Energy in LCA and Environmental Footprinting; maki Consulting: Berlin, Germany, 2014. [Google Scholar]
- Finkbeiner, M. Product environmental footprint—Breakthrough or breakdown for policy implementation of life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 266–271. [Google Scholar] [CrossRef]
- Sala, S.; Castellani, V.; Zampori, L. Supporting Information to the Charcterisation Factors of Recommended EF Impact Assessment Method: New Models and Differences with ILCD; EU: Ispra, Italy, 2018. [Google Scholar]
- Lehmann, A.; Bach, V.; Finkbeiner, M. Product environmental footprint in policy and market decisions: Applicability and impact assessment. Integr. Environ. Assess. 2015, 11, 417–424. [Google Scholar] [CrossRef] [PubMed]
- European Commission. PEFCR Guidance Document: Guidance for the Development of Product Environmental Footprint Category Rules (PEFCRs), Version 6.3; European Commission: Ispra, Italy, 2018. [Google Scholar]
- PEF Packaging Working Group. Packaging Working Group Guidance Document; PEF Packaging Working Group: Brussels, Belgium, 2016. [Google Scholar]
- Wikström, F.; Verghese, K.; Auras, R.; Olsson, A.; Williams, H.; Wever, R.; Grönman, K.; Kvalvåg Pettersen, M.; Møller, H.; Soukka, R. Packaging Strategies that Save Food: A Research Agenda for 2030. J. Ind. Ecol. 2018, 14, 1346. [Google Scholar] [CrossRef]
- Heller, M.C.; Selke, S.E.M.; Keoleian, G.A. Mapping the Influence of Food Waste in Food Packaging Environmental Performance Assessments. J. Ind. Ecol. 2018, 5, 134. [Google Scholar] [CrossRef]
- Buzby, J.; Wells, H.F.; Axtman, B.; Mickey, J. Supermarket Loss Estimates for Fresh Fruit, Vegetables, Meat, Poultry and Seafood and Their Use in the ERS Loss-Adjusted Food Availability Data; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2009.
- Lebersorger, S.; Schneider, F. Aufkommen an Lebensmittelverderb im Österreichischen Lebensmittelhandel: Endbericht im Auftragder ECR-Arbeitsgruppe Abfallwirtschaft 2014; Universität für Bodenkultur: Vienna, Austria, 2014. [Google Scholar]
- Vernier, A. Pertes et Gaspillages Alimentaires: L’état des Lieux et Leur Gestion par Étapes de la Chaîne Alimentaire; Ministere de l’Environnement, de l’Energie et de la Mer: Paris, France, 2016.
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloid Surf. B 2019, 177, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, I.; Mori, S.; Cherubini, V.; Nanni, F. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. Int. J. Biol. Macromol. 2018, 112, 567–575. [Google Scholar] [CrossRef] [PubMed]
- ISO. Environmental Labels and Declarations—Self-Declared Environmental Claims (Type II Environmental Labelling): ISO 14021:2016; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- UNFCCC. ANNEX 28–Definition of renewable biomass. In CDM Executive Board Report (EB23); United Nations Framework Convention on Climate Change: Bonn, Germany, 2006. [Google Scholar]
- Ellen MacArthur Foundation. GRANTA Design. Circularity Indicators: An Approach to Measuring Circularity; Ellen MacArthur Foundation: London, UK, 2015. [Google Scholar]
- Frischknecht, R.; Wyss, F.; Büsser Knöpfel, S.; Lützkendorf, T.; Balouktsi, M. Cumulative energy demand in LCA: The energy harvested approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- European Commission. Development of a Weighting Approach for the Environmental Footprint; European Commission: Ispra, Italy, 2018. [Google Scholar]
- Stocker, T.; Boschung, J.; Qin, D.; Bex, V.; Midgley, P.; Tignor, M.; Plattner, G.-K.; Allen, S.; Xia, Y.; Nauels, A. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- CITEO. TREE–Test de la REcyclabilité des Emballages. 2018. Available online: http://tree.citeo.com/ (accessed on 7 January 2019).
- Packaging, S.A. Design for Recycling for Packaging and Paper in South Africa; National Recycling Forum: Bryanston, South Africa, 2017. [Google Scholar]
- Pack4Recycling. Recyclability of Your Packaging. Do the Test! Available online: https://www.pack4recycling.be/en/content/industrial-packaging (accessed on 7 January 2019).
- RECOUP. Plastic Packaging—Recyclability by Design. 2017. Available online: http://www.recoup.org/downloads/info-required?id=478&referrer=http%3A%2F%2Fwww.recoup.org%2Fp%2F275%2Fpublications (accessed on 7 January 2019).
- Plastic Recyclers Europe. RecyClass, The Recyclability Tool for Plastic Package. 2018. Available online: http://www.recyclass.eu/en/home/ (accessed on 1 June 2018).
- Gironi, F.; Piemonte, V. Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses. Energ. Source Part A 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Ceci-Renaud, N.; Tarayoun, T. Comportements D’achat en Présence D’affichage Environnemental: Les Enseignements d’une Enquête par Expériences de Choix; Ministère de L’environnement: Paris, France, 2016.
- Galatola, M.; Pant, R. Reply to the editorial “Product environmental footprint—breakthrough or breakdown for policy implementation of life cycle assessment?” written by Prof. Finkbeiner (Int J Life Cycle Assess 19(2):266–271). Int. J. Life Cycle Assess. 2014, 19, 1356–1360. [Google Scholar] [CrossRef]
- Bach, V.; Lehmann, A.; Görmer, M.; Finkbeiner, M. Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability 2018, 10, 2898. [Google Scholar] [CrossRef]
- Lehmann, A.; Bach, V.; Finkbeiner, M. EU Product Environmental Footprint—Mid-Term Review of the Pilot Phase. Sustainability 2016, 8, 92. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- De Wit, M.; Hoogzaad, J.; Ramkumar, S.; Friedl, H.; Douma, A. The Circularity Gap Report: An Analysis of the Circular State of the Global Economy; Circle Economy: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Cacciotti, I.; Nanni, F. Poly(lactic) acid fibers loaded with mesoporous silica for potential applications in the active food packaging. In AIP Confererence Proceedings; American Institute of Physics: College Park, MD, USA, 2016; p. 270018. [Google Scholar]
- Dugmore, T.I.J.; Clark, J.H.; Bustamante, J.; Houghton, J.A.; Matharu, A.S. Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods. Top. Curr. Chem. 2017, 375, 46. [Google Scholar] [CrossRef] [Green Version]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment: Updated Bioeconomy Strategy; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Rossi, V.; Cleeve-Edwards, N.; Lundquist, L.; Schenker, U.; Dubois, C.; Humbert, S.; Jolliet, O. Life cycle assessment of end-of-life options for two biodegradable packaging materials: Sound application of the European waste hierarchy. J. Clean. Prod. 2015, 86, 132–145. [Google Scholar] [CrossRef]
- Deutsche Umwelthilfe. Bioplastik in der Kompostierung: Ergebnisbericht–Umfrage; Deutsche Umwelthilfe: Radolfzell, Germany, 2018. [Google Scholar]
Framework | Focus | Principles | Indicators |
---|---|---|---|
Packaging for sustainability [29] | Design for sustainability | Sustainable packaging is:
| General reference to LCA |
Global Protocol of Packaging Sustainability 2.0 [30] | Assessment of packaging sustainability | No explicit definition |
|
Sustainable Packaging Coalition [31] | Improvement of packaging sustainability by voluntary commitment of members | Sustainable packaging is:
|
|
Walmart “Sustainable Packaging Playbook” [32] | Sustainability requirements for suppliers | Design Priorities:
|
|
Sustainable Packaging Guidelines [34] | Extended Producer Responsibility | Sustainability principles:
|
|
Directive 94/62/EC [17] | Legal measures | Packaging requirements:
|
|
Directive 2008/98/EC [20] | Legal measures | Disposal of packaging according to waste hierarchy | None |
Issue | Possible Approaches | References |
---|---|---|
General modeling approach |
| [47,48] |
End-of-life allocation procedure |
| [49,50,51,52,53,54] |
Database for secondary data |
| [55,56,57,58] |
Impact assessment methods |
| [59] |
System boundaries | Scope:
| [60,61] |
Indicator selection procedures |
| [62,63] |
Co-Product allocation |
| [64] |
Impact Category | Unit | Recommended LCIA Method |
---|---|---|
Climate change | kg CO2 eq. | GWP100a, based on IPCC 2013 |
Ozone depletion | kg CFC-11 eq. | Steady-state ODPs |
Human toxicity, cancer | CTUh | USEtox model |
Human toxicity, noncancer | CTUh | USEtox model, |
Particulate matter Ionizing radiation, human health | disease incidence kBq U235 eq. | PM method recommended by UNEP |
Photochemical ozone formation, human health | kg NMVOC eq. | LOTOS-EUROS |
Acidification | mol H+ eq. | Accumulated Exceedance |
Eutrophication, terrestrial | mol N eq. | Accumulated Exceedance |
Eutrophication, freshwater | fresh water: kg P eq. | EUTREND |
Eutrophication, marine | fresh water: kg N eq. | EUTREND |
Ecotoxicity, freshwater | CTUe | USEtox |
Land use | Dimensionless (pt.) | Soil quality index, LANCA |
Water use | m3 world eq. | AWARE |
Resource use, minerals, and metals | kg Sb eq. | CML 2002 |
Resource use, fossils | MJ | CML 2002 |
Indicator | Metric | Recommended Assessment Method |
---|---|---|
Climate change result for packaged food (Efood) | kg CO2 eq. | GWP100a (IPPC 2013) [89] |
Food-to-packaging ratio | Ratio Efood/Epackaging | Heller et al., 2018 [78] |
Share of packaging-related FLW | Ratio Amount of packaging-related FLW/ packaged food (%) | Empirical data collection or literature based assumptions |
Climate change result of packaging-related FLW | kg CO2 eq. | Calculation: Efood multiplied by the share of packaging-related FLW |
Protective properties of packaging | Description on packaging | Qualitative considerations |
Appropriateness of packaging size | Description on packaging | Qualitative considerations |
Resealability | Yes/No | Qualitative considerations |
Indicator | Metric | Technical or Biological Cycles | Recommended Assessment Method | |
---|---|---|---|---|
Input related | Recycled content | % of mass | Technical cycles | [84] |
Reuse rate | Number of usages | Technical cycles | [75] | |
Renewable content | % of mass | Biological cycles | [30] | |
Output related | Recyclability | Expert judgment | Technical cycles | [12,35,90,91,92,93,94] |
Recycling rate | % of mass | Technical cycles | [17] | |
Recycling output rate | % of mass | Technical cycles | [75] | |
Downcycling factor | Ratio | Technical cycles | [75] | |
Reuse rate | Number of usages | Technical cycles | [75] | |
Compostability | Compliance with EN 13432 | Biological cycles | [36] | |
Energy | Share of renewable energy | % of energy | Not applicable | [87] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauer, E.; Wohner, B.; Heinrich, V.; Tacker, M. Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment including Packaging-Related Food Losses and Waste and Circularity Assessment. Sustainability 2019, 11, 925. https://doi.org/10.3390/su11030925
Pauer E, Wohner B, Heinrich V, Tacker M. Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment including Packaging-Related Food Losses and Waste and Circularity Assessment. Sustainability. 2019; 11(3):925. https://doi.org/10.3390/su11030925
Chicago/Turabian StylePauer, Erik, Bernhard Wohner, Victoria Heinrich, and Manfred Tacker. 2019. "Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment including Packaging-Related Food Losses and Waste and Circularity Assessment" Sustainability 11, no. 3: 925. https://doi.org/10.3390/su11030925