Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Soil Sampling
2.3. Data Collection and Analysis
3. Results
3.1. Changes in Topsoil Texture During Succession
3.2. Variations in Aboveground and Belowground Biomass during Succession
3.3. Changes in Soil SOC and TN Content
3.4. Changes in the Storage of C and N in the Soil
3.5. Changes in the Storage of Soil C and N in Relation to Vegetative Succession
4. Discussion
4.1. Effects of N. Tangutorum Succession on Soil C and N Content
4.2. Effects of Annual Herbs on the Content of Soil C and N
4.3. Changes in the Storage of Soil C and N and Implications for Restoration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.; Swanson, F.; Aber, J.; Burke, I.; Brokaw, N.; Tilman, D.; Knapp, A. The importance of landuse legacies to ecology and conservation. BioScience 2003, 53, 77–88. [Google Scholar] [CrossRef]
- Lal, R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim. Chang. 2001, 51, 35–72. [Google Scholar] [CrossRef]
- Li, C.F.; Zhang, C.; Luo, G.P.; Chen, X.; Maisupova, B.; Madaminov, A.A.; Han, Q.F.; Djenbaev, B.M. Carbon stock and its responses to climate change in Central Asia. Glob. Chang. Biol. 2015, 21, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Lang, L.L.; Wang, X.M.; Hasi, E.; Hua, T. Nebkha (coppice dune) formation and significance to environmental change reconstructions in arid and semiarid areas. J. Geogr. Sci. 2013, 23, 344–358. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Dong, Z.; Liu, X.; Qian, G. Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. J. Arid Environ. 2006, 65, 129–141. [Google Scholar] [CrossRef]
- Tengberg, A.; Chen, D. A comparative analysis of nebkhas in central Tunisia and northern Burkina Faso. Geomorphology 1998, 22, 181–192. [Google Scholar] [CrossRef]
- Yan, Q.L.; Liu, Z.M.; Zhu, J.J.; Luo, Y.M.; Wang, H.M.; Jiang, D.M. Structure, pattern and mechanisms of formation of seed banks in sand dune systems in northeastern Inner Mongolia, China. Plant Soil 2005, 277, 175–184. [Google Scholar]
- Nield, J.M.; Baas, A.C.W. The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response. Global Planet. Chang. 2008, 64, 76–92. [Google Scholar] [CrossRef]
- Nickling, W.G.; Wolfe, S.A. The morphology and origin of Nabkhas, Region of Mopti, Mali, West Africa. J. Arid Environ. 1994, 28, 13–30. [Google Scholar] [CrossRef]
- El-Bana, M.I.; Nijs, I.; Kockelbergh, F. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant Soil 2002, 247, 283–293. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, H.; Zheng, X.J.; Li, Y.; Tang, S.T. Seasonal changes in the water use strategies of three co-occurring desert shrubs. Hydrol. Process. 2013, 28, 6265–6275. [Google Scholar] [CrossRef]
- Xu, S.Q.; Ji, X.B.; Jin, B.W.; Zhang, J.L. Root distribution of three dominant desert shrubs and their water uptake dynamics. J. Plant Ecol. 2017, 10, 780–790. [Google Scholar] [CrossRef]
- Okin, G.S.; Gillette, D.A.; Herrick, J.E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid Environ. 2006, 65, 253–275. [Google Scholar] [CrossRef]
- Li, J.C.; Zhao, Y.F.; Liu, H.X.; Su, Z.Z. Sandy desertification cycles in the southwestern Mu Us Desert in China over the past 80 years recorded based on nebkha sediments. Aeolian Res. 2016, 20, 100–107. [Google Scholar] [CrossRef]
- Dougill, A.J.; Thomas, A.D. Nebkha dunes in the Molopo Basin, South Africa and Botswana: Formation controls and their validity as indicators of soil degradation. J. Arid Environ. 2002, 50, 413–428. [Google Scholar] [CrossRef]
- Du, J.H.; Yan, P.; Dong, Y.X. Phenological response of Nitraria tangutorum to climate change in Minqin County, Gansu Province, northwest China. Int. J. Biometeorol. 2010, 54, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.T.; Zou, X.Y.; Chang, C.L.; Cheng, H. Wind-protecting effect of shrub dunes in ecotone of Minqin oasis. Sci. Geogr. Sin. 2007, 27, 104–108. (In Chinese) [Google Scholar]
- Fan, B.L.; Zhang, A.P.; Yi, Y.; Ma, Q.L.; Li, X.M.; Zhao, C.M. Long-term effects of xerophytic shrub Haloxylon ammodendron plantations on soil properties and vegetation dynamics in northwest China. PLoS ONE 2016, 11, e0168000. [Google Scholar] [CrossRef]
- Ma, Q.L.; Wang, Y.L.; Li, Y.K.; Sun, T.; Milne, E. Carbon storage in a wolfberry plantation chronosequence established on a secondary saline land in an arid irrigated area of Gansu Province, China. J. Arid Land 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Y.Y.; Ma, C.C. Nabkha morphology, development and sand-fixing capability of Caragana stenophylla in the Inner Mongolia Plateau. J. Desert Res. 2013, 33, 1305–1309. (In Chinese) [Google Scholar]
- Peng, H.J.; Fu, B.J.; Chen, L.D.; Yang, Z.H. Study on features of vegetation succession and its driving force in Gansu desert areas—a case study at Minqin County. J. Desert Res. 2004, 24, 628–633. (In Chinese) [Google Scholar]
- Zhang, P.J.; Yang, J.; Zhao, L.Q.; Bao, S.; Song, B.Y. Effect of Caragana tibetica nebkhas on sand entrapment and fertile islands in steppe–desert ecotones on the Inner Mongolia Plateau, China. Plant Soil 2011, 347, 79–90. [Google Scholar] [CrossRef]
- Zuo, X.A.; Zhao, X.Y.; Zhao, H.L.; Guo, Y.R.; Zhang, T.H.; Cui, J.Y. Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land, Northern China. Environ. Monit. Assess. 2010, 164, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.L.; Lu, Q.; Wei, L.Y.; Jin, H.J. Varying characteristics of soil seed banks during the succession process of Nitraria tangutorum vegetation in an arid desert area. Acta Ecol. Sin. 2015, 35, 2285–2294. (In Chinese) [Google Scholar]
- Du, J.H.; Yan, P.; E, Y.H. Distribution patterns and characteristics of Nitraia tangutorun nebkha at its different evolvement stages in the Minqin Country of Gansu Province. Chin. J. Ecol. 2007, 26, 1165–1170. (In Chinese) [Google Scholar]
- Du, J.H.; Yan, P.; Dong, Y.X. Precipitation characteristics and its impact on vegetation restoration in Minqin County, Gansu Province, northwest China. Int. J. Climatol. 2011, 31, 1153–1165. [Google Scholar] [CrossRef]
- Yang, Y.G.; Zhao, C.Y.; Han, M.; Li, Y.K.; Yang, R.H. Temporal patterns of shrub vegetation and variation with precipitation in Gurbantunggut Desert, Central Asia. Adv. Meteorol. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Jin, H.J.; Ma, Q.L.; He, M.Z.; Jia, X.H.; Liu, Y.J.; Zhang, Y.J.; Li, F.H. Analysis on community structure and quantitative characteristics of Nitraria tangutorum nebkhas at different succession stage in lower reaches of Shiyang River. Acta Ecol. Sin. 2013, 33, 2248–2259. (In Chinese) [Google Scholar]
- Zeng, Y.J.; Wang, Y.R.; Baskin, C.C.; Baskin, J.M. Testing seed germination responses to water and salinity stresses to gain insight on suitable microhabitats for restoration of cold desert shrubs. J. Arid Environ. 2014, 100–101, 89–92. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J.; Li, H.; Wang, S.; Xiu, Y.; Xin, Z.; Jiang, Z.; Wang, L.; Jia, Z. Effects of aspect on clonal reproduction and biomass allocation of layering modules of Nitraria tangutorum in nebkha dunes. PLoS ONE 2013, 8, e79927. [Google Scholar]
- Zhou, H.; Zhao, W.Z.; Luo, W.C.; Liu, B. Species diversity and vegetation distribution in nebkhas of Nitraria tangutorum, in the Desert Steppes of China. Ecol. Res. 2015, 30, 1–10. [Google Scholar] [CrossRef]
- Song, W.M.; Chen, S.P.; Wu, B.; Zhu, Y.J.; Zhou, Y.D.; Li, Y.H.; Cao, Y.L.; Lin, G.H. Vegetation cover and rain timing co-regulate the responses of soil co2 efflux to rain increase in an arid desert ecosystem. Soil Biol. Biochem. 2012, 49, 114–123. [Google Scholar] [CrossRef]
- Ma, Q.L.; Wang, J.H.; Zhang, J.G.; Zhan, K.J.; Zhang, D.K.; Chen, F. Ecological protective function of a pioneer species (Agriophyllum squarrosum) on shifting sand dunes. J. Soil Water Conserv. 2008, 22, 140–142. (In Chinese) [Google Scholar]
- Jia, B.Q.; Cai, T.J.; Gao, Z.H.; Ding, F.; Zhang, G.Z. Biomass forecast models of Nitraria tangutorum shrub in sand dune. J. Arid Land Resour. Environ. 2002, 16, 96–99. (In Chinese) [Google Scholar]
- Dong, Z.B.; Man, D.Q.; Luo, W.Y.; Qian, G.Q.; Wang, J.H.; Zhao, M.; Liu, S.Z.; Zhu, G.Q.; Zhu, S.J. Horizontal aeolian sediment flux in the Minqin area, a major source of Chinese dust storms. Geomorphology 2010, 116, 58–66. [Google Scholar] [CrossRef]
- Mcclaran, M.P.; Moorekucera, J.; Martens, D.A.; Haren, J.V.; Marsh, S.E. Soil carbon and nitrogen in relation to shrub size and death in a semi-arid grassland. Geoderma 2008, 145, 60–68. [Google Scholar] [CrossRef]
- Day, P.R. Particle fractionation and particle-size distribution. In Methods of Soil Analysis. Agronomy; Black, C.A., Evans, D.D., White, J.L., Clark, F.E., Eds.; ASA: Madison, WI, USA, 1965; Volume 9, pp. 548–549. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Agronomy, Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Duan, Z.H.; Xiao, H.L.; Dong, Z.B.; He, X.D.; Wang, G. Estimate of total co2 output from desertified sandy land in China. Atmos. Environ. 2001, 35, 5915–5921. [Google Scholar]
- Zhao, H.L.; He, Y.H.; Zhou, R.L.; Su, Y.Z.; Li, Y.Q.; Drake, S. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 2009, 77, 187–191. [Google Scholar] [CrossRef]
- Yang, H.T.; Li, X.R.; Wang, Z.R.; Jia, R.L.; Liu, L.C.; Chen, Y.L.; Wei, Y.P.; Gao, Y.H.; Li, G. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China. Sci. Total Environ. 2014, 478, 1–11. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Jia, X.H.; Li, X.R.; Li, Y.S. Soil organic carbon and nitrogen dynamics during the re-vegetation process in the arid desert region. J. Plant Ecol. 2007, 31, 66–74. (In Chinese) [Google Scholar]
- Li, Y.; Chen, Y.; Wang, X.; Niu, Y.; Lian, J. Improvements in soil carbon and nitrogen capacities after shrub planting to stabilize sand dunes in China’s Horqin Sandy Land. Sustainability 2017, 9, 662. [Google Scholar] [CrossRef]
- Sun, X.; Yu, Z. A study on root system of Nitraria tangutorum. J. Desert Res. 1992, 12, 50–54. (In Chinese) [Google Scholar]
- Roberto, A.; Marco, P.; Salvatore, D. Contrasting plant productivity–diversity relationships across latitude: the role of evolutionary history. Ecology 2007, 88, 1091–1097. [Google Scholar]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.G. Desert shrub water relations with respect to soil characteristics and plant functional type. Funct. Ecol. 2002, 16, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, C.; Li, A.D.; Yang, Z.H.; Zhang, Q.T.; Liang, X.J.; Qiu, G.Y. The degradation of Nitraria dunes and soil water in Minqin oasis. Acta Ecol. Sin. 2015, 35, 1407–1421. (In Chinese) [Google Scholar]
- Liu, W.X.; Zhang, Z.; Wan, S.Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Chang. Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Yang, Z.H.; Gao, Z.H. Impact of precipitation and underground water level in the edge of oases on growth and decline of Nitraria tangugtorum community. Chin. J. Appl. Ecol. 2000, 11, 923–926. (In Chinese) [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Lowery, B.; Swan, J.; Schumacher, T.; Jones, A. Physical properties of selected soils by erosion class. J. Soil Water Conserv. 1995, 50, 306–311. [Google Scholar]
- Dong, X.W.; Zhang, X.K.; Bao, X.L.; Wang, J.K. Spatial distribution of soil nutrients after the establishment of sand-fixing shrubs on sand dune. Plant Soil Environ. 2009, 55, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.L.; Guo, Y.R.; Zhou, R.L.; Drake, S. The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China. Geoderma 2011, 160, 367–372. [Google Scholar] [CrossRef]
- Niu, J.P.; Yang, K.; Tang, Z.J.; Wang, Y.T. Relationships between soil crust development and soil properties in the desert region of North China. Sustainability 2017, 9, 725. [Google Scholar] [CrossRef]
- Ma, Q.L.; Fehmi, J.S.; Zhang, D.K.; Fan, B.L.; Chen, F. Changes in wind erosion over a 25-year restoration chronosequence on the south edge of the Tengger Desert, China: implications for preventing desertification. Environ. Monit. Assess. 2017, 189, 463. [Google Scholar] [CrossRef] [PubMed]
- Du, J.H.; Yan, P.; Zhan, X.L.; You-hao, E. Surface erosion-resistance of Nitraria tangutorun nebkhas at different succession stages in Minqin oasis and related affecting factors. Chin. J. Appl. Ecol. 2008, 19, 763–768. (In Chinese) [Google Scholar]
- Luo, W.C.; Zhao, W.Z.; Liu, B. Growth stages affect species richness and vegetation patterns of nebkhas in the desert steppes of China. Catena 2016, 137, 126–133. [Google Scholar] [CrossRef]
- Chen, B.M.; Wang, G.X.; Cheng, D.L.; Deng, J.M.; Peng, S.L.; An, F.B. Vegetation change and soil nutrient distribution along an oasis-desert transitional zone in northwestern China. J. Integr. Plant Biol. 2007, 49, 1537–1547. [Google Scholar] [CrossRef]
- Hu, H.F.; Wang, Z.H.; Liu, G.H.; Fu, B.J. Vegetation carbon storage of major shrublands in China. Chin. J. Plant Ecol. 2006, 30, 539–544. (In Chinese) [Google Scholar]
- Ma, Q.L.; Xu, L.H.; Chen, F.; Zhang, D.K.; Wang, X.Y.; Jin, H.J.; Liu, Y.J. Restoration changes in organic carbon stocks of the vegetation and soil ecosystems in the reversion process of desertification in arid areas. Adv. Geosci. 2018, 8, 48–59. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhu, J.J.; Jia, Q.Q.; Zheng, X.; Li, J.S.; Lou, X.D.; Hu, L.L. Carbon sequestration effects of shrublands in Three-North Shelterbelt Forest region, China. Chin. Geogr. Sci. 2014, 24, 444–453. [Google Scholar] [CrossRef]
Stages of Succession | Sites and Geographical Coordinates | Species | Population Coverage of N. tangutorum (%) | Vegetation Coverage (%) | Aboveground Biomass (kg·m−2) | Community Coverage (%) | Long Axis (m) | Short Axis (m) | Height (m) | Species Number | Annual Herb | Crust Status |
---|---|---|---|---|---|---|---|---|---|---|---|---|
IS | Hongtujing 39°8′ N, 103°11′ E | Nitraria tangutorum, Nitraria sphaerocarpa, Peganum harmala, Asparagus gobicu, Allium mongolicum, Stipa capillata, Phragmites australis, C1eistogenes songorica, Eragrostis poaeoides, Oxytropis aciphylla, Astragalus galactites, Olgaea leucophylla, Artemisia ordosica, Echinops gmelini, Convolvulus gortschakovii, Reaumuria songarica, Suaeda glauca, Salsola ruthenica, Corispermum hyssopifolium | 31.83 ± 6.19 b | 57.86 ± 6.53 a | 0.71 ± 0.12 ab | 37.6 ± 14.8 b | 2.27 ± 0.27 c | 2.01 ± 0.33 b | 0.49 ± 0.07 b | 19 | 5 | Sand surface is shifting, small area of physical crust forming |
SS | Qingtuhu 39°29′ N, 103°22′ E | Nitraria tangutorum, Artemisia sphaerocephala, Suaeda glauca, Kalidium foliatum, Salsola ruthenica, Eragrostis poaeoides, Phragmites australis | 57.14 ± 3.45 a | 65.80 ± 5.89 a | 1.83 ± 0.98 a | 64.7 ± 3.7 a | 5.59 ± 0.41 bc | 3.33 ± 0.28 b | 0.85 ± 0.08 ab | 7 | 3 | Sand surface is shifting, small area of physical crust forming |
DS | Sanjiaocheng 38°35′ N, 103°12′ E | Nitraria tangutorum, Nitraria sphaerocarpa, Tribulus terrestris, Reaumuria songarica, Echinops gmelini, Suaeda glauca, Agriophyllum squarrosum, Lyciumru thenicum | 28.77 ± 4.97 c | 32.89 ± 5.68 b | 0.62 ± 0.11 ab | 32.4 ± 3.5 bc | 9.65 ± 1.98 a | 6.18 ± 1.37 a | 0.96 ± 0.12 ab | 8 | 4 | Mainly biological crust with fracture appearance |
SDS | Shajingzi 38°21′ N, 102°35′ E | Nitraria tangutorum, Tribulus terrestris, Bassia dasyphylla, Salsola ruthenica, Agriophyllum squarrosum, Suaeda glauca, Limonium aureum, Pugionium cornutum, Eragrostis pilosa, Eragrostis poaeoides | 18.93 ± 3.53 d | 20.50 ± 3.33 b | 0.20 ± 0.03 b | 23.5 ± 6.5 c | 6.42 ± 0.59 b | 4.50 ± 0.45 ab | 1.25 ± 0.28 a | 10 | 8 | Sand surface is shifting, small area of biological crust left |
Items | Stages of Succession | |||
---|---|---|---|---|
IS | SS | DS | SDS | |
Clay content (%) | 0.79 ± 0.10 c | 2.91 ± 0.67 b | 4.37 ± 0.82 a | 2.84 ± 0.13 b |
Silt content (%) | 3.67 ± 0.32 c | 8.31 ± 1.82 b | 17.81 ± 4.45 a | 7.14 ± 0.37 b |
Sand content (%) | 95.54 ± 0.41 a | 88.78 ± 2.49 a | 77.81 ± 5.22 b | 90.02 ± 0.48 a |
Bulk density (g/cm3) | 1.47 ± 0.06 a | 1.42 ± 0.05 a | 1.35 ± 0.06 a | 1.41 ± 0.07 a |
Soil water content (%) | 0.73 ± 0.29 a | 0.70 ± 0.09 a | 0.62 ± 0.09 a | 0.36 ± 0.03 a |
Depth (cm) | Stage of Succession | |||
---|---|---|---|---|
IS | SS | DS | SDS | |
SOC (g/kg) | ||||
0−5 | 0.76 ± 0.38 b | 5.00 ± 2.75 a | 3.96 ± 2.18 a | 1.33 ± 0.59 b |
5−20 | 1.09 ± 0.05 ab | 6.45 ± 4.03 a | 6.57 ± 0.04 a | 0.79 ± 0.10 b |
20−40 | 0.87 ± 0.04 b | 5.99 ± 3.71 a | 3.81 ± 0.45 a | 0.78 ± 0.00 b |
40−60 | 0.64 ± 0.21 b | 12.08 ± 4.74 a | 3.92 ± 2.31 ab | 0.68 ± 0.25 b |
60−80 | 0.53 ± 0.11 b | 6.29 ± 4.04 a | 4.07 ± 0.76 ab | 0.74 ± 0.25 b |
80−100 | 0.29 ± 0.12 b | 5.98 ± 2.13 a | 3.17 ± 0.11 b | 0.82 ± 0.12 b |
Average | 0.70 ± 0.29 b | 5.90 ± 3.68 a | 4.25 ± 1.44 a | 0.86 ± 0.28 b |
TN (g/kg) | ||||
0−5 | 0.07 ± 0.03 b | 0.28 ± 0.23 a | 0.38 ± 0.24 a | 0.12 ± 0.06 b |
5−20 | 0.11 ± 0.01 ab | 0.33 ± 0.35 ab | 0.62 ± 0.10 a | 0.07 ± 0.01 b |
20−40 | 0.08 ± 0.00 b | 0.30 ± 0.32 a | 0.34 ± 0.02 a | 0.08 ± 0.01 b |
40−60 | 0.07 ± 0.03 b | 0.76 ± 0.27 a | 0.32 ± 0.15 b | 0.07 ± 0.03 b |
60−80 | 0.04 ± 0.01 b | 0.79 ± 0.25 a | 0.38 ± 0.05 b | 0.07 ± 0.03 b |
80−100 | 0.03 ± 0.01 b | 0.69 ± 0.22 a | 0.30 ± 0.02 b | 0.07 ± 0.01 b |
Average | 0.07 ± 0.03 b | 0.52 ± 0.30 a | 0.39 ± 0.14 a | 0.08 ± 0.03 b |
C/N | ||||
0−5 | 11.20 ± 0.13 a | 17.97 ± 0.12 a | 10.39 ± 0.09 a | 10.94 ± 0.10 a |
5−20 | 10.32 ± 0.05 a | 19.48 ± 0.11 a | 10.64 ± 0.44 a | 10.72 ± 0.20 a |
20−40 | 10.31 ± 0.38 a | 20.10 ± 0.12 a | 11.17 ± 0.22 a | 9.77 ± 0.00 a |
40−60 | 9.77 ± 0.07 a | 15.86 ± 0.18 a | 12.21 ± 0.15 a | 10.20 ± 0.09 a |
60−80 | 11.72 ± 0.12 a | 7.93 ± 0.16 a | 10.66 ± 0.17 a | 10.26 ± 0.09 a |
80−100 | 11.24 ± 0.11 a | 8.73 ± 0.10 a | 10.72 ± 0.06 a | 10.98 ± 0.15 a |
Average | 10.79 ± 0.78 a | 10.81 ± 1.07 a | 10.97 ± 0.88 a | 10.49 ± 0.66 a |
AOC (g/kg) | ||||
0−5 | 0.53 ± 0.26 a | 2.19 ± 1.96 a | 2.69 ± 1.57 a | 0.87 ± 0.37 a |
5−20 | 0.73 ± 0.07 a | 2.51 ± 2.83 a | 4.44 ± 0.10 a | 0.55 ± 0.12 a |
20−40 | 0.58 ± 0.08 a | 2.35 ± 2.58 a | 2.73 ± 0.44 a | 0.54 ± 0.10 a |
40−60 | 0.43 ± 0.16 b | 5.90 ± 2.95 a | 2.82 ± 1.76 ab | 0.48 ± 0.19 b |
60−80 | 0.38 ± 0.05 b | 6.54 ± 3.20 a | 2.93 ± 0.41 ab | 0.44 ± 0.12 b |
80−100 | 0.21 ± 0.10 c | 5.23 ± 1.39 a | 2.26 ± 0.04 b | 0.51 ± 0.04 bc |
Average | 0.48 ± 0.19 b | 4.12 ± 2.56 a | 2.98 ± 0.98 a | 0.56 ± 0.18 b |
Depths | Stages of Succession | |||
---|---|---|---|---|
IS | SS | DS | SDS | |
SOC storage (g/m2) | ||||
0−5 | 60.08 ± 17.31 b | 224.07 ± 144.01 a | 255.28 ± 91.63 a | 102.00 ± 31.84 b |
5−20 | 254.99 ± 14.31 b | 793.20 ± 629.22 a | 1280.67 ± 8.84 a | 182.24 ± 9.56 b |
20−40 | 294.89 ± 18.41 b | 967.84 ± 750.25 a | 1142.70 ± 47.97 a | 242.37 ± 19.39 b |
40−60 | 195.66 ± 48.81 b | 2309.50 ± 948.00 a | 1207.55 ± 523.14 a | 196.81 ± 1.32 b |
60−80 | 173.69 ± 37.82 b | 2237.37 ± 859.42 a | 1235.00 ± 78.95 ab | 226.97 ± 19.54 b |
80−100 | 96.81 ± 31.80 c | 1933.99 ± 392.43 a | 972.60 ± 80.89 b | 245.44 ± 23.73 bc |
Total | 1076.12 ± 168.46 b | 8465.97 ± 3723.34 a | 6093.81 ± 831.42 a | 1195.84 ± 105.38 b |
TN storage (g/m2) | ||||
0−5 | 5.38 ± 1.31 b | 20.41 ± 11.95 a | 24.52 ± 10.28 a | 9.32 ± 3.19 b |
5−20 | 24.72 ± 2.26 b | 72.86 ± 55.33 a | 120.36 ± 13.56 a | 17.03 ± 0.19 b |
20−40 | 28.57 ± 0.52 b | 85.73 ± 64.80 a | 102.51 ± 0.14 a | 24.82 ± 1.03 b |
40−60 | 20.06 ± 6.74 b | 200.67 ± 55.83 a | 98.78 ± 35.01 a | 19.30 ± 1.02 b |
60−80 | 14.81 ± 3.20 b | 192.60 ± 56.83 a | 116.27 ± 1.75 ab | 22.19 ± 0.24 b |
80−100 | 8.61 ± 2.87 b | 177.01 ± 40.30 a | 90.82 ± 9.04 b | 22.36 ± 1.60 b |
Total | 102.15 ± 16.91 b | 749.29 ± 285.03 a | 553.25 ± 69.78 a | 115.01 ± 7.28 b |
Correlation | SSOC | STN | BD | VC | AB | BB | CB | TB | SWC | CC | SC |
---|---|---|---|---|---|---|---|---|---|---|---|
STN | 0.997 ** | ||||||||||
BD | −0.695 ** | −0.688 ** | |||||||||
VC | 0.753 | 0.744 | −0.635 | ||||||||
AB | 0.708 | 0.701 | −0.860 | 0.719 | |||||||
BB | 0.628 | 0.621 | −0.816 | 0.654 | 0.994 ** | ||||||
CB | 0.891 | 0.890 | −0.938 | 0.836 | 0.946 | 0.904 | |||||
TB | 0.623 | 0.620 | −0.822 | 0.622 | 0.990 ** | 0.999 ** | 0.896 | ||||
SWC | 0.501 | 0.496 | 0.300 | 0.756 | 0.098 | 0.003 | 0.346 | −0.038 | |||
CC | 0.594 | 0.604 | −0.697 | −0.067 | 0.325 | 0.299 | 0.407 | 0.333 | −0.276 | ||
SC | 0.543 | 0.555 | 0.692 * | 0.668 * | 0.626 | 0.647 * | 0.442 | 0.687 * | −0.718 * | 0.959 ** | |
SAC | −0.444 | −0.997 ** | 0.979 ** | 0.890 ** | 0.774 ** | 0.828 ** | 0.395 | 0.865 ** | −0.879 ** | 0.659 * | 0.710 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, Q.; Jin, H.; Fan, B.; Wang, D.; Lin, H. Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area. Sustainability 2019, 11, 1146. https://doi.org/10.3390/su11041146
Wang X, Ma Q, Jin H, Fan B, Wang D, Lin H. Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area. Sustainability. 2019; 11(4):1146. https://doi.org/10.3390/su11041146
Chicago/Turabian StyleWang, Xinyou, Quanlin Ma, Hujia Jin, Baoli Fan, Duobin Wang, and Huilong Lin. 2019. "Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area" Sustainability 11, no. 4: 1146. https://doi.org/10.3390/su11041146
APA StyleWang, X., Ma, Q., Jin, H., Fan, B., Wang, D., & Lin, H. (2019). Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area. Sustainability, 11(4), 1146. https://doi.org/10.3390/su11041146