Farmer Reported Pest and Disease Impacts on Root, Tuber, and Banana Crops and Livelihoods in Rwanda and Burundi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study and Sampling Design (Study Subjects, Inclusion Criteria, and Ethical Approval)
2.3. Data Analysis
3. Results
3.1. Characteristics of the Sampled Population
3.2. Importance of RTB Crops
3.3. Contribution of RTB Crops to Food and Income Security
3.4. Production Constraints of RTB Crops
3.5. Pests and Diseases Affecting RTB Crops
3.6. Perceived Levels of Crop Losses Due to Insect Pests and Diseases
3.7. Contribution of Pests and Diseases to Food Insecurity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Crop production statistics by country. Statistical database 2018 [cited 2018 27 Nov]. 2018. Available online: http://www.fao.org/faostat/en/#data.QC (accessed on 2 August 2017).
- FAO; WFP. Monitoring Food Security in Countries with Conflict Situations. A Joint FAO/WFP Update for the United Nations Security Council; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 40. [Google Scholar]
- WFP. Rwanda: Comprehensive food Security and Vulnerability Analysis; World Food Program of the United Nations: Rome, Italy, 2016; p. 132. [Google Scholar]
- FEWSNET. Burundi and Rwanda Remote Monitoring Update; Famine Early Warning Systems Network: Kigali, Rwanda, 2017; p. 2. [Google Scholar]
- FAO. FAO Briefing Note on FAW; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 5. [Google Scholar]
- Kanamugire, J.; Afadhali, J.P. Rwanda faces hunger over fall armyworm invasion. In The East African; Nation Media Group: Kigali, Rwanda, 2017. [Google Scholar]
- ISAR. Annual Report; Institut des Sciences Agronomiques du Rwanda: Kigali, Rwanda, 2008; p. 119. [Google Scholar]
- Kromann, P.; Miethbauer, T.; Ortiz, O.; Forbes, G.A. Review of potato biotic constraints and experiences with integrated pest management interventions. In Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2014; pp. 245–268. [Google Scholar]
- Okonya, J.S.; Kroschel, J. A cross-sectional study of pesticide use and knowledge of smallholder potato farmers in uganda. Biomed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.L.; Beaudette, L.A.; Hart, M.; Moutoglis, P.; Klironomos, J.N.; Lee, H.; Trevors, J.T. Methods of studying soil microbial diversity. J. Microbiol. Methods 2004, 58, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Duveiller, E. Examples of pests and diseases that can be affected by climate change. In Climate-Related Transboundary Pests and Diseases, FAO Rome, Technical Background Document from the Expert Consultation Held On; FAO: Rome, Italy, 2008; Volume 25. [Google Scholar]
- Kroschel, J.; Mujica, N.; Carhuapoma, P.; Sporleder, M. Pest Distribution and Risk Atlas for Africa. Potential Global and Regional Distribution and Abundance of Agricultural and Horticultural Pests and Associated Biocontrol Agents under Current and Future Climates; International Potato Center (CIP): Lima, Peru, 2016. [Google Scholar]
- Okonya, J.S.; Kroschel, J. Farmers’ knowledge and perceptions of potato pests and their management in uganda. J. Agric. Rural Dev. Trop. Subtrop. (JARTS) 2016, 117, 87–97. [Google Scholar]
- Were, H.; Kabira, J.; Kinyua, Z.; Olubayo, F.; Karinga, J.; Aura, J.; Lees, A.; Cowan, G.; Torrance, L. Occurrence and distribution of potato pests and diseases in kenya. Potato Res. 2013, 56, 325–342. [Google Scholar] [CrossRef]
- Raman, K.; Radcliffe, E. Pest aspects of potato production. Part 2. Insect pests. In The Potato Crop: The Scientific Basis for Improvement; Chapman Hall: London, UK, 1992; pp. 476–506. [Google Scholar]
- Chabi-Olaye, A.; Mujica, N.; Löhr, B.; Kroschel, J. Role of agroecosystems in the abundance and diversity of liriomyza leafmining flies and their natural enemies. In Proceedings of the XXIII International Congress of Entomology, Durban, South Africa, 7 July 2008; 7; pp. 6–12. [Google Scholar]
- Kroschel, J.; Schaub, B. Biology and ecology of potato tuber moths as major pests of potato. In Insect Pests of Potato; Elsevier: Oxford, UK, 2013; pp. 165–192. [Google Scholar]
- Ajanga, S. Status of bacterial wilt of potato in Kenya.[Conference paper]. In Proceedings of ACIAR 1993: Postharvest Handling of Tropical Fruits; Australian Centre for International Agricultural Research: Chiang Mai, Thailand, 1993. [Google Scholar]
- Higiro, J. Potato production in burundi: Constraints and research. Breeding for disease resistance with emphasis on durability. In Proceedings of the a Regional Workshop for Eastern, Central and Southern Africa, Njoro, Kenya, 2–6 October 1994; Landbouwuniversiteit Wageningen (Wageningen Agricultural University): Wageningen, The Netherlands, 1995. [Google Scholar]
- Cyperus, C.; Bokx, J. Virus diseases. In Potato Diseases; Aardappelwereld BV and NIVAP: Den Haag, The Netherlands, 2005. [Google Scholar]
- Okonya, J.S.; Mwanga, R.O.; Syndikus, K.; Kroschel, J. Insect pests of sweetpotato in Uganda: farmers’ perceptions of their importance and control practices. SpringerPlus 2014, 3, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okonya, J.; Mujica, N.; Carhuapoma, P.; Kroschel, J. Sweetpotato weevil, Cylas puncticollis (Boheman 1883). In Pest Distribution and Risk Atlas for Africa: Potential Global and Regional Distribution and Abundance of Agricultural and Horticultural Pests and Associated Biocontrol Agents Under Current and Future Climates; Kroschel, J., Mujica, N., Carhuapoma, P., Sporleder, M., Eds.; International Potato Center: Lima, Peru, 2016; p. 419. [Google Scholar]
- Smit, N. Integrated Pest Management for Sweetpotato in Eastern Africa; Wageningen University: Wageningen, Netherlands, 1997; p. 151. [Google Scholar]
- Gibsona, R.; Kreuzeb, J. Degeneration in sweetpotato due to viruses, virus-cleaned planting material and reversion: A review. Plant Pathol. 2015, 64, 1–15. [Google Scholar] [CrossRef]
- Legg, J.P.; Okonya, J.S.; Coyne, D. Integrated pest management of root and tuber crops in the tropics. In Integrated Pest Management in Tropical Regions; Rapisarda, C., Cocuzza, G.E.M., Eds.; CAB International: Oxford, UK, 2017; pp. 90–112. [Google Scholar]
- Stover, R. Sooty moulds of bananas. Trans. Br. Mycol. Soc. 1975, 65, 328–330. [Google Scholar] [CrossRef]
- Sarah, J.-L.; Vilardebo, A. L’utilisation du miral en afrique de l’ouest pour la lutte contre les nématodes du bananier. Fruits 1979, 34, 729–741. [Google Scholar]
- Waterhouse, D.F.; Norris, K.R. Biological Control: Pacific Prospects; Inkata Press: Melbourne, Australia, 1987; p. 454. [Google Scholar]
- Rukazambuga, N.; Gold, C.; Gowen, S. Yield loss in east african highland banana (Musa spp., AAA-EA group) caused by the banana weevil, cosmopolites sordidus germar. Crop Prot. 1998, 17, 581–589. [Google Scholar] [CrossRef]
- Speijer, P. East african highland banana production as influenced by nematodes and crop management in uganda. Int. J. Pest Manag. 1999, 45, 41–49. [Google Scholar] [CrossRef]
- Gold, C.; Kagezi, G.; Night, G.; Ragama, P. The effects of banana weevil, cosmopolites sordidus, damage on highland banana growth, yield and stand duration in uganda. Ann. Appl. Biol. 2004, 145, 263–269. [Google Scholar] [CrossRef]
- Gowen, S.; Quénéhervé, P.; Fogain, R. Nematode Parasites of Bananas and Plantains. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; Luc, M., Sikora, R., Bridge, J., Eds.; CAB International: Oxford, UK, 2005; pp. 611–643. [Google Scholar]
- Norgrove, L.; Hauser, S. Improving plantain (Musa spp. AAB) yields on smallholder farms in West and Central Africa. Food Secur. 2014, 6, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Legg, J.P.; Owor, B.; Sseruwagi, P.; Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. 2006, 67, 355–418. [Google Scholar] [PubMed]
- Manyong, V.M.; Maeda, C.; Kanju, E.; Legg, J.P. Economic damages of cassava brown streak disease in sub-Saharan Africa: A framework. In 11th Triennial Symposium of the ISTRC-AB; International Society For Tropical Root Crops-Africa Branch: Kinshasa, DR Congo, 2012; pp. 78–82. [Google Scholar]
- Glenn, D.I. Determining Sample Size; Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2013; Volume 32611, p. 3. [Google Scholar]
- The SAS system for windows v9.2; SAS Institute Inc: Cary, North Carolina, 2008.
- Okonya, J.S.; Petsakos, A.; Suarez, V.; Nduwayezu, A.; Kantungeko, D.; Blomme, G.; Legg, J.P.; Kroschel, J. Pesticide use practices in root, tuber and banana crops by smallholder farmers in Rwanda and Burundi. Int. J. Environ. Res. Public Health 2019, 16, 400. [Google Scholar] [CrossRef] [PubMed]
- NIRS. Gross Domestic Product – 2017 Q1; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2017; p. 1. [Google Scholar]
- Kroschel, J.; Okonyaet, J.S.; Juarez, H.; Forbes, G.A.; Kreuze, J.; Beed, F.D.; Blomme, G.; Legg, J.P. Management of critical pests and diseases in RTB crops under changing climates, through risk assessment, surveillance and modeling. In RTB Workshop Reports; CGIAR Research Program on Roots, Tubers and Bananas (RTB): Lima, Peru, 2014; p. 20. [Google Scholar]
- NIRS. National agricultural survey report; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2010; p. 249. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; p. 1535. [Google Scholar]
- Lemaga, B.; Kanzikwera, R.; Kakuhenzire, R.; Hakiza, J.; Manzi, G. The effect of crop rotation on bacterial wilt incidence and potato tuber yield. Afr. Crop Sci. J. 2001, 9, 257–266. [Google Scholar] [CrossRef]
- Blomme, G.; Jacobsen, K.; Ocimati, W.; Beed, F.; Ntamwira, J.; Sivirihauma, C.; Ssekiwoko, F.; Nakato, V.; Kubiriba, J.; Tripathi, L. Fine-tuning banana xanthomonas wilt control options over the past decade in East and Central Africa. Eur. J. Plant Pathol. 2014, 139, 271–287. [Google Scholar] [CrossRef]
- Mbogoh, S.G.; Wambugu, F.M.; Wakhusama, S. Socio-economic impact of biotechnology applications: Some lessons from the pilot tissue-culture (TC) banana production promotion project in Kenya, 1997–2002. In Proceedings of the XXV IAAE Conference, Durban, South Africa, 16–22 August 2003. [Google Scholar]
- Gildemacher, P.R.; Schulte-Geldermann, E.; Borus, D.; Demo, P.; Kinyae, P.; Mundia, P.; Struik, P.C. Seed potato quality improvement through positive selection by smallholder farmers in kenya. Potato Res. 2011, 54, 253. [Google Scholar] [CrossRef]
- Thresh, J.; Otim-Nape, G.; Jennings, D. Exploiting resistance to african cassava mosaic virus. Asp. Appl. Biol. 1994, 39, 51–60. [Google Scholar]
- Dixon, A.G.; Bandyopadhyay, R.; Coyne, D.; Ferguson, M.; Ferris, R.S.B.; Hanna, R.; Hughes, J.; Ingelbrecht, I.; Legg, J.; Mahungu, N. Cassava: From poor farmers’ crop to pacesetter of african rural development. Chron. Hortic. 2003, 43, 8–15. [Google Scholar]
- McQuaid, C.; Sseruwagi, P.; Pariyo, A.; Van den Bosch, F. Cassava brown streak disease and the sustainability of a clean seed system. Plant Pathol. 2016, 65, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Legg, J.; Ndalahwa, M.; Yabeja, J.; Ndyetabula, I.; Bouwmeester, H.; Shirima, R.; Mtunda, K. Community phytosanitation to manage cassava brown streak disease. Virus Res. 2017, 241, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Muhinyuza, J.-B.; Nshimiyimana, J.-C.; Kirk, W.W. Susceptibility of Commonly Grown Potato Cultivars to Potato Late Blight in Rwanda and Control with Fungicides. In Proceedings of the African Crop Science Conference Proceedings, El-Minia, Egypt, 27–31 October 2007; pp. 835–840. [Google Scholar]
- Forbes, G.; Chacón, M.; Kirk, H.; Huarte, M.; Van Damme, M.; Distel, S.; Mackay, G.; Stewart, H.; Lowe, R.; Duncan, J. Stability of resistance to phytophthora infestans in potato: An international evaluation. Plant Pathol. 2005, 54, 364–372. [Google Scholar] [CrossRef]
- Ateka, E.; Mwang’ombe, A.W.; Kimenju, J. Reaction of potato cultivars to Ralstonia solanacearum in Kenya. Afr. Crop. Sci. J. 2001, 9, 251–256. [Google Scholar] [CrossRef]
- Priou, S.; Aley, P.; Chujoy, E.; Lemaga, B.; French, E.; French, E. Integrated Control of Bacterial Wilt of Potato, CIP Slide Training Series IV-3; International Potato Center: Lima, Peru, 1999; p. 30. [Google Scholar]
- Ntirenganya, E. It Is a Race against Time as Government Bids to Salvage Fortunes of Cassava Farmers. Accessed 30 August 2017; The New Times: Kigali, Rwanda, 2014. [Google Scholar]
- Bigirimana, S.; Barumbanze, P.; Ndayihanzamaso, P.; Shirima, R.; Legg, J. First report of cassava brown streak disease and associated Ugandan cassava brown streak virus in Burundi. New Dis. Rep. 2011, 24, 26. [Google Scholar] [CrossRef] [Green Version]
- Jeremiah, S.; Ndyetabula, I.; Mkamilo, G.; Haji, S.; Muhanna, M.; Chuwa, C.; Kasele, S.; Bouwmeester, H.; Ijumba, J.; Legg, J. The dynamics and environmental influence on interactions between cassava brown streak disease and the whitefly, bemisia tabaci. Phytopathology 2015, 105, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R. The brown streak disease of cassava: Distribution, climatic effects and diagnostic symptoms. East Afr. Agric. J. 1950, 15, 154–160. [Google Scholar] [CrossRef]
- De Groote, H. Maize yield losses from stemborers in kenya. Int. J. Trop. Insect Sci. 2002, 22, 89–96. [Google Scholar] [CrossRef]
- De Groote, H.; Wangare, L.; Kanampiu, F.; Odendo, M.; Diallo, A.; Karaya, H.; Friesen, D. The potential of a herbicide resistant maize technology for Striga control in Africa. Agric. Syst. 2008, 97, 83–94. [Google Scholar] [CrossRef]
- Abass, A.B.; Ndunguru, G.; Mamiro, P.; Alenkhe, B.; Mlingi, N.; Bekunda, M. Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. J. Stored Prod. Res. 2014, 57, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Okonya, J.S.; Gamarra, H.; Nduwayezu, A.; Ntahiraja, V.; Kroschel, J.; Kreuze, J. Absence of pvy in Burundi and First Report of trv in Potatoes in Sub-Saharan Africa; International Potato Center: Kampala, Uganda, Unpublished work; 2019; p. 11. [Google Scholar]
- Verwimp, P.; Mora, J.C.M. Returning Home after Civil: WarFood security and nutrition among Burundian households. J. Dev. Stud. 2018, 54, 1019–1040. [Google Scholar] [CrossRef]
Crop | Type of Harmful Organism | Economic Importance (Yield and Economic Losses) of Pest | References |
---|---|---|---|
Potato | Insects
| Tubers infested with P. operculella often initiate tuber infestation in potato stores causing losses of tubers of up to 70%. | [14,15,16,17,18] |
Pathogens/diseases
| Yield reductions in Rwanda and Burundi can reach 75% for late blight if no control measures are taken. For bacterial wilt, reductions in yield range from 70–100%, depending on the inoculum density. Seed degeneration due to viral diseases have been reported to cause yield reduction of up to 90%. | [7,10,15,19,20,21] | |
Sweet potato | Insects
| Root yield losses due to C. puncticollis alone can reach 100% during prolonged dry seasons. | [22,23,24] |
Pathogens/diseases
| Root yield losses due to SPVD ranges between 30–40% at on-farm. | [25,26] | |
Banana and plantain | Insects
| Yield losses of 30–50% in fertile soils and over 75% in poor soils. Direct feeding by large colonies of the banana aphid reduces market value due to blemishes on the fruit. The secretion of honeydew by aphid colonies provides a substrate for sooty mold fungus, which reduces banana yields and market value. | [27,28,29,30,31,32,33,34] |
Nematodes
| |||
Pathogens/diseases
| Up to 100% yield loss if control of BXW is delayed. Economic losses worth US$200–295 million/year due to BXW were estimated in Uganda. Annual production losses due to BXW valued at US$10.2 million and US$2.95 million in Tanzania and Rwanda, respectively. Reduction in fruit sales by 35% and a doubling of bunch prices due to BXW. Severe effects of BXW on ecosystem health of banana-based agro-ecosystems. Losses of up to 100% due to BBTD in Burundi and eastern DR Congo. | [35,36,37,38,39,40,41,42,43,44,45] | |
Cassava | Insects
| No data could be accessed. | [26]. |
Pathogens/diseases
| Africa-wide losses to CMD have been estimated at more than US$1 billion annually. Loss estimate for CBSD in East and Central Africa is greater than US$75 million per year. | [35,36] |
Farm and Household Characteristics | Rwanda (n = 406) | Burundi (n = 405) |
---|---|---|
Female headed households (%) | 15.7 | 20.5 |
Household size by age (mean ± SE) | ||
Number of children below 5 years | 0.69 ± 0.04 b | 1.3 ± 0.05 a |
Number of children 6–17 years | 2.02 ± 0.08 a | 2.23 ± 0.08 a |
Number of men 18–65 years | 1.29 ± 0.04 b | 1.47 ± 0.06 a |
Number of women 18–65 years | 1.23 ± 0.04 b | 1.44 ± 0.05 a |
Number of elderly men (>65 years) | 0.05 ± 0.01 a | 0.04 ± 0.01 a |
Number of elderly women (>65 years) | 0.04 ± 0.01 a | 0.03 ± 0.01 a |
Total household size (mean ± SE) | 5.33 ± 0.10 b | 6.24 ± 0.13 a |
Years of formal education for men | 5.37 ± 0.18 a | 5.73 ± 0.19 a |
Years of formal education for women | 5.15 ± 0.18 a | 3.83 ± 0.17 b |
Age of men (household heads) | 42.22 ± 0.71 b | 46.32 ± 0.70 a |
Age of women (spouses) | 39.18 ± 0.65 a | 39.82 ± 0.69 a |
Main occupation for men (% responses) | ||
Farming (crop and livestock husbandry) | 91.4 | 82.2 |
Salaried employment | 4.4 | 9.1 |
Retail business (shops) | 1.2 | 3.2 |
Casual labor | 0.5 | 2.5 |
Handicraft | 0.5 | 1.7 |
Other | ||
Main occupation for women (% responses) | ||
Farming (crop and livestock husbandry) | 94.6 | 97.3 |
Salaried employment | 2.7 | 1.7 |
Retail business (shops) | 0.3 | 0.5 |
Casual labor | 0 | 0.3 |
Handicraft | 0 | 1.7 |
Other | ||
Mean annual income (mean ± SE) in US$ * | ||
Farm income for men | 331.59 ± 13.93 a | 229.77 ± 11.56 b |
Off-farm income for men | 335.65 ± 23.96 a | 246 11 ± 19.06 b |
Farm income for women | 224.70 ± 22.75 a | 208.29 ±17.01 a |
Off-farm income for women | 172.24 ± 35.17 a | 133.76 ± 25.74 a |
Constraint/Crop | Potato | Sweetpotato | Banana | Cassava | ||||
---|---|---|---|---|---|---|---|---|
Rwanda (n = 216) | Burundi (n = 115) | Rwanda (n = 281) | Burundi (n = 343) | Rwanda (n = 169) | Burundi (n = 238) | Rwanda (n = 111) | Burundi (n = 305) | |
Diseases | 0.87 | 0.92 | 0.65 | 0.73 | 0.45 | 0.4 | 0.55 | 0.69 |
Drought (unpredictable rainfall) | 0.61 | 0.63 | 0.56 | 0.46 | 0.61 | 0.52 | 0.62 | 0.49 |
Exploitation by vendors | 0.37 | 0.23 | 0.28 | 0.25 | 0.28 | 0.25 | 0.28 | 0.25 |
Floods/mud slides/soil erosion | 0.61 | 0.51 | 0.4 | 0.42 | 0.32 | 0.32 | 0.39 | 0.35 |
High cost of fertilizers | 0.26 | 0.23 | 0.26 | 0.24 | 0.25 | 0.23 | 0.28 | 0.25 |
High cost of fungicides | 0.79 | 0.63 | 0.49 | 0.42 | - | - | - | - |
High cost of insecticides | 0.73 | 0.38 | 0.4 | 0.32 | - | - | 0.38 | 0.37 |
High cost of planting material | 0.81 | 0.26 | 0.6 | 0.28 | 0.5 | 0.31 | 0.49 | 0.27 |
High cost of transport | 0.57 | 0.49 | 0.66 | 0.36 | 0.49 | 0.32 | 0.53 | 0.35 |
High cost of weed control | 0.32 | 0.25 | 0.3 | 0.25 | 0.32 | 0.25 | 0.28 | 0.25 |
Insect pests | 0.78 | 0.67 | 0.65 | 0.73 | 0.34 | 0.32 | 0.29 | 0.29 |
Invertebrate pests (millipedes, nematodes) | 0.43 | 0.31 | 0.54 | 0.47 | 0.36 | 0.37 | 0.45 | 0.47 |
Low market prices | 0.74 | 0.28 | 0.56 | 0.24 | 0.52 | 0.24 | 0.58 | 0.23 |
Low soil fertility | 0.68 | 0.3 | 0.39 | 0.26 | 0.38 | 0.29 | 0.4 | 0.26 |
Poor-quality planting material | 0.66 | 0.62 | 0.84 | 0.67 | 0.69 | 0.63 | 0.7 | 0.64 |
Short shelf life (perishability) | 0.43 | 0.4 | 0.35 | 0.32 | 0.38 | 0.29 | 0.4 | 0.31 |
Weeds | 0.39 | 0.31 | 0.31 | 0.28 | 0.35 | 0.3 | 0.33 | 0.3 |
Rwanda | Burundi | |||
---|---|---|---|---|
Pests and Diseases | Households (%) * | Perceived Level of Importance (Weighted Average Index) | Households (%) * | Perceived Level of Importance (Weighted Average Index) |
Banana pests | ||||
Banana weevil (Cosmopolites sordidus) | 44 (168) | 0.59 | 49 (261) | 0.56 |
Banana nematodes | 8 (168) | 0.64 | 19 (246) | 0.45 |
Others | 6 (168) | 0.43 | 0 (234) | - |
Cassava pests | ||||
Whiteflies (Bemisia tabaci) | 17 (110) | 0.82 | 74 (316) | 0.85 |
Green mites (Mononychellus tanajoa) | 4 (110) | 0.67 | 23 (309) | 0.36 |
Mealybugs (Phenacoccus manihoti) | 9 (109) | 0.66 | 47 (311) | 0.78 |
Aphids | 6 (109) | 0.89 | 7 (302) | 0.62 |
Others | 30 (109) | 0.51 | 1 (303) | - |
Potato pests | ||||
Leafminer fly (Liriomyza huidobrensis) | 28 (215) | 0.55 | 17 (110) | 0.38 |
Aphid (Myzus persicae) | 49 (215) | 0.69 | 34 (116) | 0.46 |
Potato tuber moth (Phthorimaea operculella) | 43 (215) | 0.69 | 31(110) | 0.45 |
Cutworm (Agrotis spp.) | 58 (215) | 0.69 | 56 (134) | 0.57 |
Whitefly (Bemisia tabaci) | 23 (215) | 0.67 | 30 (117) | 0.57 |
Ants (Dorylis orantalis) | 11 (215) | 0.43 | 29 (128) | 0.43 |
Others | 29 (215) | 0.74 | 0 (110) | - |
Sweetpotato pests | ||||
Sweetpotato weevils (Cylas spp.) | 65 (280) | 0.70 | 54 (348) | 0.57 |
Sweetpotato butterfly (Acraea acerata) | 54 (280) | 0.80 | 62 (356) | 0.79 |
Sweetpotato Armyworm (Spodoptera spp.) | 20 (280) | 0.59 | 57 (348) | 0.73 |
Sweetpotato hornworm (Agrius convolvuli) | 24 (280) | 0.56 | 44 (351) | 0.47 |
Sweetpotato whitefly (Bemisia tabaci) | 6 (280) | 0.62 | 26 (347) | 0.50 |
Sweetpotato clearwing (Synanthedon spp.) | 1 (280) | 0.67 | 1 (342) | 0.33 |
Others | 1 (280) | 0.50 | 0 (342) | - |
Banana diseases | ||||
Banana Xanthomonas wilt (BXW) | 59 (191) | 0.94 | 73 (267) | 0.93 |
Fusarium wilt | 25 (181) | 0.87 | 46 (251) | 0.82 |
Banana bunchy top disease (BBTD) | 5 (172) | 0.58 | 63 (256) | 0.87 |
Black sigatoka | 8 (173) | 0.76 | 12 (241) | 0.66 |
Others | 10 (175) | 0.91 | 1 (234) | 0.50 |
Cassava diseases | ||||
Cassava mosaic disease (CMD) | 72 (134) | 0.95 | 88 (319) | 0.91 |
Cassava brown streak virus disease (CBSD) | 15 (114) | 0.70 | 57 (313) | 0.86 |
Cassava bacterial blight (CBB) | 11 (116) | 0.82 | 27 (310) | 0.81 |
Others | 1 (111) | 0.67 | 20 (306) | 0.81 |
Potato diseases | ||||
Bacterial wilt | 6 (230) | 0.89 | 11 (125) | 0.90 |
Late blight | 58 (237) | 0.87 | 72 (123) | 0.85 |
Early blight | 14 (224) | 0.79 | 24 (115) | 0.74 |
Viral diseases | 21 (221) | 0.85 | 9 (111) | 0.73 |
Fusarium dry rot | 11 (220) | 0.76 | 23 (116) | 0.78 |
Others | 1 (216) | 0.67 | 2 (110) | 0.67 |
Sweetpotato diseases | ||||
Sweetpotato virus disease (SPVD) | 33 (288) | 0.75 | 42 (352) | 0.80 |
Alternaria leaf and stem blight | 24 (286) | 0.76 | 33 (348) | 0.76 |
Root rots | 12 (165) | 0.76 | 77 (35) | 0.86 |
Others | 3 (281) | 0.76 | <1 (343) | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okonya, J.S.; Ocimati, W.; Nduwayezu, A.; Kantungeko, D.; Niko, N.; Blomme, G.; Legg, J.P.; Kroschel, J. Farmer Reported Pest and Disease Impacts on Root, Tuber, and Banana Crops and Livelihoods in Rwanda and Burundi. Sustainability 2019, 11, 1592. https://doi.org/10.3390/su11061592
Okonya JS, Ocimati W, Nduwayezu A, Kantungeko D, Niko N, Blomme G, Legg JP, Kroschel J. Farmer Reported Pest and Disease Impacts on Root, Tuber, and Banana Crops and Livelihoods in Rwanda and Burundi. Sustainability. 2019; 11(6):1592. https://doi.org/10.3390/su11061592
Chicago/Turabian StyleOkonya, Joshua Sikhu, Walter Ocimati, Anastase Nduwayezu, Déo Kantungeko, Nicolas Niko, Guy Blomme, James Peter Legg, and Jürgen Kroschel. 2019. "Farmer Reported Pest and Disease Impacts on Root, Tuber, and Banana Crops and Livelihoods in Rwanda and Burundi" Sustainability 11, no. 6: 1592. https://doi.org/10.3390/su11061592
APA StyleOkonya, J. S., Ocimati, W., Nduwayezu, A., Kantungeko, D., Niko, N., Blomme, G., Legg, J. P., & Kroschel, J. (2019). Farmer Reported Pest and Disease Impacts on Root, Tuber, and Banana Crops and Livelihoods in Rwanda and Burundi. Sustainability, 11(6), 1592. https://doi.org/10.3390/su11061592