Land Use and Land Cover Change in the Kailash Sacred Landscape of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Acquisition and Processing
2.3. Land Classification
2.4. LUCC Change Rate
2.5. Land Use and Land Cover Transition Matrix
2.6. Buffer Analysis
3. Results
3.1. LUCC Patterns in KSL
3.1.1. Land Use and Land Cover Pattern in 2008
3.1.2. Spatio-Temporal Dynamics of LUCC during the Period 1990–2008
3.2. Impacts of Climate Change and Human Disturbance on Land Cover
3.2.1. Climate Change and Its Relationship with Vegetation Cover
3.2.2. Impact of Tourism on Vegetation Cover
4. Discussion
4.1. LUCC and Its Primary Driving Factors in the KSL-China
4.2. Implication for Landscape Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557–558, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Willcock, S.; Phillips, O.L.; Platts, P.J.; Swetnam, R.D.; Balmford, A.; Burgess, N.D.; Ahrends, A.; Bayliss, J.; Doggart, N.; Doody, K. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Glob. Chang. Biol. 2016, 22, 2787–2800. [Google Scholar] [CrossRef] [Green Version]
- Lozano-García, B.; Parras-Alcántara, L.; Cantudo-Pérez, M. Land use change effects on stratification and storage of soil carbon and nitrogen: Application to a Mediterranean nature reserve. Agric. Ecosyst. Environ. 2016, 231, 105–113. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Li, C. Effect of different land use and land use change on ammonia oxidiser abundance and N2O emissions. Soil Biol. Biochem. 2016, 96, 169–175. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2010, 6, 317–327. [Google Scholar] [CrossRef]
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE Database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Meiyappan, P.; Dalton, M.; O’Neill, B.C.; Jain, A.K. Spatial modeling of agricultural land use change at global scale. Ecol. Model. 2014, 291, 152–174. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. The Worldwide Extent of Land-Use Change. Bioscience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Scientific Steering Committee; International Project Office of LUCC; Nunes, C.; Augé, J.I. Land-Use and Land-Cover Change (LUCC): Implementation Strategy; Environmental Policy Collection; IGBP Secretariat: Stockholm, Sweden, 1999. [Google Scholar]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecol. Lett. 2010, 8, 857–874. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2010, 8, 345–360. [Google Scholar] [CrossRef]
- Eugenia, K.; Ming, C. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Titeux, N.; Henle, K.; Mihoub, J.B.; Regos, A.; Geijzendorffer, I.R.; Cramer, W.; Verburg, P.H.; Brotons, L. Biodiversity scenarios neglect future land-use changes. Glob. Chang. Biol. 2016, 22, 2505–2515. [Google Scholar] [CrossRef]
- Perring, M.P.; De, F.P.; Baeten, L.; Maes, S.L.; Depauw, L.; Blondeel, H.; Carón, M.M.; Verheyen, K. Global environmental change effects on ecosystems: The importance of land-use legacies. Glob. Chang. Biol. 2016, 22, 1361–1371. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333. [Google Scholar] [CrossRef]
- Bai, J.-H.; Lu, Q.-Q.; Wang, J.-J.; Zhao, Q.-Q.; Ouyang, H.; Deng, W.; Li, A.-N. Landscape pattern evolution processes of alpine wetlands and their driving factors in the Zoige Plateau of China. J. Mt. Sci. 2013, 10, 54–67. [Google Scholar] [CrossRef]
- Sharma, L.N.; Vetaas, O.R.; Chaudhary, R.P.; Måren, I.E. Ecological consequences of land use change: Forest structure and regeneration across the forest-grassland ecotone in mountain pastures in Nepal. J. Mt. Sci. 2014, 11, 838–849. [Google Scholar] [CrossRef]
- Yu, K.-F.; Lehmkuhl, F.; Falk, D. Quantifying land degradation in the Zoige Basin, NE Tibetan Plateau using satellite remote sensing data. J. Mt. Sci. 2017, 14, 77–93. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Molau, U.; Nordenhäll, U.; Eriksen, B. Onset of flowering and climate variability in an alpine landscape: A 10-year study from Swedish Lapland. Am. J. Bot. 2005, 92, 422–431. [Google Scholar] [CrossRef]
- Heidi, S.; Chris, L.; Painter, T.H.; Justin, A.; Edward, A. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proc. Natl. Acad. Sci. USA 2009, 106, 11629–11634. [Google Scholar] [Green Version]
- Rehnus, M.; Bollmann, K.; Schmatz, D.R.; Hackländer, K.; Braunisch, V. Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps. Glob. Chang. Biol. 2018, 24, 3236–3253. [Google Scholar] [CrossRef]
- Wipf, S.; Stoeckli, V.; Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Chang. 2009, 94, 105–121. [Google Scholar] [CrossRef]
- Song, G.; An, N.; Ning, Z.; He, Y.; Shi, P.; Zhang, J.; He, N. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biol. Biochem. 2018, 116, 224–236. [Google Scholar]
- Fetene, A.; Hilker, T.; Yeshitela, K.; Prasse, R.; Cohen, W.; Yang, Z. Detecting Trends in Landuse and Landcover Change of Nech Sar National Park, Ethiopia. Environ. Manag. 2016, 57, 137–147. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, Q.; Ren, L.; Chen, H.; Wang, K.; Peng, C. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sens. Environ. 2018, 206, 391–402. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
- Coulter, L.L.; Stow, D.A.; Tsai, Y.-H.; Ibanez, N.; Shih, H.-C.; Kerr, A.; Benza, M.; Weeks, J.R.; Mensah, F. Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sens. Environ. 2016, 184, 396–409. [Google Scholar] [CrossRef]
- Hu, T.; Huang, X.; Li, J.; Zhang, L. A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery. Remote Sens. Environ. 2018, 217, 144–157. [Google Scholar] [CrossRef]
- Detsch, F.; Otte, I.; Appelhans, T.; Hemp, A.; Nauss, T. Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sens. Environ. 2016, 178, 70–83. [Google Scholar] [CrossRef]
- Leroux, L.; Bégué, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef]
- Zambrano, F.; Vrieling, A.; Nelson, A.; Meroni, M.; Tadesse, T. Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices. Remote Sens. Environ. 2018, 219, 15–30. [Google Scholar] [CrossRef]
- Grêtregamey, A.; Bebi, P.; Bishop, I.D.; Schmid, W.A. Linking GIS-based models to value ecosystem services in an Alpine region. J. Environ. Manag. 2008, 89, 197–208. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Zhang, Z.; Zhao, W.; Lei, G.; Yin, G.; Jin, H.; Tan, J.; Huang, C. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sens. Environ. 2017, 197, 98–114. [Google Scholar] [CrossRef]
- Santi, E.; Pettinato, S.; Paloscia, S.; Pampaloni, P.; Fontanelli, G.; Crepaz, A.; Valt, M. Monitoring of Alpine snow using satellite radiometers and artificial neural networks. Remote Sens. Environ. 2014, 144, 179–186. [Google Scholar] [CrossRef]
- Garrard, R.; Kohler, T.; Price, M.F.; Byers, A.C.; Sherpa, A.R.; Maharjan, G.R. Land Use and Land Cover Change in Sagarmatha National Park, a World Heritage Site in the Himalayas of Eastern Nepal. Mt. Res. Dev. 2016, 36, 299–310. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Tammi, I.; Mustajärvi, K.; Rasinmäki, J. Integrating spatial valuation of ecosystem services into regional planning and development. Ecosyst. Serv. 2017, 26, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Han, S. Ecosystem service status and changes of degraded natural reserves—A study from the Changbai Mountain Natural Reserve, China. Ecosyst. Serv. 2016, 20, 56–65. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, M.; Hassani, F.P.; Zeng, H.; Geng, Y.; Bai, Z. Land Use-Based Landscape Planning and Restoration in Mine Closure Areas. Environ. Manag. 2011, 47, 739. [Google Scholar] [CrossRef]
- Brudvig, L.A.; Leroux, S.J.; Albert, C.H.; Bruna, E.M.; Davies, K.F.; Ewers, R.M.; Levey, D.J.; Pardini, R.; Resasco, J. Evaluating conceptual models of landscape change. Ecography 2017, 40, 74–84. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Walz, A.; Bebi, P. Valuing Ecosystem Services for Sustainable Landscape Planning in Alpine Regions. Mt. Res. Dev. 2008, 28, 156–165. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Metzger, M.; Oli, K.P. Environmental stratification of Kailash Sacred Landscape and projected climate change impacts on ecosystems and productivity. Icimod Work. Pap. 2013, 109, 399–415. [Google Scholar]
- Uddin, K.; Chaudhary, S.; Chettri, N.; Kotru, R.; Murthy, M.; Chaudhary, R.P.; Ning, W.; Shrestha, S.M.; Gautam, S.K. The changing land cover and fragmenting forest on the Roof of the World: A case study in Nepal’s Kailash Sacred Landscape. Landsc. Urban Plan. 2015, 141, 1–10. [Google Scholar] [CrossRef]
- Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.; Basnet, L. Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas. Sustainability 2018, 10, 3052. [Google Scholar] [CrossRef]
- Duan, C.; Shi, P.; Zhang, X.; Zong, N.; Chai, X.; Geng, S.; Zhu, W. The Rangeland Livestock Carrying Capacity and Stocking Rate in the Kailash Sacred Landscape in China. J. Resour. Ecol. 2017, 8, 551–558. [Google Scholar] [CrossRef]
- Takada, T.; Miyamoto, A.; Hasegawa, S.F. Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landsc. Ecol. 2010, 25, 561–572. [Google Scholar] [CrossRef]
- De, R.M.; Vestergaard, O.M.; Staunstrup, J.K.; Trydeman, K.M.; Hermansen, J.E. Identifying Land Use and Land-Use Changes (LULUC): A Global LULUC Matrix. Environ. Sci. Technol. 2017, 51, 7954–7962. [Google Scholar]
- Benini, L.; Bandini, V.; Marazza, D.; Contin, A. Assessment of land use changes through an indicator-based approach: A case study from the Lamone river basin in Northern Italy. Ecol. Indic. 2010, 10, 4–14. [Google Scholar] [CrossRef]
- Fei, Z.; Kung, H.T.; Johnson, V.C. Assessment of Land-Cover/Land-Use Change and Landscape Patterns in the Two National Nature Reserves of Ebinur Lake Watershed, Xinjiang, China. Sustainability 2017, 9, 724. [Google Scholar] [Green Version]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2015, 20, 1729–1742. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Gao, B.; Wang, T.; Chen, J.; Chen, Y.; Wang, Y.; Zheng, G. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Sci. Total Environ. 2017, 605–606, 830–841. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 2016, 36, 2660–2670. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Wang, B.; Sun, M.; Li, X. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int. 2013, 313–314, 110–117. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Klein, J.A.; Harte, J.; Zhao, X. Experimental warming, not grazing, decreases rangeland quality on the tibetan plateau. Ecol. Appl. 2007, 17, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Ye, Q.; Yao, T.; Naruse, R. Glacier and lake variations in the Mapam Yumco basin, western Himalaya of the Tibetan Plateau, from 1974 to 2003 using remote-sensing and GIS technologies. J. Glaciol. 2008, 54, 933–935. [Google Scholar] [CrossRef]
- Kaab, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Brahmbhatt, R.M.; Bahuguna, I.M.; Rathore, B.P.; Kulkarni, A.V.; Shah, R.D.; Rajawat, A.S.; Kargel, J.S. Significance of glacio-morphological factors in glacier retreat: A case study of part of Chenab basin, Himalaya. J. Mt. Sci. 2017, 14, 128–141. [Google Scholar] [CrossRef]
- Yao, T.; Yu, W. Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.D.; Thompson, L.G.; MosleyThompson, E.; Yang, Z.H.; Zhang, X.P.; Lin, P.N. Climatological significance of delta O-18 in north Tibetan ice cores. J. Geophys. Res. Atmos. 1996, 101, 29531–29537. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Zhumanova, M.; Wrage-Mönnig, N.; Darr, D. Farmers’ Decision-making and Land Use Changes in Kyrgyz Agropastoral Systems. Mt. Res. Dev. 2016, 36, 506–517. [Google Scholar] [CrossRef]
- Paudel, B.; Gao, J.; Zhang, Y.; Wu, X.; Li, S.; Yan, J. Changes in Cropland Status and Their Driving Factors in the Koshi River Basin of the Central Himalayas, Nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Upadhyay, T.P. Rangeland Management in Sagarmatha (Mount Everest) National Park and Buffer Zone, Nepal: An Ecological Perspective. Mt. Res. Dev. 2013, 33, 19–28. [Google Scholar] [CrossRef]
- Maselli, D. Improving Sustainable Grazing Management in Mountain Rangelands of the Hindu Kush–Himalaya. Mt. Res. Dev. 2004, 24, 124–133. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Aknazarov, O.; Dadabaev, I.; Melnichkov, D. Ecotourism in the Pamir Region: Problems and Perspectives. Mt. Res. Dev. 2002, 22, 188–190. [Google Scholar] [CrossRef]
- Nepal, S.K. Mountain Ecotourism and Sustainable Development. Mt. Res. Dev. 2002, 22, 104–109. [Google Scholar] [CrossRef]
- Martín, L.M. Tourist Expansion and Development of Rural Communities. Mt. Res. Dev. 2004, 24, 202–205. [Google Scholar] [CrossRef]
- Reif, A.; Ruşdea, E.; Păcurar, F.; Rotar, I.; Brinkmann, K.; Auch, E.; Goia, A.; Bühler, J. A Traditional Cultural Landscape in Transformation. Mt. Res. Dev. 2008, 28, 18–22. [Google Scholar] [CrossRef]
Land Classification | Implication |
---|---|
Cropland | Agricultural land, including old and new cultivated lands, fallow land, crop-grass rotation field, agro-fruit land and agro-forestry land |
Rangeland with low coverage | Land with herbaceous types of cover. Rangeland coverage is between 10% and 30% |
Rangeland with medium coverage | Land with herbaceous types of cover. Rangeland coverage is between 30% and 60% |
Rangeland with high coverage | Land with herbaceous types of cover. Rangeland coverage is more than 60% |
Desert | Land with herbaceous types of cover. Vegetation coverage is between 2% and 10% |
Wetland | Land with a permanent mixture of water and herbaceous or woody vegetation. |
Water bodies | Lake, reservoirs, and rivers. Can be either fresh or salt-water bodies |
Glacier | Land under snow/ice cover throughout the year. |
Built-up land | Land covered by buildings and other man-made structures in urban and rural settlement. |
Barren land | Land with exposed soil, sand, rocks, or snow and never has more than 2% vegetated cover during any time of the year. |
Land Use and Land Cover | Karnali Basin | Manasarovar Basin | Total Region | |||
---|---|---|---|---|---|---|
Area/km2 | Ratio/% | Area/km2 | Ratio/% | Area/km2 | Ratio/% | |
Cropland | 10.13 | 0.33 | 0.20 | 0.00 | 10.33 | 0.10 |
Low coverage rangeland | 479.24 | 15.65 | 1947.94 | 25.03 | 2427.18 | 22.39 |
Medium coverage rangeland | 29.52 | 0.96 | 264.21 | 3.40 | 293.73 | 2.71 |
High coverage rangeland | 1.32 | 0.04 | 61.86 | 0.80 | 63.19 | 0.58 |
Desert | 789.12 | 25.77 | 2257.74 | 29.02 | 3046.86 | 28.10 |
Wetland | 14.78 | 0.48 | 80.36 | 1.03 | 95.14 | 0.88 |
Water body | 4.11 | 0.13 | 735.15 | 9.45 | 739.26 | 6.82 |
Glacier | 182.60 | 5.96 | 79.72 | 1.02 | 262.32 | 2.42 |
Built-up land | 1.92 | 0.06 | 0.63 | 0.01 | 2.55 | 0.02 |
Barren land | 1549.16 | 50.59 | 2353.04 | 30.24 | 3902.20 | 35.99 |
Total | 3061.89 | 100.00 | 7780.87 | 100.00 | 10,842.76 | 100.00 |
Land Cover | 1990 | 2000 | 2008 | |
---|---|---|---|---|
Year | ||||
Barren land | 3790.66 | 3882.45 | 3902.20 | |
Cropland | 10.78 | 10.56 | 10.33 | |
Low coverage rangeland | 2323.12 | 2715.27 | 2427.18 | |
Medium coverage rangeland | 497.15 | 455.00 | 293.73 | |
High coverage rangeland | 77.42 | 86.90 | 63.19 | |
Desert | 2974.14 | 2585.14 | 3046.86 | |
Wetland | 92.96 | 96.16 | 95.14 | |
Water body | 755.03 | 742.96 | 739.26 | |
Glacier | 319.52 | 266.17 | 262.32 | |
Built-up land | 1.98 | 2.15 | 2.55 |
2008 | Barren Land | Cropland | Low Coverage Rangeland | Medium Coverage Rangeland | High Coverage Rangeland | Desert | Wetland | Water Body | Glacier | Built-Up Land | |
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | |||||||||||
Barren land | 3876.62 | 0.00 | 0.57 | 0.03 | 0.00 | 5.11 | 0.00 | 0.11 | 0.00 | 0.00 | |
Cropland | 0.00 | 10.31 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | |
Low coverage rangeland | 0.14 | 0.00 | 2105.07 | 59.12 | 4.01 | 546.72 | 0.00 | 0.00 | 0.00 | 0.21 | |
Medium coverage rangeland | 0.00 | 0.00 | 247.04 | 201.73 | 6.16 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | |
High coverage rangeland | 0.00 | 0.00 | 2.43 | 31.46 | 53.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Desert | 17.89 | 0.00 | 71.47 | 1.29 | 0.00 | 2494.43 | 0.05 | 0.00 | 0.00 | 0.00 | |
Wetland | 0.00 | 0.01 | 0.00 | 0.07 | 0.00 | 0.00 | 95.08 | 1.00 | 0.00 | 0.00 | |
Water body | 3.90 | 0.00 | 0.48 | 0.02 | 0.00 | 0.45 | 0.00 | 738.11 | 0.00 | 0.00 | |
Glacier | 3.71 | 0.00 | 0.06 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 262.15 | 0.00 | |
Built-up land | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 2.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Shi, P.; Song, M.; Zhang, X.; Zong, N.; Zhou, C. Land Use and Land Cover Change in the Kailash Sacred Landscape of China. Sustainability 2019, 11, 1788. https://doi.org/10.3390/su11061788
Duan C, Shi P, Song M, Zhang X, Zong N, Zhou C. Land Use and Land Cover Change in the Kailash Sacred Landscape of China. Sustainability. 2019; 11(6):1788. https://doi.org/10.3390/su11061788
Chicago/Turabian StyleDuan, Cheng, Peili Shi, Minghua Song, Xianzhou Zhang, Ning Zong, and Caiping Zhou. 2019. "Land Use and Land Cover Change in the Kailash Sacred Landscape of China" Sustainability 11, no. 6: 1788. https://doi.org/10.3390/su11061788
APA StyleDuan, C., Shi, P., Song, M., Zhang, X., Zong, N., & Zhou, C. (2019). Land Use and Land Cover Change in the Kailash Sacred Landscape of China. Sustainability, 11(6), 1788. https://doi.org/10.3390/su11061788