Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Mapping Approach
2.3. Productivity Scenarios and Food Consumption
3. Results and Discussion
3.1. Multitemporal Mapping of Urban Agriculture
3.2. Food Production and Consumption
3.3. Practical Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Urban and Peri-Urban Horticulture. Available online: www.fao.org/ag/agp/greenercities/en/whyuph/index.html (accessed on 2 January 2019).
- Meenar, M.; Hoover, B. Community Food Security via Urban Agriculture: Understanding People, Place, Economy, and Accessibility from a Food Justice Perspective. J. Agric. Food Syst. Community Dev. 2012, 3, 143–160. [Google Scholar] [CrossRef]
- Meenar, M. Nonprofit-Driven Community Capacity-Building Efforts in Community Food Systems. J. Agric. Food Syst. Community Dev. 2015, 6, 77–94. [Google Scholar] [CrossRef]
- Beckie, M.; Bogdan, E. Planting roots: Urban agriculture for senior immigrants. J. Agric. Food Syst. Community Dev. 2010, 1, 77–89. [Google Scholar] [CrossRef]
- Meenar, M.R. Assessing the Spatial Connection between Urban Agriculture and Equity. Built Environ. 2017, 43, 364–375. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Pulighe, G.; Fava, F.; Lupia, F. Insights and opportunities from mapping ecosystem services of urban green spaces and potentials in planning. Ecosyst. Serv. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Di Leo, N.; Escobedo, F.J.; Dubbeling, M. The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso. Environ. Dev. Sustain. 2015, 18, 373–392. [Google Scholar] [CrossRef]
- Cleveland, D.A.; Phares, N.; Nightingale, K.D.; Weatherby, R.L.; Radis, W.; Ballard, J.; Campagna, M.; Kurtz, D.; Livingston, K.; Riechers, G.; et al. The potential for urban household vegetable gardens to reduce greenhouse gas emissions. Landsc. Urban Plan. 2017, 157, 365–374. [Google Scholar] [CrossRef]
- Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Gabarrell, X.; Rieradevall, J. A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J. Clean. Prod. 2018, 195, 385–395. [Google Scholar] [CrossRef]
- Clarke, L.W.; Li, L.; Jenerette, G.D.; Yu, Z. Drivers of plant biodiversity and ecosystem service production in home gardens across the Beijing Municipality of China. Urban Ecosyst. 2014, 17, 741–760. [Google Scholar] [CrossRef]
- Gittleman, M.; Farmer, C.J.Q.; Kremer, P.; McPhearson, T. Estimating stormwater runoff for community gardens in New York City. Urban Ecosyst. 2017, 20, 129–139. [Google Scholar] [CrossRef]
- Lupia, F.; Baiocchi, V.; Lelo, K.; Pulighe, G. Exploring rooftop rainwater harvesting potential for food production in urban areas. Agriculture 2017, 7, 46. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Carmona, A.; Laterra, P.; Barrena, J.; Aguayo, M. A mapping approach to assess intangible cultural ecosystem services: The case of agriculture heritage in Southern Chile. Ecol. Indic. 2014, 40, 90–101. [Google Scholar] [CrossRef]
- Dalla Marta, A.; Baldi, A.; Lenzi, A.; Lupia, F.; Pulighe, G.; Santini, E.; Orlandini, S.; Altobelli, F. A methodological approach for assessing the impact of urban agriculture on water resources: A case study for community gardens in Rome (Italy). Agroecol. Sustain. Food Syst. 2018, 43, 228–240. [Google Scholar] [CrossRef]
- Lupia, F.; Pulighe, G. Water Use and Urban Agriculture: Estimation and Water Saving Scenarios for Residential Kitchen Gardens. Agric. Agric. Sci. Procedia 2015, 4, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Glavan, M.; Schmutz, U.; Williams, S.; Corsi, S.; Monaco, F.; Kneafsey, M.; Guzman Rodriguez, P.A.; Čenič-Istenič, M.; Pintar, M. The economic performance of urban gardening in three European cities—Examples from Ljubljana, Milan and London. Urban For. Urban Green. 2018, 36, 100–122. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Cirella, G.T.; Zerbe, S. Edible green infrastructure: An approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 2017, 242, 53–66. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Urban versus conventional agriculture, taxonomy of resource profiles: A review. Agron. Sustain. Dev. 2016, 36, 9. [Google Scholar] [CrossRef]
- Opitz, I.; Berges, R.; Piorr, A.; Krikser, T. Contributing to food security in urban areas: Differences between urban agriculture and peri-urban agriculture in the Global North. Agric. Hum. Values 2016, 33, 341–358. [Google Scholar] [CrossRef]
- Horst, M.; McClintock, N.; Hoey, L. The Intersection of Planning, Urban Agriculture, and Food Justice: A Review of the Literature. J. Am. Plan. Assoc. 2017, 83, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Richardson, J.J.; Moskal, L.M. Urban food crop production capacity and competition with the urban forest. Urban For. Urban Green. 2016, 15, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qiu, F.; Swallow, B. Can community gardens and farmers’ markets relieve food desert problems? A study of Edmonton, Canada. Appl. Geogr. 2014, 55, 127–137. [Google Scholar] [CrossRef]
- Ruggeri, G.; Mazzocchi, C.; Corsi, S. Urban gardeners’ motivations in a Metropolitan city: The case of Milan. Sustainability 2016, 8, 1099. [Google Scholar] [CrossRef]
- Hara, Y.; McPhearson, T.; Sampei, Y.; McGrath, B. Assessing urban agriculture potential: A comparative study of Osaka, Japan and New York city, United States. Sustain. Sci. 2018, 13, 937–952. [Google Scholar] [CrossRef]
- McClintock, N.; Cooper, J.; Khandeshi, S. Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landsc. Urban Plan. 2013, 111, 46–58. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Kremer, P.; DeLiberty, T.L. Local food practices and growing potential: Mapping the case of Philadelphia. Appl. Geogr. 2011, 31, 1252–1261. [Google Scholar] [CrossRef]
- Zasada, I.; Schmutz, U.; Wascher, D.; Kneafsey, M.; Corsi, S.; Mazzocchi, C.; Monaco, F.; Boyce, P.; Doernberg, A.; Sali, G.; et al. Food beyond the city—Analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. City Cult. Soc. 2017. [Google Scholar] [CrossRef]
- Population Resident in Milan—Municipality of Milan. Available online: http://www.comune.milano.it/wps/portal/ist/it/amministrazione/datistatistici/Popolazione_residente_a_Milano (accessed on 10 January 2019).
- GeoPortal—Region Lombardy. Available online: http://www.geoportale.regione.lombardia.it/en/home (accessed on 9 January 2019).
- Salata, S. Land use change analysis in the urban region of Milan. Manag. Environ. Qual. Int. J. 2017, 28, 879–901. [Google Scholar] [CrossRef]
- Milan Urban Food Policy Pacts. Available online: http://www.milanurbanfoodpolicypact.org/ (accessed on 10 January 2019).
- Pulighe, G.; Lupia, F. Mapping spatial patterns of urban agriculture in Rome (Italy) using Google Earth and web-mapping services. Land Use Policy 2016, 59, 49–58. [Google Scholar] [CrossRef]
- Taylor, J.R.; Lovell, S.T. Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. Landsc. Urban Plan. 2012, 108, 57–70. [Google Scholar] [CrossRef]
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digit. Earth 2016, 9, 342–362. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007; ISBN 9780131889507. [Google Scholar]
- Sanyé-Mengual, E.; Gasperi, D.; Michelon, N.; Orsini, F.; Ponchia, G.; Gianquinto, G. Eco-Efficiency Assessment and Food Security Potential of Home Gardening: A Case Study in Padua, Italy. Sustainability 2018, 10, 2124. [Google Scholar] [CrossRef]
- Mcdougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Algert, S.J.; Baameur, A.; Renvall, M.J. Vegetable Output and Cost Savings of Community Gardens in San Jose, California. J. Acad. Nutr. Diet. 2014, 114, 1072–1076. [Google Scholar] [CrossRef]
- ISTAT Stima Delle Superfici e Produzioni Delle Coltivazioni Agrarie. Available online: http://agri.istat.it/jsp/dawinci.jsp?q=plC010000010000012000&an=2014&ig=1&ct=243&id=15A%7C18A%7C25A (accessed on 30 July 2018).
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C. The Italian National Food Consumption Survey INRAN-SCAI 2005-06: Main Results: In terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [PubMed]
- USDA United States Department of Agriculture, Agricultural Research Service—Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/search/list?home=true (accessed on 10 December 2018).
- ISPRA. Il Consumo di Suolo in Italia—Edizione 2015; ISPRA: Rome, Italy, 2015; ISBN 9788844807030. [Google Scholar]
- Cameron, R.W.F.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The domestic garden—Its contribution to urban green infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Consolidating the current knowledge on urban agriculture in productive urban food systems: Learnings, gaps and outlook. J. Clean. Prod. 2019, 209, 1637–1655. [Google Scholar] [CrossRef]
- Martellozzo, F.; Landry, J.S.; Plouffe, D.; Seufert, V.; Rowhani, P.; Ramankutty, N. Urban agriculture: A global analysis of the space constraint to meet urban vegetable demand. Environ. Res. Lett. 2014, 9, 064025. [Google Scholar] [CrossRef]
- Badami, M.G.; Ramankutty, N. Urban agriculture and food security: A critique based on an assessment of urban land constraints. Glob. Food Secur. 2015, 4, 8–15. [Google Scholar] [CrossRef]
- Tornaghi, C. Critical Geography of Urban Agriculture. Prog. Hum. Geogr. 2014, 38, 551–567. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Specht, K.; Krikser, T.; Vanni, C.; Pennisi, G.; Orsini, F.; Gianquinto, G.P. Social acceptance and perceived ecosystem services of urban agriculture in Southern Europe: The case of Bologna, Italy. PLoS ONE 2018, 13, e0200993. [Google Scholar] [CrossRef] [PubMed]
- ISTAT Previsioni Della Popolazione—Anni 2017–2065. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_PREVDEM1 (accessed on 10 January 2019).
- Comune di Milano Concessione di Orti Urbani—Municipio 2. Available online: http://www.comune.milano.it/wps/portal/ist/it/amministrazione/governo/municipi/municipio_2/servizi_municipio/concessione_di_orti_urbani (accessed on 13 January 2019).
- Burchi, F.; Fanzo, J.; Frison, E. The Role of Food and Nutrition System Approaches in Tackling Hidden Hunger. Int. J. Environ. Res. Public Health 2011, 8, 358–373. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.-G.; Lee, H.-W.; Lee, J.-H. Greenhouse gas emission reduction effect in the transportation sector by urban agriculture in Seoul, Korea. Landsc. Urban Plan. 2015, 140, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental assessment of an integrated rooftop greenhouse for food production in cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Nsamzinshuti, A.; Janjevic, M.; Rigo, N.; Ndiaye, A.B. Short Supply Chains as a Viable Alternative for the Distribution of Food in Urban Areas? Investigation of the Performance of Several Distribution Schemes. In Sustainable Freight Transport; Springer: Cham, Switzerland, 2018; pp. 99–119. [Google Scholar]
Typologies | Description | Profile |
---|---|---|
Residential garden | Parcel near single houses (backyard), villas, buildings, industrial and commercial activities, generally managed by property owners. The cultivation is diversified, ranging from leafy vegetables to herbs and fruit trees. The production is intended for family’s self-consumption and/or for hobby purposes, private stewardship | A small size single or multiple plots parcel generally not accessible and bordered by fences, hedges, walls or wire mesh |
Community garden | A large area subdivided into multiple plots managed individually (i.e. allotment) or collectively by a group of people. Crop production is intended for self- consumption. Land is generally assigned by the Municipality | A multiple plot parcel with various shapes and a regular structure with internal walkways and an external border. Often located along river edges or within city parks |
Urban farm | Parcel managed by professional farmers with an intensive and an advanced cropping system. The cultivation can be specialized with grain crops or oriented to horticulture. The production is intended for market | Large parcel contiguous or isolated generally located in the peri-urban zone and belonging to a single farm with a farm center (buildings and storage facilities), tractors, greenhouses, irrigation and agricultural equipment’s |
Institutional garden | Parcel managed by institutions or organizations like schools, religious centers, prisons and non-profit organizations. The production is generally intended for self-consumption and less frequently for trade. Several gardens in this category are intended for social purposes | Single or multiple plots belonging to medium and large-size parcel bordered and not accessible. Parcel may have a plurality of annual crops often associated with tree crops, generally located near large buildings (e.g. churches, convents, school buildings) |
Illegal garden | Parcel isolated, cultivated without authorization organized and managed individually or by a small group. Localization occurs on unused or abandoned areas (vacant lots) owned by public or private subjects. The production is intended for self-consumption | Single or multiple plots parcel generally of small size and with irregular borders. Localization occurs away from houses or buildings in hidden areas with a difficult access. Parcel has only annual crops |
Type | Year | Cover | Patch Number | Area (ha) | Area Min (m2) | Area Max (m2) |
---|---|---|---|---|---|---|
Residential gardens | 2007 | cultivated plots | 828 (39.1%) | 23.90 (0.84%) | 13.09 | 2426.43 |
2014 | new plots | 82 | 1.66 | 15.45 | 1604.9 | |
non cultivated | 157 | 3.65 | 15.59 | 2459.28 | ||
Total | 753 (39.2%) | 21.92 (0.82%) | - | - | ||
Community gardens | 2007 | cultivated plots | 380 (17.9%) | 82.69 (2.9%) | 42.35 | 21,715.43 |
2014 | new plots | 39 | 2.7 | 69.77 | 2789.49 | |
non cultivated | 73 | 14.26 | 45.68 | 11,731.25 | ||
Total | 346 (18%) | 71.15 (2.67%) | - | - | ||
Urban farms | 2007 | cultivated plots | 797 (37.6%) | 2713.89 (95.3%) | 160.43 | 282,981.06 |
2014 | new plots | 3 | 18.40 | 326.07 | 177,743.62 | |
non cultivated | 99 | 193.09 | 302.23 | 119,573.57 | ||
Total | 701 (36.5%) | 2539.2 (95.4%) | - | - | ||
Institutional gardens | 2007 | cultivated plots | 47 (2.4%) | 3.03 (0.11%) | 40.9 | 5093.2 |
2014 | new plots | 22 | 1 | 24.55 | 3279.37 | |
non cultivated | 4 | 0.13 | 109.18 | 732.13 | ||
Total | 65 (3.4%) | 3.9 (0.15%) | - | - | ||
Illegal gardens | 2007 | cultivated plots | 45 (2.1%) | 1.45 (0.05%) | 19.77 | 1460.60 |
2014 | new plots | 10 | 0.43 | 53.20 | 2669.30 | |
non cultivated | 19 | 0.58 | 19.77 | 797.57 | ||
Total | 36 (1.9%) | 1.3 (0.05%) | - | - | ||
Nurseries | 2007 | cultivated plots | 20 (0.9%) | 22.32 (0.8%) | 95.09 | 162,663.76 |
2014 | new plots | 1 | 0.21 | 2154.09 | 2154.09 | |
non cultivated | 1 | 0.15 | 1499.93 | 1499.93 | ||
Total | 20 (1%) | 22.38 (0.84%) | - | - | ||
Total | 2007 | Total | 2117 | 2847 | ||
2014 | Total | 1921 | 2660 |
Land Use | Crop | Area (ha) | Productivity | Yield (t) | Per capita Consumption | Feeding Population (1 ha) | Feeding Population (Whole Area) |
---|---|---|---|---|---|---|---|
Vegetable gardens | Vegetables | 98.27 | 2.5 kg/m2/year | 2456.75 | 211.2 g/day | 324 | 31,869 |
Vegetables | 5 kg/m2/year | 4913.5 | (77.09 kg/year) 1 | 648 | 63,738 | ||
Arable land | Wheat, common | 2539.2 | 5.72 t/ha/year | 14,524.22 | 258.4 g/day | 61 | 153,983 |
Maize | 11.94 t/ha/year | 30,318.05 | (94.32 kg/year) 2 | 127 | 321,413 |
Population | Individual | Whole City | |||||
---|---|---|---|---|---|---|---|
Year 2014 | Vegetables Consumption g/day (1) | Vegetables Consumption kg/day | Vegetables Consumption t/year | % Self-Sufficiency of Vegetables Consumption, Garden Productivity 2.5 kg/m2 2 | % Self-Sufficiency of Vegetables Consumption, Garden Productivity 5 kg/m2 2 | % Self-Sufficiency of Vegetables Consumption, Whole Area Converted on Productivity 5 kg/m2 3 | |
Males | n. | ||||||
0–2.9 | 18,616 | 60.5 | 22.08 | 411.09 | 17% | 8% | 0.31% |
3–9.9 | 44,902 | 134.3 | 49.02 | 2201.07 | 90% | 45% | 1.7% |
10–17.9 | 45,990 | 186.3 | 68 | 3127.30 | 127% | 64% | 2.4% |
18–64.9 | 387,799 | 232.6 | 84.90 | 32,923.75 | 1340% | 670% | 25% |
>65 years | 131,810 | 243.5 | 88.88 | 11,714.94 | 477% | 238% | 8.8% |
Sub-total | 629,117 | 50,378.15 | 2051% | 1025% | 38% | ||
Females | n. | ||||||
0–2.9 | 17,142 | 60.5 | 22.08 | 378.54 | 15% | 8% | 0.29% |
3–9.9 | 40,679 | 134.3 | 49.02 | 1994.06 | 81% | 41% | 1.5% |
10–17.9 | 41,588 | 166.4 | 60.74 | 2525.89 | 103% | 51% | 1.9% |
18–64.9 | 400,995 | 213.1 | 77.78 | 31,189.99 | 1269% | 635% | 23.6% |
>65 years | 194,648 | 210.6 | 76.87 | 14,962.40 | 609% | 305% | 11% |
Sub-total | 695,052 | 51,050.88 | 2078% | 1039% | 38.7% | ||
Total | 1,324,169 | 101,429.03 | 4129% | 2064% | 77% |
Population | Individual | Whole City | |||||
---|---|---|---|---|---|---|---|
Year 2014 | Cereals Consumption g/day/person 1 | Cereals Energy Consumption MJ/day/person 2 | Cereals Energy Consumption MJ/year/person | Cereals Energy Consumption MJ/year | % Self-Sufficiency of Energy Consumption Based on Wheat Production 2 | % Self-Sufficiency of Energy Consumption Based on Corn Production 3 | |
Males | n. | ||||||
infants | 6088 | 105.8 | 1.51 | 549.72 | 3,346,676 | 2% | 0.73% |
1–17 | 103,420 | 284.65 | 4.05 | 1478.99 | 152,956,912 | 74% | 33% |
18–29 | 68,427 | 295.7 | 4.21 | 1536.40 | 105,131,343 | 51% | 23% |
30–39 | 86,471 | 295.7 | 4.21 | 1536.40 | 132,854,171 | 64% | 29% |
40–49 | 111,997 | 295.7 | 4.21 | 1536.40 | 172,072,354 | 83% | 38% |
50–59 | 86,955 | 295.7 | 4.21 | 1536.40 | 133,597,789 | 65% | 29% |
60–65 | 41,288 | 295.7 | 4.21 | 1536.40 | 63,434,944 | 31% | 14% |
>65 | 124,471 | 283.2 | 4.03 | 1471.45 | 183,153,328 | 89% | 40% |
Sub–total | 629,117 | 946,547,517 | 458% | 207% | |||
Females | n. | ||||||
infants | 5536 | 105.8 | 1.51 | 549.72 | 3,043,233 | 1% | 0.67% |
1–17 | 93,873 | 251.65 | 3.58 | 1307.53 | 122,741,385 | 59% | 27% |
18–29 | 63,214 | 232.3 | 3.31 | 1206.99 | 76,298,477 | 37% | 17% |
30–39 | 86,073 | 232.3 | 3.31 | 1206.99 | 103,888,993 | 50% | 23% |
40–49 | 117,607 | 232.3 | 3.31 | 1206.99 | 141,950,121 | 69% | 31% |
50–59 | 94,432 | 232.3 | 3.31 | 1206.99 | 113,978,197 | 55% | 25 |
60–65 | 48,509 | 232.3 | 3.31 | 1206.99 | 58,549,733 | 28% | 13 |
>65 | 194,648 | 228.3 | 3.25 | 1186.20 | 230,892,191 | 112% | 51% |
Sub–total | 695,052 | 851,342,330 | 411% | 186% | |||
Total | 1,324,169 | 1,797,889,847 | 870% | 393% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulighe, G.; Lupia, F. Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy. Sustainability 2019, 11, 1846. https://doi.org/10.3390/su11071846
Pulighe G, Lupia F. Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy. Sustainability. 2019; 11(7):1846. https://doi.org/10.3390/su11071846
Chicago/Turabian StylePulighe, Giuseppe, and Flavio Lupia. 2019. "Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy" Sustainability 11, no. 7: 1846. https://doi.org/10.3390/su11071846
APA StylePulighe, G., & Lupia, F. (2019). Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy. Sustainability, 11(7), 1846. https://doi.org/10.3390/su11071846