Adaptation to Climate Change and its Impacts on Wheat Yield: Perspective of Farmers in Henan of China
Abstract
:1. Introduction
2. Method
2.1. Study Area and Data Collection
2.2. Modelling Adaptation to Climate Change and Wheat Yield
3. Results
3.1. Descriptive Statistics
3.2. Estimates of Climate Change Adaptation and Wheat Yield Equations
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Model 1 | Model 2 | |
---|---|---|
Adaptation 1/0 | Wheat Yield per Hectare Produced by Non-Adopters | |
Male | 0.246(0.238) | 0.116 **(2.09) |
Age | −0.004(0.011) | 0.000120 (0.05) |
Labor share | −0.549(0.443) | 0.144(1.31) |
Education | 0.034(0.224) | 0.090(1.45) |
Area | 0.016(0.011) | −0.060(−1.39) |
Climate cognition | 1.889 ***(0.335) | 0.012(0.057) |
Climate Information | 1.230 ***(0.273) | −0.147(0.111) |
Seeds(log) | −0.031(−0.32) | |
Pesticide(log) | 0.055(1.15) | |
Farm manure(log) | 0.004(0.98) | |
Chemical fertilizers(log) | 0.036(0.42) | |
Machinery(log) | −0.00148(−0.26) | |
Irrigation(log) | 0.00106 (0.14) | |
Household labor input(log) | −0.085 *(−2.02) | |
Employment expense(log) | 0.00375(0.62) | |
Rental(log) | −0.089(−1.26) | |
Rent (0/1) | 0.147(0.345) | |
Cons | −0.849(0.704) | 8.916 ***(10.17) |
χ2 = 87.67 *** | F-stat. = 1.85 | |
Sample size | 314 | 54 |
References
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summary for Policymakers; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Cramer, W.; Hare, W.L.; Lotze-Campen, H. Climate change risks for African agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 4313–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Xiong, W.; Pan, J.; Ali, T.; Cui, Q.; Guan, D.; Meng, J.; Mueller, N.D.; Lin, E.; Davis, S.J. Decreases in global beer supply due to extreme drought and heat. Nat. Plants 2018, 4, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Stage, J.; Limburg, K.; Costanza, R. Economic valuation of climate change adaptation in developing countries. Ann. N. Y. Acad. Sci. 2010, 1185, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Leclère, D.; Jayet, P.-A.; de Noblet-Ducoudré, N. Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change. Ecol. Econ. 2013, 87, 1–14. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Hoang, V.-N.; Lee, B. Farmers’ Adaptation to Climate Change, Its Determinants and Impacts on Rice Yield in Nepal. Ecol. Econ. 2018, 144, 139–147. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Huang, J. Policy support, social capital, and farmers’ adaptation to drought in China. Glob. Environ. Chang. 2014, 24, 193–202. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, B.D.; Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M.; Nhemachena, C.; Rashid, H.; et al. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Environ. Manag. 2010, 2, 22. [Google Scholar]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Alauddin, M.; Sarker, M.A.R. Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: An empirical investigation. Ecol. Econ. 2014, 106, 204–213. [Google Scholar] [CrossRef]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Wang, J. Farmers’ Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China. Am. J. Agric. Econ. 2015, 97, 602–617. [Google Scholar] [CrossRef]
- NBSC. China Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- WGCNARCC. The Third National Assessment Report on Climate Change; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- MOAC. China Agricultural Year Book 2015; China Agriculture Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Khanal, U.; Wilson, C.; Hoang, V.N.; Lee, B.L. Autonomous adaptations to climate change and rice productivity: a case study of the Tanahun district, Nepal. Clim. Dev. 2018. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Lee, B.L.; Hoang, V.N. Climate change adaptation strategies and food productivity in Nepal: a counterfactual analysis. Clim. Chang. 2018, 148, 575–590. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C.; Codjoe, S.N.A. Adaptation opportunities and maladaptive outcomes in climate vulnerability hotspots of northern Ghana. Clim. Risk Manag. 2018, 19, 83–93. [Google Scholar] [CrossRef]
- Kihupi, M.L.; Mahonge, C.; Chingonikaya, E.E. Smallholder Farmers’ Adaptation Strategies to Impact of Climate Change in Semi-arid Areas of Iringa District Tanzania. J. Biol. Agric. Healthc. 2015, 5, 123–132. [Google Scholar]
- Müller, B.; Johnson, L.; Kreuer, D. Maladaptive outcomes of climate insurance in agriculture. Glob. Environ. Chang. 2017, 46, 23–33. [Google Scholar] [CrossRef]
- Liu, P.; Cai, H.; Wang, J. Effects of Soil Water Stress on Growth Development, Dry-matter Partition and Yield Constitution of Winter Wheat. Res. Agric. Mod. 2010, 37, 1049–1059. [Google Scholar]
- FAO. Food and Agriculture Data; FAO: Rome, Italy, 2018. [Google Scholar]
- Wu, L.; Yin, S.; Wang, J. Introduction to 2014 China Development Report on Food Safety; Peking University Press: Beijing, China, 2014. [Google Scholar]
- Paudel, K.P.; Lohr, L.; Martin, N.R. Effect of risk perspective on fertilizer choice by sharecroppers. Agric. Syst. 2000, 66, 115–128. [Google Scholar] [CrossRef]
- Huanguang Qiu, H.L. Effect of risk aversion on farmers’ overuse of fertilizer. Chin. Rural Econ. 2014, 3, 85–96. (In Chinese) [Google Scholar]
- Huang, J.; Hu, R.; Cao, J.; Rozelle, S. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. J. Soil Water Conserv. 2008, 63, 165A–167A. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
- Hailegiorgis, A.; Crooks, A.; Cioffi-Revilla, C. An Agent-Based Model of Rural Households’ Adaptation to Climate Change. J. Artif. Soc. Soc. Simul. 2018, 21, 4. [Google Scholar] [CrossRef]
- Wu, C. A Research on Rural Public Goods Supply System Development during the Transformation Period in China; Huazhong Agricultural University: Wuhan, China, 2007. (In Chinese) [Google Scholar]
- Cheng, X.; Wu, Q. The responsibility of the government in the rural public goods supply system. Rural Econ. 2009, 2, 54–58. (In Chinese) [Google Scholar]
Variable | Description | Sample Mean | Std. Dev |
---|---|---|---|
Yield | Wheat output (kg/ha) | 6827.579 | 1749.542 |
Area | Area under wheat in hectare | 0.771 | 1.992 |
Seeds | Seeds use per hectare (RMB) | 1129.651 | 364.152 |
Chemical fertilizer | Chemical fertilizers use per hectare (RMB) | 2476.440 | 697.026 |
Farm manure | Farm manure use per hectare (RMB) | 171.858 | 564.062 |
Pesticide | Pesticides per hectare (RMB) | 542.944 | 296.527 |
Household labor | Household labor input per hectare (RMB) | 2638.080 | 2135.371 |
Employment expense | Employment expense per hectare (RMB) | 180.419 | 581.991 |
Machinery | Machinery cost per hectare (RMB) | 1526.853 | 701.715 |
Irrigation | Irrigation cost per hectare (RMB) | 463.738 | 459.876 |
Rental | Rental expense per hectare (RMB) | 32.684 | 94.295 |
Male | Dummy = 1, if the head of farmer household is male, 0 otherwise | 0.723 | 0.448 |
Age | Age of the household head | 55.124 | 10.417 |
Education | Dummy = 1 if the household head had attained > 9 years of schooling, 0 otherwise | 0.615 | 0.487 |
Labor share | The proportion of Labor force in the total household population | 0.604 | 0.221 |
Climate cognition | Dummy = 1 if the respondent perceives climate change, 0 otherwise | 0.917 | 0.276 |
Climate impact on wheat | Dummy = 1 if the respondent believes climate change impacts wheat production, 0 otherwise | 0.857 | 0.351 |
Climate Information | Dummy = 1 if the respondent received pre-warning weather information, 0 otherwise | 0.430 | 0.496 |
Adaptation | Dummy = 1 if the farming household adapted to climate change, 0 otherwise | 0.828 | 0.378 |
Variable | Adopters | Non-Adopters | Difference | ||
---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | ||
Adaptation | 1.000 | 0.000 | 0.000 | 0.000 | |
Yield | 6740.563 | 1831.214 | 7246.547 | 1213.885 | −505.984 ** |
Area | 0.809 | 2.146 | 0.588 | 0.948 | 0.221 |
Seeds | 1127.578 | 375.437 | 1139.629 | 306.923 | −12.051 |
Pesticide | 2467.206 | 692.978 | 2520.898 | 721.167 | −53.692 |
Farm manure | 144.332 | 521.404 | 304.387 | 727.207 | −160.055 |
Chemical fertilizers | 544.795 | 300.001 | 534.028 | 281.712 | 10.767 |
Household labor input | 2708.825 | 2219.873 | 2297.456 | 1644.566 | 411.369 |
Employment expense | 133.105 | 478.036 | 408.226 | 905.401 | −275.121 ** |
Machinery | 1547.522 | 651.598 | 1427.338 | 906.063 | 120.184 |
Irrigation | 436.741 | 454.060 | 593.72 | 469.75 | −156.979 ** |
Rental | 33.584 | 96.138 | 28.349 | 85.563 | 5.235 |
Male | 0.731 | 0.444 | 0.685 | 0.469 | 0.046 |
Age | 55.238 | 10.256 | 54.574 | 11.241 | 0.664 |
Education | 0.612 | 0.488 | 0.63 | 0.487 | −0.018 |
Labor Share | 0.597 | 0.218 | 0.637 | 0.236 | −0.040 |
Climate cognition | 0.977 | 0.150 | 0.63 | 0.487 | 0.347 *** |
Climate impact on wheat | 0.977 | 0.150 | 0.278 | 0.452 | 0.699 *** |
Climate Information | 0.508 | 0.501 | 0.056 | 0.231 | 0.452 *** |
Variable | Adaptation | Wheat Yield(log) | |
---|---|---|---|
Adopters | Non-Adopters | ||
Male | 0.263 | −0.003 | 0.118 ** |
(1.10) | (−0.07) | (2.55) | |
Age | −0.002 | 0.001 | 0.000 |
(−0.20) | (0.58) | (0.06) | |
Labor share | −0.616 | 0.070 | 0.138 |
(−1.36) | (0.98) | (1.48) | |
Education | −0.017 | 0.065 * | 0.060 |
(−0.07) | (1.91) | (1.15) | |
Area | 0.298 * | −0.021 ** | −0.073 ** |
(1.85) | (−2.55) | (−2.17) | |
Seeds(log) | −0.053 | −0.098 | |
(−1.28) | (−0.85) | ||
Farm manure(log) | −0.002 | 0.006 * | |
(−0.69) | (1.78) | ||
Chemical fertilizers | 0.068 | 0.045 | |
(1.26) | (0.64) | ||
Pesticide(log) | 0.042 | 0.051 | |
(1.57) | (1.27) | ||
Household labor (log) | −0.009 | −0.105 *** | |
(−1.19) | (−2.97) | ||
Employment expense(log) | −0.007 | −0.001 | |
(−1.35) | (−0.10) | ||
Irrigation(log) | 0.012 *** | −0.002 | |
(4.88) | (−0.27) | ||
Machinery(log) | −0.007 | −0.006 | |
(−1.10) | (−1.13) | ||
Rental(log) | −0.009 ** | −0.009 | |
(−2.26) | (−1.39) | ||
Rent (0/1) | 0.157 | ||
(0.43) | |||
Climate cognition | 1.877 *** | ||
(4.91) | |||
Climate Information | 1.259 *** | ||
(4.65) | |||
Constant | −0.923 | 8.189 *** | 9.613 *** |
(−1.34) | (16.63) | (9.81) | |
−1.402 *** (−29.70) | |||
−1.999 *** (−10.83) | |||
0.347(1.54) | |||
0.584(0.70) (0.70) |
Sub-Samples | Decision Stage | Treatment Effects | |
---|---|---|---|
To Adapt | Not to Adapt | ||
Adopters | (a) 6551.72 (49.211) | (c) 8463.331 (344.042) | TT = −1911.611 *** [−5.614] |
Non-adopters | (d) 6167.134 (89.356) | (b) 7206.905 (110.097) | TU = −1039.771 *** [−13.716] |
Heterogeneity effects | BH1 = 384.587 *** [3.770] | BH2 = 1256.427 *** [3.478] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, S.; Li, Y.; Song, J.; Zhang, T.; Wang, M. Adaptation to Climate Change and its Impacts on Wheat Yield: Perspective of Farmers in Henan of China. Sustainability 2019, 11, 1928. https://doi.org/10.3390/su11071928
Quan S, Li Y, Song J, Zhang T, Wang M. Adaptation to Climate Change and its Impacts on Wheat Yield: Perspective of Farmers in Henan of China. Sustainability. 2019; 11(7):1928. https://doi.org/10.3390/su11071928
Chicago/Turabian StyleQuan, Shuiping, Yingming Li, Jianxin Song, Tao Zhang, and Mingyue Wang. 2019. "Adaptation to Climate Change and its Impacts on Wheat Yield: Perspective of Farmers in Henan of China" Sustainability 11, no. 7: 1928. https://doi.org/10.3390/su11071928
APA StyleQuan, S., Li, Y., Song, J., Zhang, T., & Wang, M. (2019). Adaptation to Climate Change and its Impacts on Wheat Yield: Perspective of Farmers in Henan of China. Sustainability, 11(7), 1928. https://doi.org/10.3390/su11071928