Influences of Global Warming on the Larval Survival and Transport of Snow Crab (Chionoecetes opilio) in the Sea of Japan
Abstract
:1. Introduction
2. Model Structure
2.1. Model Descriptions
2.2. Model Setup
2.2.1. Control Group
2.2.2. Sensitive Groups
2.3. Climate Change Trend in DREAMS
3. Results
3.1. Spawning of Snow Crab
3.2. Larval Settlement
4. Discussion
4.1. Hydrodynamic Factors Controlling Settlement
4.2. Clarification of the Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Davidson, K.G.; Chin, E.A. A comparison of the taxonomic characteristics and duration of the laboratory reared larvae of snow crabs, Chionoecetes opilio (O. Fabricius) and toad crabs (Hyas sp.) from Atlantic Canada. Can. Tech. Rep. Fish. Aquat. Sci. 1991, 1762, 1–21. [Google Scholar]
- Charmantier, G.; Charmantier-Daures, M. Osmoregulation and salinity tolerance in zoeae and juveniles of snow crab Chionoecetes opilio. Aquat. Living Resour. 1995, 8, 171–179. [Google Scholar] [CrossRef]
- Zheng, J.; Kruse, G.H. Recruitment patterns of Alaskan crabs in relation to decadal shifts in climate and physical oceanography. ICES J. Mar. Sci. 2000, 57, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Kruse, G.H.; Tyler, A.V.; Sainte-Marie, B.; Penilly, D. A workshop on mechanisms affecting year-class strength formation in snow crabs Chionoecetes opilio in the Eastern Bering Sea. Alaska Fish. Res. Bull. 2007, 12, 278–291. [Google Scholar]
- Kuhn, P.S.; Choi, J.S. Influence of temperature on embryo development cycles and mortality of female Chionoecetes opilio (snow crab) on the Scotian Shelf, Canada. Fish. Res. 2011, 107, 245–252. [Google Scholar] [CrossRef]
- Kon, T.; Adachi, T.; Suzuki, Y. Distribution of snow crab, Chionoecetes spp., larvae off Wakasa Bay in the Sea of Japan. Fish. Sci. 2003, 69, 1109–1115. [Google Scholar] [CrossRef]
- Kon, T. Studies on the life history of the zuwai crab, Chionoecetes opilio (O. Fabricius). In Special Publication from the Sado Marine Biological Station; Niigata University: Niigata, Japan, 1980; Volume 2, pp. 1–64. [Google Scholar]
- Paul, A.J. Bibliography of Research on Snow Crab; Report No. 00-01; University of Alaska Sea Grant College Program: Fairbanks, AK, USA, 2000; pp. 1–46. [Google Scholar]
- Makino, M. Marine protected areas for the snow crab bottom fishery off Kyoto Prefecture, Japan. FAO Fish. Tech. Pap. 2008, 504, 211–220. [Google Scholar]
- Sakurai, Y.; Kiyofuji, H.; Saitoh, S.; Goto, T.; Hiyama, Y. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES J. Mar. Sci. 2000, 57, 24–30. [Google Scholar] [CrossRef]
- Kidokoro, H.; Goto, T.; Nagasawa, T.; Nishida, H.; Akamine, T.; Sakurai, Y. Impact of a climate regime shift on the migration of Japanese common squid (Todarodes pacificus) in the Sea of Japan. ICES J. Mar. Sci. 2010, 67, 1314–1322. [Google Scholar] [CrossRef]
- Cubasch, U.; Wuebbles, D.; Chen, D.; Facchini, M.C.; Frame, D.; Mahowald, N.; Winther, J.G. Introduction. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 119–158. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Peters, G.P.; Andrew, R.M.; Boden, T.; Canadell, J.G.; Ciais, P.; Quéré, C.L.; Marland, G.; Raupach, M.R.; Wilson, C. The challenge to keep global warming below 2 °C. Nat. Clim. Chang. 2012, 3, 2–4. [Google Scholar] [CrossRef]
- O’Brien, C.M.; Fox, C.J.; Planque, B.; Casey, J. Climate variability and North Sea cod. Nature 2000, 404, 142. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.C.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Edwards, M.; Richardson, A.J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 2004, 430, 881–884. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 2007, 315, 95–97. [Google Scholar] [CrossRef]
- Dulvy, N.K.; Rogers, S.I.; Jennings, S.; Stelzenmuller, V.; Dye, S.R.; Skjoldal, H.R. Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. J. Appl. Ecol. 2008, 45, 1029–1039. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Watson, R.; Pauly, D. Signature of ocean warming in global fisheries catch. Nature 2013, 497, 365–368. [Google Scholar] [CrossRef]
- Garzke, J.; Ismar, S.M.H.; Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 2015, 177, 849–860. [Google Scholar] [CrossRef]
- Worm, B.; Lotze, H.K. Marine biodiversity and climate change. In Climate and Global Change: Observed Impacts on Planet Earth, 2nd ed.; Letcher, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 195–212. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Fu, W.; Randerson, J.T.; Moore, J.K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 2016, 13, 5151–5170. [Google Scholar] [CrossRef]
- Alabia, I.D.; Saitoh, S.I.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T.; Seito, M. Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific. ICES J. Mar. Sci. 2016, 73, 1343–1356. [Google Scholar] [CrossRef]
- Bryndum-Buchholz, A.; Tittensor, D.P.; Blanchard, J.L.; Cheung, W.W.L.; Coll, M.; Galbraith, E.D.; Jennings, S.; Maury, O.; Lotze, H.K. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Chang. Biol. 2018, 25, 459–472. [Google Scholar] [CrossRef]
- Lefort, S.; Aumont, O.; Bopp, L.; Arsouze, T.; Gehlen, M.; Maury, O. Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Glob. Chang. Biol. 2015, 21, 154–164. [Google Scholar] [CrossRef]
- Moore, J.K.; Fu, W.; Primeau, F.; Britten, G.L.; Lindsay, K.; Long, M.; Doney, S.C.; Mahowald, N.; Hoffman, F.; Randerson, J.T. Sustained climate warming drives declining marine biological productivity. Science 2018, 359, 1139–1143. [Google Scholar] [CrossRef]
- Ministry of the Environment. Stop the Warming 2017; Ministry of the Environment: Tokyo, Japan, 2017. (In Japanese)
- Ministry of the Environment; Ministry of Education, Culture, Sports, Science and Technology; Ministry of Agriculture, Forestry and Fisheries; Ministry of Land, Infrastructure, Transport and Tourism; Japan Meteorological Agency. Synthesis Report on Observations, Projections and Impact Assessments of Climate Change 2018: Climate Change in Japan and Its Impacts; Ministry of the Environment: Tokyo, Japan, 2018. (In Japanese)
- Japan Meteorological Agency. Climate Change Monitoring Report 2017; Japan Meteorological Agency: Tokyo, Japan, 2018. [Google Scholar]
- Wakamatsu, S.; Oshio, K.; Ishihara, K.; Murai, H.; Nakashima, T.; Inoue, T. Estimating regional climate change uncertainty in Japan at the end of the 21st century with mixture distribution. Hydrol. Res. Lett. 2017, 11, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture, Forestry and Fisheries. Project to establish recycling-based food production, etc. to adapt climate change: Development of global warming mitigation technologies in the fisheries sector. Proj. Res. Results Ser. 2016, 559, 1–127. (In Japanese) [Google Scholar]
- Sigler, M. Climate change and ocean acidification: Effects on Alaska fisheries. In Alaska Young Fishermen’s Summit; University of Alaska Sea Grant College Program: Fairbanks, AK, USA, 2012. [Google Scholar]
- Mullowney, D.R.; Dawe, E.G.; Colbourne, E.B.; Rose, G.A. A review of factors contributing to the decline of Newfoundland and Labrador snow crab (Chionoecetes opilio). Rev. Fish Biol. Fish. 2014, 24, 639–657. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Peck, M.A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 2010, 77, 1745–1779. [Google Scholar] [CrossRef]
- Mao, X.Y.; Guo, X.Y.; Kubota, T.; Wang, Y.C. Numerical studies on snow crab (Chionoecetes opilio) larval survival and transport in the Sea of Japan. Prog. Oceanogr. under review.
- Hirose, N.; Takayama, K.; Moon, J.H.; Watanabe, T.; Nishida, Y. Regional data assimilation system extended to East Asian marginal seas. Umi Sora (Sea Sky) 2013, 89, 1–9. [Google Scholar]
- Ueda, Y.; Tomatsu, I.; Fujiwara, K.; Sakuma, H.; Matsukura, R.; Yamamoto, T. Stock assessment and evaluation for snow crab (fiscal year 2016). In Marine Fisheries Stock Assessment and Evaluation for Japanese Waters (Fiscal Year 2016/2017); Fisheries Agency and Fisheries Research and Education Agency of Japan: Tokyo, Japan, 2017; pp. 529–617. [Google Scholar]
- Crick, H.Q.P.; Sparks, T.H. Climate change related to egg-laying trends. Nature 1999, 399, 423–424. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yamada, T.; Fujimoto, H.; Hamasaki, K. Effects of temperature on snow crab (Chionoecetes opilio) larval survival and development under laboratory conditions. J. Shellfish Res. 2014, 33, 19–24. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yamada, T.; Fujimoto, H.; Hamasaki, K. Effects of salinity on snow crab (Chionoecetes opilio) larval survival and development under laboratory conditions. J. Shellfish Res. 2015, 34, 499–504. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Harada, Y.; Kamahori, H.; Kobayashi, C.; Endo, H.; Kobayashi, S.; Ota, Y.; Onoda, H.; Onogi, K.; Miyaoka, K.; Takahashi, K. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteorol. Soc. Jpn. 2016, 94, 269–302. [Google Scholar] [CrossRef]
- Ito, M.; Morimoto, A.; Watanabe, T.; Katoh, O.; Takikawa, T. Tsushima Warm Current paths in the southwestern part of the Japan Sea. Prog. Oceanogr. 2014, 121, 83–93. [Google Scholar] [CrossRef]
- Hogan, P.J.; Hurlburt, H.E. Why do intrathermocline eddies form in the Japan/East Sea? Oceanography 2006, 19, 134–143. [Google Scholar] [CrossRef]
- Dawe, E.G.; Mullowney, D.R.; Moriyasu, M.; Wade, E. Effects of temperature on size-at-terminal molt and molting frequency in snow crab Chionectes opilio from two Canadian Atlantic ecosystems. Mar. Ecol. Prog. Ser. 2012, 469, 279–296. [Google Scholar] [CrossRef]
- Marcello, L.A.; Mueter, F.; Dawe, E.G.; Moriyasu, M. Effects of temperature and gadid predation on snow crab recruitment: Comparisons between the Bering Sea and Atlantic Canada. Mar. Ecol. Prog. Ser. 2012, 469, 249–261. [Google Scholar] [CrossRef]
Period | Era | Years in DREAMS | Years for Running Larval Model | Name of Larval Experiments in the Control Group and DREAMS subset | |
---|---|---|---|---|---|
Past | Mid-20th century | 1957–1966 | 1961–1965 | 1960s | |
Present | Early 21st century | 2005–2014 | 2009–2013 | 2010s | |
Future | Mid-21st century | 2053–2062 | 2057–2061 | RCP2.6 2050s | |
RCP2.6 | RCP8.5 | RCP8.5 2050s | |||
End 21st century | 2101–2110 | 2105–2109 | RCP2.6 2100s | ||
RCP8.5 2100s |
Sensitive group | Experiment Name | Temperature Data | Flow Field Data |
---|---|---|---|
Tmodern | Tmdn 1960s | 2010s | 1960s |
Tmdn RCP8.5 2050s | 2010s | RCP8.5 2050s | |
Tmdn RCP8.5 2100s | 2010s | RCP8.5 2100s | |
Tmdn RCP2.6 2050s | 2010s | RCP2.6 2050s | |
Tmdn RCP2.6 2100s | 2010s | RCP2.6 2100s | |
UVmodern | UVmdn 1960s | 1960s | 2010s |
UVmdn RCP8.5 2050s | RCP8.5 2050s | 2010s | |
UVmdn RCP8.5 2100s | RCP8.5 2100s | 2010s | |
UVmdn RCP2.6 2050s | RCP2.6 2050s | 2010s | |
UVmdn RCP2.6 2100s | RCP2.6 2100s | 2010s |
Experiments | Initial Number | Low-temp. Mortality Rate | High-temp. Mortality Rate | Drifting Rate | Settled Number | Settlement Ratio of Others to 2010s |
---|---|---|---|---|---|---|
1960s | 3.11 × 106 | 85.5% | 4.2% | 6.6% | 1.36 × 104 | 2.7 |
2010s | 2.95 × 106 | 86.6% | 4.5% | 5.7% | 0.50 × 104 | 1.0 |
RCP2.6 2050s | 2.97 × 106 | 83.2% | 4.7% | 7.7% | 1.54 × 104 | 3.1 |
RCP2.6 2100s | 2.97 × 106 | 81.4% | 5.0% | 8.3% | 2.19 × 104 | 4.4 |
RCP8.5 2050s | 2.95 × 106 | 80.3% | 5.0% | 9.5% | 1.51 × 104 | 3.0 |
RCP8.5 2100s | 2.78 × 106 | 75.0% | 6.3% | 11.8% | 3.47 × 104 | 6.9 |
Future Cases | Group | Region A (%) | Region B (%) | Region C (%) | Region F (%) | Others (%) | Region C+F (%) |
---|---|---|---|---|---|---|---|
RCP2.6 2050s | Control | 36.1 | 49.1 | 14.3 | 0.5 | 0.0 | 14.8 |
UVmodern | 33.7 | 57.4 | 8.8 | 0.1 | 0.0 | 8.9 | |
RCP2.6 2100s | Control | 30.9 | 39.7 | 28.6 | 0.0 | 0.8 | 28.6 |
UVmodern | 27.2 | 51.4 | 20.9 | 0.5 | 0.0 | 21.4 | |
RCP8.5 2050s | Control | 24.3 | 43.2 | 32.2 | 0.2 | 0.1 | 32.4 |
UVmodern | 25.8 | 55.1 | 18.4 | 0.7 | 0.0 | 19.1 | |
RCP8.5 2100s | Control | 16.8 | 25.2 | 46.5 | 3.6 | 7.9 | 50.1 |
UVmodern | 12.7 | 29.1 | 47.6 | 6.9 | 3.7 | 54.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Guo, X.; Wang, Y.; Takayama, K. Influences of Global Warming on the Larval Survival and Transport of Snow Crab (Chionoecetes opilio) in the Sea of Japan. Sustainability 2019, 11, 2198. https://doi.org/10.3390/su11082198
Mao X, Guo X, Wang Y, Takayama K. Influences of Global Warming on the Larval Survival and Transport of Snow Crab (Chionoecetes opilio) in the Sea of Japan. Sustainability. 2019; 11(8):2198. https://doi.org/10.3390/su11082198
Chicago/Turabian StyleMao, Xinyan, Xinyu Guo, Yucheng Wang, and Katsumi Takayama. 2019. "Influences of Global Warming on the Larval Survival and Transport of Snow Crab (Chionoecetes opilio) in the Sea of Japan" Sustainability 11, no. 8: 2198. https://doi.org/10.3390/su11082198
APA StyleMao, X., Guo, X., Wang, Y., & Takayama, K. (2019). Influences of Global Warming on the Larval Survival and Transport of Snow Crab (Chionoecetes opilio) in the Sea of Japan. Sustainability, 11(8), 2198. https://doi.org/10.3390/su11082198