Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land-Use Type Changes and Driving Forces Analysis
2.3.2. NDVI, Climate Change, and Their Relationship
3. Results
3.1. Spatiotemporal Land-Use Changes
3.2. Driving Forces of Land-Use Changes
3.3. Spatiotemporal Land-Cover Changes and Climate Change
3.4. Correlation Between Climate Change and NDVI
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 1), 3665–3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, J.M.; Dong, W.J.; Wang, S.Y.; Fu, Y.Q. Quantitative analysis of agricultural land use change in China. Phys. Chem. Earth. 2015, 87–88, 3–9. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Wu, C.Y.; Zhao, R.Q. Spatial simulation of land use based on terrestrial ecosystem carbon storage in coastal Jiangsu, China. Sci. Rep. 2014, 4, 5667. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.J.; Chuai, X.W.; Yang, H.; Lai, L.; Tan, J.Z. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Zhang, X.N.; Xia, D.Z.; You, J.S.; Rong, Y.S.; Bakir, M. Impacts of land-use and climate changes on hydrologic processes in the Qingyi River watershed, China. J. Hydrol. Eng. 2013, 18, 1495–1512. [Google Scholar] [CrossRef]
- Wang, W.J.; Guo, H.C.; Chuai, X.W.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy. 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Drummond, M.A.; Auch, R.F.; Karstensen, K.A.; Sayler, K.L.; Taylor, J.L.; Loveland, T.R. Land change variability and human–environment dynamics in the United States Great Plains. Land Use Policy 2012, 29, 710–723. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187, 452. [Google Scholar] [CrossRef]
- Long, H.L.; Tang, G.P.; Li, X.B.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Schneeberger, N.; Bürgi, M.; Hersperger, A.M.; Ewald, K.C. Driving forces and rates of landscape change as a promising combination for landscape change research—An application on the northern fringe of the Swiss Alps. Land Use Policy 2007, 24, 349–361. [Google Scholar] [CrossRef]
- He, F.N.; Li, M.J.; Li, S.C.; Xiao, R. Comparison of changes in land use and land cover in China and the USA over the past 300 years. J. Geogr. Sci. 2015, 25, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Chen, B.M.; Zhang, Y. Land-use change and socio-economic driving forces of rural settlement in China from 1996 to 2005. Chin. Geogr. Sci. 2014, 24, 511–524. [Google Scholar] [CrossRef]
- Zhao, R.F.; Chen, Y.N.; Shi, P.J.; Zhang, L.H.; Pan, J.H.; Zhao, H.L. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth. Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal. 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Kicklighter, D.W.; Cai, Y.; Zhuang, Q.; Parfenova, E.I.; Paltsev, S.; Sokolov, A.P.; Melillo, J.M.; Reilly, J.M.; Tchebakova, N.M.; Lu, X. Potential influence of climate induced vegetation shifts on future land use and associated land carbon fluxes in northern Eurasia. Environ. Res. Lett. 2014, 9, 035004. [Google Scholar] [CrossRef]
- Román-Cuesta, R.M.; Carmona-Moreno, C.; Lizcano, G.; New, M.; Silman, M.; Knoke, T.; Malhi, Y.; Oliveras, I.; Asbjornsen, H.; Vuille, M. Synchronous fire activity in the tropical high Andes: An indication of regional climate forcing. Glob. Chang. Biol. 2014, 20, 1929–1942. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Cui, Q.; An, X.H.; Wu, C.X. Land use/land cover change and driving force analysis in Xishuangbanna Region in 1986–2008. Front. Earth Sci. 2011, 5, 288–293. [Google Scholar] [CrossRef]
- Kelarestaghi, A.; Jeloudar, Z.J. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab. J. Geosci. 2011, 4, 401–411. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends-Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote. Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Cong, N.; Piao, S.L.; Chen, A.P.; Wang, X.H.; Lin, X.; Chen, S.P.; Han, S.J.; Zhou, G.S.; Zhang, X.P. Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteorol. 2012, 165, 104–113. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science. 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Meng, M.; Ni, J.; Zong, M.J. Impacts of changes in climate variability on regional vegetation in China: NDVI-based analysis from 1982 to 2000. Ecol. Res. 2011, 26, 421–428. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Hou, P.; Wang, Q.; Cao, G.Z.; Wang, C.; Zhan, Z.M.; Yang, B.F. Sensitivity analyses of different vegetations responding to climate change in inland river basin of China. J. Geogr. Sci. 2012, 22, 387–406. [Google Scholar] [CrossRef]
- Ni, J.; Harrison, S.P.; Prentice, I.C.; Kutzbach, J.E.; Sitch, S. Impact of climate variability on present and Holocene vegetation: A model-based study. Ecol. Model. 2006, 191, 469–486. [Google Scholar] [CrossRef]
- Schultz, P.A.; Halpert, M.S. Global analysis of the relationships among a vegetation index, precipitation, and land surface temperature. Int. J. Remote. Sens. 1995, 16, 2755–2777. [Google Scholar] [CrossRef]
- Shary, P.A.; Sharaya, L.S. Change in NDVI of forest ecosystems in Northern Caucasus as a function of topography and climate. Contemp. Probl. Ecol. 2014, 7, 855–863. [Google Scholar] [CrossRef]
- Piao, S.L.; Mohammat, A.; Fang, J.Y.; Cai, Q.; Feng, J.M. NDVI based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Chang. Biol. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Yuan, X.L.; Li, L.H.; Chen, X.; Shi, H. Effects of Precipitation Intensity and Temperature on NDVI-Based Grass Change over Northern China during the Period from 1982 to 2011. Remote. Sens. 2015, 7, 10164–10183. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.G.; Tang, H.J.; Yang, P.; Wu, W.B.; Chen, Z.X.; Zhou, Q.B.; Zhang, L.; Zou, J.Q. Spatiotemporal responses of cropland phenophases to climate change in Northeast China. J. Geogr. Sci. 2012, 22, 29–45. [Google Scholar] [CrossRef]
- Antico, A. Independent component analysis of MODIS-NDVI data in a large South American wetland. Remote. Sens. Lett. 2011, 3, 383–392. [Google Scholar] [CrossRef]
- Cui, L.L.; Shi, J. Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. J. Geogr. Sci. 2010, 20, 163–176. [Google Scholar] [CrossRef]
- Revadekar, J.V.; Tiwari, Y.K.; Kumar, K.R. Impact of climate variability on NDVI over the Indian region during 1981–2010. Int. J. Remote. Sens. 2012, 33, 7132–7150. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Patterns in the yearly trajectory of standard deviation of NDVI over 25 years for forest, grasslands and croplands across ecological gradients in Alberta, Canada. Int. J. Remote. Sens. 2012, 33, 2725–2746. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z.F. Correlation analysis of NDVI dynamics and hydro-meteorological variables in growth period for four land use types of a water scarce area. Earth. Sci. Inform. 2014, 7, 187–196. [Google Scholar] [CrossRef]
- Bao, G.; Qin, Z.H.; Bao, Y.H.; Zhou, Y.; Li, W.J.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote. Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef] [Green Version]
- Chuai, X.W.; Yuan, Y.; Zhang, X.Y.; Guo, X.M.; Zhang, X.L.; Xie, F.J.; Zhao, R.Q.; Li, J.B. Multiangle land use-linked carbon balance examination in Nanjing City, China. Land Use Policy 2019, 84, 305–315. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Uchida, E. Economic growth and the expansion of urban land in China. Urban Stud. 2010, 47, 813–843. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.Q.; Shao, X.M.; Zhang, Y.Y.; Cao, Y.G. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Lu, Q.L.; Zhang, M.; Zhao, R.Q.; Lu, J.Y. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Zhao, R.Q.; Zhang, M.; Wu, C.Y. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Long, H.L. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Du, X.D.; Jin, X.B.; Yang, X.L.; Yang, X.H.; Zhou, Y.K. Spatial pattern of land use change and its driving force in Jiangsu Province. Int. J. Environ. Res. Public. Health. 2014, 11, 3215–3232. [Google Scholar] [CrossRef]
- Li, J.L.; Zhao, H.B.; Yang, X.P. Study on the seasonal dynamics of zonal vegetation of NDVI/EVI of costal zonal vegetation based on MODIS data: A case study of Spartina alterniflora salt marsh on Jiangsu Coast, China. Afr. J. Agric. Res. 2011, 6, 4019–4024. [Google Scholar]
- Cao, L.; Xie, F.; Wu, Y.C.; Wang, Z.; Zhang, N.N.; Zhao, Y.W. Spatiotemporal variation characteristics and impact factors of NDVI in Jiangsu Province. Bull. Soil. Water. Conserv. 2015, 35, 151–154. (In Chinese) [Google Scholar]
- Huang, C.C.; Zhang, M.L.; Zou, J.; Zhu, A.X.; Chen, X.; Mi, Y.; Wang, Y.H.; Yang, H.; Li, Y.M. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Sci. Total Environ. 2015, 536, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Wang, X.; Zhao, X.L.; Liu, B.; Yi, L.; Zuo, L.J.; Wen, Q.K.; Liu, F.; Xu, J.Y.; Hu, S.G. A 2010 update of National Land Use/Cover Database of China at 1:100,000 scale using medium spatial resolution satellite images. Remote. Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Jiangsu Fundamental Geographic Information Center. Atlas of Jiangsu Province; Chinese Map Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Wang, G.G.; Liu, Y.S.; Li, Y.R.; Chen, Y.F. Dynamic trends and driving forces of land use intensification of cultivated land in China. J. Geogr. Sci. 2015, 25, 45–57. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote. Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Liu, C.Y.; Dong, X.F.; Liu, Y.Y. Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena. 2015, 125, 190–199. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Salvati, L.; Zambon, I.; Chelli, F.M.; Serra, P. Do spatial patterns of urbanization and land consumption reflect different socioeconomic contexts in Europe? Sci. Total. Environ. 2018, 625, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Schulp, C.J.E.; Levers, C.; Kuemmerle, T.; Tieskens, K.F.; Verburg, P.H. Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy 2019, 80, 332–344. [Google Scholar] [CrossRef]
- Kuang, W.H.; Chi, W.F.; Lu, D.S.; Dou, Y.Y. A comparative analysis of megacity expansions in China and the US: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Burgin, S.; Franklin, M.J.; Hull, L. Wetland loss in the transition to urbanisation: A case study from Western Sydney, Australia. Wetlands. 2016, 36, 985–994. [Google Scholar] [CrossRef]
- Zhan, J.Y.; Shi, N.N.; He, S.J.; Lin, Y.Z. Factors and mechanism driving the land-use conversion in Jiangxi Province. J. Geogr. Sci. 2010, 20, 525–539. [Google Scholar] [CrossRef]
- He, Q.H. Land Use/Cover Change and the Effect to Ecological Environment in Coastal Jiangsu, China; Nanjing Normal University: Nanjing, China, 2011. (In Chinese) [Google Scholar]
- Fu, G.; Li, S.W.; Sun, W.; Shen, Z.X. Relationships between vegetation carbon use efficiency and climatic factors on the Tibetan Plateau. Can. J. Remote. Sens. 2016, 42, 16–26. [Google Scholar] [CrossRef]
- Yang, Y.T.; Guan, H.D.; Shen, M.; Liang, W.; Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Chang. Biol. 2015, 21, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Schuur, E.A.G.; Chadwick, O.A.; Matson, P.A. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 2001, 82, 3182–3196. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xu, M.; Chen, H.; Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 2009, 18, 280–290. [Google Scholar] [CrossRef]
- Chuai, X.W.; Qi, X.X.; Zhang, X.Y.; Li, J.S.; Yuan, Y.; Guo, X.M.; Huang, X.J.; Park, S.J.; Zhao, R.Q.; Xie, X.L.; et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degrad. Dev. 2018, 29, 3489–3502. [Google Scholar] [CrossRef]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Chang. Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
Land-Use Type | Selected Driving Forces |
---|---|
,,,,,, | |
,,,,, | |
,,,,, |
Year | Paddy Field | Dry Cropland | Woodland | Grassland | Water Area | Built-up Land | Unused Land |
---|---|---|---|---|---|---|---|
1995 | 44,785.91 | 25,708.64 | 3424.09 | 1759.32 | 13,773.02 | 13,933.61 | 20.55 |
2000 | 44,173.60 | 25,607.05 | 3382.84 | 1488.69 | 14,066.59 | 14,668.12 | 18.25 |
2005 | 43,120.08 | 25,440.51 | 3387.84 | 1402.09 | 14,374.38 | 15,663.21 | 17.03 |
2010 | 41,444.26 | 22,509.81 | 3127.08 | 935.33 | 15,823.37 | 20,052.03 | 227.95 |
2015 | 40,887.09 | 24,945.66 | 3336.05 | 1474.63 | 14,197.41 | 18,529.47 | 34.84 |
1995–2000 | −612.30 | −101.59 | −41.25 | −270.64 | 293.57 | 734.51 | −2.30 |
2000–2005 | −1053.53 | −166.54 | 5.00 | −86.60 | 307.79 | 995.09 | −1.22 |
2005–2010 | −1675.82 | −2930.70 | −260.76 | −466.77 | 1448.98 | 4388.82 | 210.91 |
2010–2015 | −557.17 | 2435.86 | 208.96 | 539.30 | −1625.95 | −1522.56 | −93.10 |
2015 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Cropland | Woodland | Grassland | Water Area | Built-up Land | Unused Land | Total | ||
1995 | Paddy Field | 40,792.93 | 16.63 | 12.70 | 13.15 | 591.58 | 3357.91 | 1.03 | 44,785.91 |
Dry Cropland | 8.15 | 24,651.84 | 5.11 | 5.89 | 101.37 | 934.46 | 1.82 | 25,708.63 | |
Woodland | 1.02 | 1.46 | 3316.15 | 1.24 | 4.58 | 98.98 | 0.65 | 3424.09 | |
Grassland | 3.20 | 186.44 | 0.00 | 1217.53 | 239.08 | 113.07 | 0.00 | 1759.32 | |
Water Area | 65.86 | 29.54 | 1.80 | 215.47 | 13,241.35 | 203.42 | 15.58 | 13,773.02 | |
Built-up Land | 14.60 | 59.75 | 0.22 | 21.34 | 16.57 | 13,821.07 | 0.07 | 13,933.61 | |
Unused Land | 1.33 | 0.00 | 0.08 | 0.00 | 2.88 | 0.57 | 15.71 | 20.55 | |
Total | 40,887.09 | 24,945.66 | 3336.05 | 1474.63 | 14,197.41 | 18,529.47 | 34.84 | 103,405.13 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | |
---|---|---|---|---|---|---|---|---|---|---|
Y1 | −0.903 ** | −0.895 ** | −0.942 ** | — | −0.949 ** | 0.938 ** | −0.955 ** | −0.941 ** | — | — |
Y2 | 0.984 ** | 0.986 ** | 0.917 ** | 0.954 ** | — | — | 0.967 ** | 0.927 ** | — | — |
Y3 | 0.957 ** | 0.974 ** | 0.873 ** | 0.884 ** | — | — | — | — | 0.917 ** | 0.934 ** |
Vegetation Type | Correlation Coefficients (R) | Area Percentages of Correlation Coefficients | ||||
---|---|---|---|---|---|---|
Precipitation | Temperature | Precipitation (+) | Precipitation (−) | Temperature (+) | Temperature (−) | |
Dry cropland | 0.071 | 0.18 | 57.91 | 42.09 | 79.67 | 20.33 |
Paddy field | −0.005 | 0.13 | 51.13 | 48.87 | 68.71 | 31.29 |
Forest | 0.2 | 0.16 | 77.56 | 22.44 | 77.60 | 22.40 |
Grass | 0.024 | 0.15 | 58.11 | 41.89 | 72.63 | 27.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuai, X.; Wen, J.; Zhuang, D.; Guo, X.; Yuan, Y.; Lu, Y.; Zhang, M.; Li, J. Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province. Sustainability 2019, 11, 2370. https://doi.org/10.3390/su11082370
Chuai X, Wen J, Zhuang D, Guo X, Yuan Y, Lu Y, Zhang M, Li J. Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province. Sustainability. 2019; 11(8):2370. https://doi.org/10.3390/su11082370
Chicago/Turabian StyleChuai, Xiaowei, Jiqun Wen, Dachang Zhuang, Xiaomin Guo, Ye Yuan, Yue Lu, Mei Zhang, and Jiasheng Li. 2019. "Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province" Sustainability 11, no. 8: 2370. https://doi.org/10.3390/su11082370
APA StyleChuai, X., Wen, J., Zhuang, D., Guo, X., Yuan, Y., Lu, Y., Zhang, M., & Li, J. (2019). Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province. Sustainability, 11(8), 2370. https://doi.org/10.3390/su11082370