Water Treatment Emergency: Cost Evaluation Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Treatment Plants
2.2. Cost Construction Evaluation
- Total cost of production is crucial to the promoter of the building intervention;
- Construction cost is the main figure of interest to the construction company.
- Technical-economic feasibility study;
- Final design;
- Executive design.
- Direct evaluation procedures (synthetical estimate);
- Indirect evaluation procedures (analytical estimate);
- Mixed evaluation procedures.
Construction Cost of Wastewater Treatment Plants
- Costs necessary for the construction of civil works;
- Costs necessary for the supply and installation of electromechanical equipment;
- Other expenditure such as VAT, design costs, contingency costs, etc.
- Staff;
- Electricity;
- Reactive agents;
- Ordinary and extraordinary maintenance.
- Plant configuration;
- Equipment.
2.3. Multiple Linear Regression
- = intercept;
- = unknown numerical constants, called regression coefficients (they indicate a variation of y when x increases by one unit);
- = values assumed by known variables;
- ε = forecasted error, with expected value 0 and variance ;
- y = unknown dependent variable.
- Linearity: The dependent variable y can be expressed as a linear combination of the independent variables x1, …, xk.
- Independence: Observations are selected independently and randomly from the population.
- Normality: Observations are normally distributed.
- Homogeneity of variances: Observations have the same variance [52].
3. Results
3.1. Estimation Method for Urban Wastewater Treatment Plants
- there are a vast number of design alternatives in terms of type, size and technology [21];
- the purification techniques offer numerous possibilities to achieve the same or similar results through different processes [6];
- local conditions, the location of the plant, the specific conditions of the land and urbanization works have a decisive influence on the construction cost even for plants having the same efficiency, population served, and flow rate treated;
- strong fluctuation in costs in the tenders analyzed was probably due both to the presence of few specialized companies that supply electromechanical equipment having a strong competitive position;
- price breakdown is lacking, which means that the differences among the plants are hard to detect.
3.2. Synthetic Estimation for Construction Cost of Civil Works of Wastewater Treatment Plants
- Excavations;
- Concrete;
- Formworks;
- Steel;
- Waterproofing;
- Landfill transport.
- The construction costs of the hydraulic and electrical connections, as they are a function of the complexity of the plant and are higher for large plants, should compose between 15% and 20% of the treatment unit costs.
- The costs for the arrangement of the plant area, which decrease when the dimension increases, should compose 35% of the treatment unit costs.
- The construction costs of the service structures, which increase when the dimension increases, should compose between 20% and 30% of the treatment unit costs.
3.3. Cost Evaluation for Electromechanical Equipment
- Sub-vertical bar screen (M_1);
- Arch-brush screen (M_2);
- Grit and grease removal mechanical travelling bridge scraper (M_3);
- Tangential sand trap (M_4);
- Travelling bridge mechanical scraper clarifier for sedimentation tank (M_5);
- Peripheral drive circular clarifier for sedimentation tank (M_6);
- Sludge thickener with central drive for thickener tank (M_7);
- Belt-filter press for mechanical dehydration (M_8);
- Gas fluid compressor (M_9).
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0271 (accessed on 24 February 2019).
- Report Controlli su Impianti di Depurazione 2018. Available online: https://www.arpa.sicilia.it/wp-content/uploads/2017/12/REPORT-CONTROLLI-SCARICHI-IDRICI-2018-dati-2017.pdf (accessed on 24 February 2019).
- Verso una Economia Circolare. Available online: https://ec.europa.eu/commission/priorities/jobs-growth-and-investment/towards-circular-economy_it (accessed on 4 March 2019).
- 9th Technical Assessment on UWWTD Implementation. 2017. Available online: http://ec.europa.eu/environment/water/water-urbanwaste/implementation/pdf/9th%20Technical%20assessment%20of%20information%20on%20the%20implementation%20of%20Council%20Directive%2091-271-EEC.pdf (accessed on 4 March 2019).
- Sipala, S.; Mancini, G.; Vagliasindi, F. Development of a web-based tool for the calculation of costs of different wastewater treatment and reuse scenarios. Water Supply 2003, 3, 89–96. [Google Scholar] [CrossRef]
- Hernandez-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Cost modelling for wastewater treatment processes. Desalination 2011, 268, 1–5. [Google Scholar] [CrossRef]
- Lim, S.R.; Park, D.; Park, J.M. Environmental and economic feasibility study of a total wastewater. J. Environ. Manag. 2008, 88, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Garcia, G.; Molinos-Senante, M.; Hospido, A.; Hernadey-Sancho, F.; Moreira, M.; Feijoo, G. Environmental and economic profile of six typologies. Water Res. 2011, 45, 5997–6010. [Google Scholar] [CrossRef] [PubMed]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Economic feasibility study for wastewater treatment: A cost–benefit analysis. Sci. Total Environ. 2010, 408, 4396–4402. [Google Scholar] [CrossRef]
- Godfrey, S.; Labhasetwar, P.; Wate, S. Greywater reuse in residential school in Madhya Pradesh, India—A case study of cost–benefit analysis. Resour. Conserv. Recycl. 2009, 53, 287–293. [Google Scholar] [CrossRef]
- Seguí, L.; Alfranca, O.; García, J. Techno-economical evaluation of water reuse for wetland restoration: A case study in a natural park on Catalonia, Northeastern Spain. Desalination 2009, 246, 179–189. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X. Cost–benefit evaluation of a decentralized water system for wastewater reuse and environmental protection. Water Sci. Technol. 2009, 59, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, J.C.; Boyle, K.J.; Poe, G.L. The Economic Value of Water Quality; Edward Elgar Publishers: Cheltenham, UK, 2001. [Google Scholar]
- Birol, E.; Karousakis, K.; Koundouri, P. Using economic valuation techniques to inform water resources management: A survey and critical appraisal of available techniques and an application. Sci. Total Environ. 2006, 365, 105–122. [Google Scholar] [CrossRef]
- Del Saz-Salazar, S.; Hernández-Sancho, F.; Sala-Garrido, R. The social benefits of restoring water quality in the context of the Water Framework Directive: A comparison of willingness to pay and willingness to accept. Sci. Total Environ. 2009, 407, 4574–4583. [Google Scholar] [CrossRef]
- De Martino, G.A. Costi e spese di esercizio degli impianti di depurazione. In Ingegneria Sanitaria; Istituto di Ingegneria Sanitaria del Politecnico di Milano: Milano, Italy, 1969; n.5; pp. 1–17. [Google Scholar]
- Forte, C. I costi di urbanizzazione; Giuffrè, A.: Milano, Italy, 1971. [Google Scholar]
- Iannelli, G. Il costo degli impianti di depurazione. Ing. Ambient. 1974, 3, 270–288. [Google Scholar]
- Beccari, M. Costo degli impianti di depurazione delle acque di scarico urbane. In Quaderni IRSA; CNR: Roma, Italy, 1981. [Google Scholar]
- D’Antonio, G.; Fabbricino, M.; Pirozzi, F. Model. Di Calc. Per La Valutazione Dell’elasticità Degli Impianti A Fanghi Attivi; Dipartimento di Ingegneria Idraulica Ambientale, Naples University: Napoli, Italy, 1998. [Google Scholar]
- Irolli, V. La qualità dei Progetti di Opere Ambientali. Metodologia per la Rilevazione dei Costi Standard degli Impianti di Depurazione; Adriano Gallina Editore: Naples, Italy, 2003. [Google Scholar]
- Onsite Wastewater Treatment System Manual. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/2004_07_07_septics_septic_2002_osdm_all.pdf (accessed on 10 March 2019).
- CIRIA. Selection Package Wastewater Treatment Works; CIRIA Project Report; CIRIA: London, UK, 2001. [Google Scholar]
- Upton, J.; Green, M.; Findlay, G. Sewage treatment for small communities: The seven Trent Approach. Water Environ. J. 1995, 9, 64–71. [Google Scholar] [CrossRef]
- Geenens, D.; Thoeye, C. Cost efficiency and performance of individual and small-scale treatment plants. Water Sci. Technol. 2000, 41, 21–28. [Google Scholar] [CrossRef]
- Pergetti, M.; Salsi, A. Analisi tecnico-economica sulle possibili soluzioni di gestione delle acque reflue urbane prodotte da piccolo agglomerate nella provincia di Reggio Emilia. Ing. Ambient. 2002, XXXI, 612–621. [Google Scholar]
- Fortune, M.; Lees, M. The Relative Performance of New and Traditional Cost Models in Strategic Advice for Clients; RICS Research Paper Series; RICS Research: London, UK, 1996; p. 2. [Google Scholar]
- Fortune, C.; Hinks, J. Strategic building project price forecasting models in use—Paradigm shift postponed. J. Financ. Manag. Prop. Constr. 1998, 3, 5–25. [Google Scholar]
- Lawther, P.M.; Edward, P.J. Design Cost Modelling—A Way Forward. Aust. J. Construct. Econ. Build. 2001, 1, 32–42. [Google Scholar] [CrossRef]
- Newton, S. An agenda for cost modelling research. Constr. Manag. Econ. 1991, 9, 97–112. [Google Scholar] [CrossRef]
- McCaffer, R. Some examples of the use of regression analysis as an estimating tool. Quant. Surv. 1975, 81–86. [Google Scholar]
- McCaffer, R.; McCaffer, M.; Thorpe, A. Predicting the tender price of buildings in the early design stage: Method and validation. J. Opl Res. Soc. 1984, 35, 415–424. [Google Scholar] [CrossRef]
- Trost, S.; Oberkender, G. Predicting Accuracy of Early Cost Estimates Using Factor Analysis and Multivariate Regression. J. Constr. Eng. Manag. 2003, 129, 198–204. [Google Scholar] [CrossRef]
- Skitmore, R.M.; Patchell, B.R.T. Developments in Contract Price Forecasting and Bidding Techniques; BPS Professional Books: Oxford, UK, 1990. [Google Scholar]
- Emsley, M.; Lowe, D.; Duff, A.; Harding, A.; Hickson, A. Development of neural networks to predict total construction costs. Constr. Manag. Econ. 2002, 20, 465–472. [Google Scholar] [CrossRef]
- Elhag, T.; Boussabaince, A. Tender price estimation using artificial neural networks II: Modelling. J. Financ. Manag. Prop. Constr. 2002, 7, 49–64. [Google Scholar]
- Papadopoulos, B.K.; Tsagarakis, K.P. Cost and Land Functions for Wastewater Treatment Projects: Typical Simple Linear Regression versus Fuzzy Linear Regression. J. Environ. Eng. 2007, 581, 133–136. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, J.P.; García-Ubaque, C.A.; Penagos-Londoño, J.C. Analysis of the investment costs in municipal wastewater treatment plants in Cundinamarca. DYNA 2015, 82, 230–238. [Google Scholar] [CrossRef]
- Pinheiro, A.; Cabral, M.; Antunes, S.; Broco, N.; Covas, D. Estimating capital costs of wastewater treatment plants at the strategical level. Urban Water J. 2018, 15, 732–740. [Google Scholar] [CrossRef]
- Masotti, L. Depurazione delle Acque. Tecniche ed Impianti per il Trattamento delle Acque di Rifiuto; Calderini: Milano, Italy, 2011. [Google Scholar]
- Bonomo, L. Trattamenti Delle Acque Reflue; McGraw-Hill: Milano, Italy, 2008. [Google Scholar]
- Metcalf & Eddy Inc.; Wastewater Engineering. Treatment and Reuse; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Campo, R.; Di Bella, G. Gli impianti di depurazione delle acque reflue: Tecnologie e prospettive. Ops Oss. Prezzi Sicil. 2017, 3, 11–31. [Google Scholar]
- Roscelli, R. La valutazione di Fattibilità; De Agostini: Novara, Italy, 2014. [Google Scholar]
- Utica, G.; Tomo, M. Metodi di Valutazione della Sostenibilità dei Progetti; Maggioli Editori: Milano, Italy, 2011. [Google Scholar]
- Fabbri, L. Estimo civile e urbano; Edizioni Medicea: Firenze, Italy, 1985. [Google Scholar]
- Realfonzo, A. Teorie e Metodi Dell’estimo Urbano; NIS: Roma, Italy, 1994; pp. 15–21. [Google Scholar]
- Mancini, G.; Roccaro, P.; e Vagliasindi, F. Riuso delle acque reflue e costi di affinamento. In Processi e Tecnologie Innovative per la Depurazione delle Acque Reflue; Edizioni CSISA: Washington, DC, USA, 2006; pp. 247–297. [Google Scholar]
- Lowe, D.; Emsley, M. Predicting Construction Cost Using Multiple Regression Techniques. J. Constr. Eng. Manag. 2006, 132, 750–758. [Google Scholar] [CrossRef]
- Seber, G.A.; Lee, A.J. Statistical Models. In Linear Regression Analysis; Wiley: Hoboken, NJ, USA, 2003; p. 557. [Google Scholar]
- Montgomery, C.D.; Peck, E.A.; Vining, G. Introduction to Linear Regression Analysis, 4th ed.; John Wiley & Son: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Multivariate Data Analysis, 6th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Campo, O.; Rocca, F. La parametrizzazione delle quantità fisiche nella definizione dei costi parametrici. Il Decreto 50/2016 sulla progettazione delle opere pubbliche. Valori E Valutazioni 2017, 3, 3–9. [Google Scholar]
- Metodo e Strumenti per la Determinazione dei Costi Standardizzati delle Opere Pubbliche in Rapporto al Tipo di Lavoro e alle Specifiche Aree Territoriali. Available online: https://www.anticorruzione.it/portal/rest/jcr/repository/collaboration/Digital%20Assets/Pdf/Cs110603.pdf (accessed on 10 March 2019).
- Acampa, G.; Sollami, S.L. Costi standard: Una metodologia di determinazione applicata agli impianti di depurazione. Ops Oss. Prezzi Sicil. 2017, 3, 56–61. [Google Scholar]
- Utica, G. La stima del costo di costruzione, 1st ed.; Maggioli Editori: Milano, Italy, 2011. [Google Scholar]
- De Feo, G.; De Gisi, S.; Galasso, M. Acque Reflue. Progettazione e Gestione di Impianti per il Trattamento e lo Smaltimento; Dario Flaccovio Editore: Palermo, Italy, 2012. [Google Scholar]
- Prezzario Regionale e Commissione Regionale LL. Available online: http://pti.regione.sicilia.it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssInfrastruttureMobilita/PIR_Infoedocumenti/PIR_ALTRICONTENUTI/Prezzario%202019%20corretto.pdf (accessed on 15 March 2019).
- Aiello, F. La regressione lineare multipla. Ops. Oss. Prezzi Sicil. 2017, 3, 72–75. [Google Scholar]
- Libralato, G.; Volpi Ghirardini, A.; Avezzù, F. To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management. J. Environ. Manag. 2012, 94, 61–68. [Google Scholar] [CrossRef]
- Massoud, M.A.; Tarhin, A.; Nasr, J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef]
- Opher, T.; Friedler, E. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. J. Environ. Manag. 2016, 182, 464–476. [Google Scholar] [CrossRef]
Pollutants | Processes |
---|---|
Coarse materials | Grid removal |
Oils and fats | Grit and oil removal |
Suspended solids | Sedimentation |
Volatile compounds | Stripping |
Biodegradable organic compounds (low concentration) | Aerobic biological treatment |
Biodegradable organic compounds (high concentration) | Anaerobic biological treatment |
No-biodegradable organic compounds | Adsorption on activated carbon Membrane water purification Ozonation Wet oxidation Incineration |
Biodegradable inorganic compounds | Precipitation Ion exchange Membrane processes |
Cyanides, chromium | Redox |
Nitrogen compounds | Biological nitrification and denitrification Stripping |
Phosphorus | Chemical precipitation Biological phosphate removal |
Bacteria, virus | Chlorination UV irradiation Disinfection Ozonation Lagooning |
Objective | Processes |
---|---|
Thickener | Gravity thickening |
Organic compounds stabilization | Anaerobic and aerobic digester Chemical sludge treatment Incineration |
Sanitation | Pasteurization Compost transformation |
Dehydration improvement | Chemical sludge treatment Thermal conditioning |
Dehydration | Centrifugation Filtration Drying |
Final disposal | Landfill Agricultural usage |
Grid removal | M_1 Sub-vertical bar screen M_2 Arch-brush screen |
Grit and oil removal | M_3 Grit and grease removal by mechanical travelling bridge scraper M_4 Tangential sand trap |
Aerobic biological treatment | M_9 Gas fluid compressor |
Final sedimentation | M_5 Travelling bridge mechanical scraper clarifier M_6 Peripheral drive circular clarifier |
Disinfection | |
Aerobic sludge digestion | M_9 Gas fluid compressor |
Thickener | M_7 Sludge thickener with central drive |
Dehydration sludge | M_8 Belt-filter press |
Level Design | Estimation Procedures | Findings |
---|---|---|
Technical-economic feasibility study | Synthetic procedure: Parametric cost | General preventive |
Final and executive design | Analytical procedure: Bill of quantities and prices analysis | Detail preventive |
pe | From 5000 to 10,000 | From 15,000 to 45,000 |
---|---|---|
L/ped | 280 | 300 |
TSS | 90 | g/ped |
TDS | 100 | g/ped |
BOD5 | 60 | g/ped |
N | 12 | g/ped |
P | 2 | g/ped |
Water Supply | 280 | 300 | L/ped |
TSS | 402 | 375 | mg/L |
TDS | 446 | 417 | mg/L |
BOD5 | 268 | 250 | mg/L |
N | 54 | 50 | mg/L |
P | 8 | 8 | mg/L |
pe | 5000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000 | 35,000 | 40,000 | 45,000 |
---|---|---|---|---|---|---|---|---|---|
Grid chamber | 0.54 | 0.39 | 0.33 | 0.27 | 0.24 | 0.23 | 0.19 | 0.19 | 0.20 |
Grit removal | 0.00 | 0.00 | 1.75 | 1.63 | 1.57 | 1.60 | 1.48 | 1.48 | 1.49 |
Aeration tank | 10.27 | 8.65 | 7.86 | 7.48 | 7.19 | 6.98 | 6.84 | 6.68 | 6.60 |
Sedimentation tank | 14.41 | 10.75 | 8.77 | 7.72 | 6.67 | 6.21 | 5.95 | 5.76 | 5.61 |
Disinfection tank | 4.80 | 3.73 | 2.53 | 2.19 | 1.99 | 1.86 | 1.76 | 1.69 | 1.64 |
Thickener tank | 1.12 | 0.82 | 0.75 | 0.74 | 0.75 | 0.62 | 0.66 | 0.70 | 0.62 |
Sludge digestion tank | 20.71 | 17.18 | 15.58 | 14.70 | 14.10 | 13.67 | 13.33 | 13.06 | 12.84 |
Parametric capital cost | 51.86 | 41.53 | 37.58 | 34.72 | 32.51 | 31.17 | 30.22 | 29.57 | 28.99 |
pe | 5000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000 | 35,000 | 40,000 | 45,000 |
---|---|---|---|---|---|---|---|---|---|
Total cost of civil work of treatment units | 51.86 | 41.53 | 37.58 | 34.72 | 32.51 | 31.17 | 30.22 | 29.57 | 28.99 |
Costs of hydraulic and electrical connections | 7.78 | 6.23 | 5.64 | 5.21 | 4.88 | 4.68 | 4.53 | 4.44 | 4.35 |
Costs of service structures | 14.00 | 13.00 | 15.12 | 13.98 | 13.09 | 12.55 | 12.16 | 11.90 | 11.67 |
Costs for arrangement of external area | 22.09 | 15.19 | 14.58 | 13.48 | 12.62 | 12.10 | 11.73 | 11.48 | 11.25 |
Total parametric capital cost | 95.73 | 75.95 | 72.92 | 67.39 | 63.09 | 60.49 | 58.64 | 57.38 | 56.26 |
pe | M_1 | M_3 | M_5 | M_6 | |||
Width (L.C.) (mm) | Discharged Height (A.S.) (mm) | Length (L) (mm) | Diameter (D) (mm) | Power (W) (kW) | Diameter (D) (mm) | Power (W)(kW) | |
5000 | 500 | 1100 | 13,000 | 0.55 | 13,000 | 0.55 | |
10,000 | 600 | 1300 | 18,000 | 0.55 | 18,000 | 0.55 | |
15,000 | 650 | 1450 | 8300 | 22,000 | 0.55 | 22,000 | 0.55 |
20,000 | 550 | 1450 | 10,100 | 25,000 | 0.55 | 25,000 | 0.55 |
25,000 | 1000 | 1400 | 11,600 | 27,000 | 0.55 | 27,000 | 0.55 |
30,000 | 1300 | 1350 | 12,800 | 30,000 | 0.55 | 30,000 | 0.55 |
35,000 | 1050 | 1550 | 13,400 | 32,000 | 0.55 | 32,000 | 0.55 |
40,000 | 1400 | 1400 | 13,900 | 34,000 | 0.55 | 34,000 | 0.55 |
45,000 | 1800 | 1400 | 14,300 | 36,000 | 0.55 | 36,000 | 0.55 |
pe | M_7 | M_8 | M_9 | ||||
Diameter (D) (mm) | Height (H) (mm) | Power (W)(kW) | Length (L) (mm) | Power (W) (kW) | Flow rate (Q) (m3/h) | Power (W) (kW) | |
5000 | 4000 | 3800 | 0.55 | 500 | 0.55 | 187 | 5.5 |
10,000 | 5000 | 4500 | 0.55 | 800 | 0.75 | 328 | 9.2 |
15,000 | 6000 | 4500 | 0.55 | 1200 | 1.1 | 490 | 9 |
20,000 | 7000 | 4400 | 0.55 | 1500 | 1.5 | 616 | 15 |
25,000 | 8000 | 4200 | 0.55 | 2500 | 3 | 773 | 18.5 |
30,000 | 8000 | 5000 | 0.55 | 2500 | 3 | 1007 | 22 |
35,000 | 9000 | 4500 | 0.55 | 2500 | 3 | 1152 | 30 |
40,000 | 10,000 | 4200 | 0.55 | 3000 | 3 | 1243 | 30 |
45,000 | 10,000 | 4600 | 0.55 | 3000 | 3 | 1360 | 30 |
Devices | Cost Functions | R2 |
---|---|---|
M_1 | € = 23,900 − 8.801 (L.C.) − 0.961 (A.S.) + 0.003 (L.C.)2 + 0.003 (L.C. × A.S.) − 4254 + 3.189 (L.C.) | 0.9607 |
M_2 | € = 5327.496 + 1.5059 (L.C.) + 2.5204 (D) − 2222.038 + 5.4934 (L.C.) − 3.2146 (D) | 0.974 |
M_3 | € = 134,600 − 21.22 (L) + 0.001 (L)2 − 100,200 + 19.57 (L) − 0.001 (L)2 | 0.9673 |
M_4 | € = 7720 + 2.126 (Q) − 0.0000728 (Q)2 + 233.8 − 0.112 (Q) | 0.991 |
M_5 | € = 9082 + 2.662 (L) + 26,920 (W) − 8.102 (W)2 − 9603 | 0.9806 |
M_6 | € = 9005 + 1.454 (D) + 9122(W) − 12570 | 0.993 |
M_7 | € = 35,480 + 0.5396 (D) − 8.216 (H) − 54,800 (W) + 0.0005 (D × H) + 14.29 (H × W) | 0.992 |
M_8 | € = 2835 + 10.24 (L) − 13,900 (W) + 6.852 (L × W) + 37,670 | 0.9997 |
M_9 | € = 5963 − 3.455 (Q) + 234.4 (W) + 0.033 (Q × W) | 0.952 |
Characteristics | M_1 | M_2 | M_3 | M_4 | M_5 | M_6 | M_7 | M_8 | M_9 |
---|---|---|---|---|---|---|---|---|---|
Width (L.C.) | x | x | |||||||
Length (L) | x | x | x | ||||||
Height (H) | x | ||||||||
Discharge height (A.S.) | x | ||||||||
Diameter (D) | x | x | x | ||||||
Flow rate (Q) | x | x | |||||||
Power (W) | x | x | x | x | x |
Coefficients | Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|---|
(Intercept) | β0 | 35,480.0 | 5987.0 | 5.926 | 0.0000 |
D | β1 | 0.5396 | 0.7898 | 0.683 | 0.5037 |
H | β2 | −8.216 | 1.4780 | −5.559 | 0.0000 |
W | β3 | −54,800.0 | 24,030.0 | −2.280 | 0.0358 |
D:H | β4 | 0.0005 | 0.000 | 2.945 | 0.0091 |
H:W | β5 | 14.290 | 5.557 | 2.572 | 0.0198 |
Multiple R2 | 0.992 | ||||
Adjusted R2 | 0.9897 |
5000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000 | 35,000 | 40,000 | 45,000 | |
---|---|---|---|---|---|---|---|---|---|
M_1 | 3.61 | 1.83 | 1.23 | 0.92 | 0.78 | 0.70 | 0.58 | 0.55 | 0.55 |
M_3 | 0.00 | 0.00 | 1.85 | 1.41 | 1.16 | 1.00 | 0.87 | 0.78 | 0.70 |
M_5 | 5.03 | 3.05 | 2.39 | 1.92 | 1.64 | 1.46 | 1.40 | 1.36 | 1.33 |
M_6 | 3.00 | 2.23 | 1.87 | 1.62 | 1.41 | 1.32 | 1.22 | 1.14 | 1.08 |
M_7 | 2.87 | 1.86 | 1.44 | 1.21 | 1.05 | 0.98 | 0.87 | 0.80 | 0.76 |
M_8 | 13.08 | 6.79 | 4.80 | 3.80 | 2.88 | 3.38 | 2.89 | 2.92 | 2.59 |
M_9 | 1.33 | 0.71 | 0.43 | 0.38 | 0.32 | 0.28 | 0.29 | 0.25 | 0.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acampa, G.; Giustra, M.G.; Parisi, C.M. Water Treatment Emergency: Cost Evaluation Tools. Sustainability 2019, 11, 2609. https://doi.org/10.3390/su11092609
Acampa G, Giustra MG, Parisi CM. Water Treatment Emergency: Cost Evaluation Tools. Sustainability. 2019; 11(9):2609. https://doi.org/10.3390/su11092609
Chicago/Turabian StyleAcampa, Giovanna, Maria Gabriella Giustra, and Claudia Mariaserena Parisi. 2019. "Water Treatment Emergency: Cost Evaluation Tools" Sustainability 11, no. 9: 2609. https://doi.org/10.3390/su11092609