Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Pre-Processing
2.3.2. Remote-Sensing Interpretation of Land Cover Data
2.3.3. Land Degradation Information and Processing
3. Results
3.1. Spatial Distribution Pattern of Different Land Cover Types
3.2. Spatial Distribution Pattern of Land Degradation
4. Discussion
4.1. Spatiotemporal Distribution Characteristics of Land Cover and Newly-Increased Land Degradation Along the Railway
4.2. Analysis of Driving Forces Behind Land Degradation in Regions Along the Railway
4.2.1. Natural Factors
4.2.2. Socioeconomic Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, X.J. An analysis of the international geo-economic role of the Siberian railway—A promising international transport corridor. J. Rus. Stud. 2007, 1, 34–37. [Google Scholar]
- The State Council of the People’s Republic of China. The 5th Anniversary of Chinese President Jinping Xi’s the ‘Belt and Road Initiative’: The Great Practice of Building a Community of Shared Future for Mankind. 2018. Available online: http://www.gov.cn/xinwen/2018-10/05/content_5327979.htm (accessed on 10 April 2019).
- National Development and Reform Commission. The Outline of the Plan for Building the Economic Corridor Between China, Mongolia and Russia. 2016. Available online: http://www.ndrc.gov.cn/zcfb/zcfbghwb/201609/t20160912_818326.html (accessed on 16 October 2018).
- The Belt and Road Portal. Mongolia: Steppe Road. 2016. Available online: https://www.yidaiyilu.gov.cn/zchj/gjjj/1066.htm (accessed on 10 April 2019).
- United Nations Convention to Combat Desertification. LDN Country Profile—Mongolia. 2018. Available online: https://knowledge.unccd.int/sites/default/files/ldn_targets/2019-02/Mongolia_3.pdf (accessed on 10 April 2019).
- Li, Y.W. Study on Risk Assessment of Desertification Disaster in Xilin Gol Grassland. Master’s Thesis, Inner Mongolia Agricultural University, Huhehaote, China, 2018. [Google Scholar]
- Buren, G.W. Research on Current Status, Causes and Prospect of Desertification in Mongolia. Master’s Thesis, Inner Mongolia University, Huhehaote, China, 2011. [Google Scholar]
- Bai, W.Y.; Jin, L. Comparative study on the ecological environment problems and their solutions between Mongolia and Inner Mongolia. J. Econ. Forum 2015, 5, 18–21. [Google Scholar]
- Liu, A.X.; Wang, C.Y.; Wang, J.; Shao, X.M. Method for remote sensing monitoring of desertification based on MODIS and NOAA/AVHRR data. J. Trans. CSAE 2007, 23, 145–150. [Google Scholar]
- Unurbaatar, B.; Caoligeer, Y.H. The Spatial and Temporal Changes of Desertification in the Mongolian Plateau from 2000–2010. In Proceedings of the Risk Analysis and Crisis Response in Information Technology—China Disaster Prevention Association Risk Analysis Professional Committee Annual Meeting, China Disaster Prevention Association Risk Analysis Professional Committee, Beijing, China, 1–2 March 2014. [Google Scholar]
- Zhuo, Y. The Ration Remote Sensing Method Study of Desertification of Mongolia Plateau Based on MODIS Data. Master’s Thesis, Inner Mongolia Normal University, Huhehaote, China, 2007. [Google Scholar]
- Pignatti, S.; Acito, N.; Amato, U.; Casa, R.; Castaldi, F.; Coluzzi, R.; De Bonis, R.; Diani, M.; Imbrenda, V.; Laneve, G.; et al. Environmental products overview of the Italian hyperspectral prisma mission: The SAP4PRISMA project. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milano, Italy, 26–31 July 2015; pp. 3997–4000. [Google Scholar]
- Mansour, K.; Mutanga, O.; Adam, E.; Abdel-Rahman, E.M. Multispectral remote sensing for mapping grassland degradation using the key indicators of grass species and edaphic factors. J. Geocarto Int. 2016, 31, 477–491. [Google Scholar] [CrossRef]
- Meusburger, K.; Bänninger, D.; Alewell, C. Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of Quick Bird imagery. J. Int. J. Appl. Earth Obs. Geoinform. 2010, 12, 201–207. [Google Scholar] [CrossRef]
- Dawelbait, M.; Morari, F. Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. J. Arid Environ. 2012, 80, 0–55. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhou, C.H.; Cheng, W.M.; Long, E.; Li, R. Monitoring sandy desertification of Otindag Sandy Land based on multi-date remote sensing images. J. Acta Ecol. Sin. 2008, 28, 627–635. [Google Scholar]
- Liu, Y.Z.; Alimujiang, K.; Abudumijiti, A. Remote sensing monitoring of dynamic change of desertification in typical areas along the Silk Road Economic Zone. J. Sci. Soil Water Conserv. 2017, 15, 1–8. [Google Scholar]
- Wang, H.B.; Ma, M.G.; Geng, L.Y. Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin. J. Nat. Hazards 2015, 79, 1753–1772. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, J.Y.; Lee, W.K.; Lee, E.J.; Kim, M.; Lim, C.H.; Choi, H.A.; Kim, S.R. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. J. Adv. Space Res. 2016, 57, 64–77. [Google Scholar] [CrossRef]
- Cristina, N.M.; Abigail, M.S.V. Assessing the progress of desertification of the southern edge of Chihuahuan Desert: A case study of San Luis Potosi Plateau. J. Geogr. Sci. 2017, 27, 438. [Google Scholar]
- Gao, L.S. Development of the Mongolian railway. J. Compr. Transp. 1996, 8, 38–40. [Google Scholar]
- Wei, Y.J.; Zhen, L.; Liu, X.L.; Ochirbat, B. Land use change and its driving factors in Mongolia from 1992 to 2005. J. Chin. J. Appl. Ecol. 2008, 19, 1995–2002. [Google Scholar]
- Guo, Y.G.; Yu, X.F.; Jiang, D.; Wang, S.K.; Jiang, X.S. Study on forest classification based on object oriented techniques. J. Geo Inform. Sci. 2012, 14, 514–522. [Google Scholar] [CrossRef]
- Mongolian Statistical Information Service. Available online: www.1212.mn (accessed on 25 October 2018).
- Ma, Y.Y.; Zhang, C.X.; Zhang, J.C.; Xie, G.D.; Zhang, L.M. Research on object-oriented classification Method assisted with NDVI/DEM in extracting cassava: Taking wuming county for example. J. Geogr. Geo Inform. Sci. 2015, 31, 49–53. [Google Scholar]
- Yue, X.X. Study on the Flora of Seed Plants in the Mongolian Plateau. Ph.D. Thesis, Inner Mongolia Agricultural University, Huhehaote, China, 2011. [Google Scholar]
- Cao, X.M.; Wang, J.L.; Feng, Y.M. An improvement of the Ts-NDVI space drought monitoring method and its applications in the Mongolian Plateau with MODIS, 2000–2012. J. Arab. J. Geosci. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Ren, C.S.; Ye, H.C.; Cui, B.; Huang, W.J. Acreage estimation of mango orchards using object-oriented classification and remote sensing. J. Resour. Sci. 2017, 39, 1584–1591. [Google Scholar]
- Wang, J.L.; Cao, X.M.; Wang, Z.M. Land Cover and Environmental Change in Mongolia; Meteorological Press: Beijing, China, 2018; p. 22. [Google Scholar]
- Wang, J.L.; Cheng, K.; Zhu, J.X.; Liu, Q. Development and pattern analysis of Mongolian land cover data products with 30 meters resolution. J. Geo Inform. Sci. 2018, 20, 1263–1273. [Google Scholar]
- Bo, C.G. NDWI-A Normalized difference water index for remote sensing of vegetation liquid water from space. J. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar]
- Tobu, N.C.; David, A.; Riziley. On the relation between NDVI, fractional vegetation cover, and leaf area index. J. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land use/land cover change analysis using object-based classification approach in munessa-shashemene landscape of the Ethiopian Highlands. J. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef]
- Ci, L.J. Understanding on the term of “Desertification”. J. Chin. Sci. Technol. Terms J. 2000, 2, 11–13. [Google Scholar]
- Zhang, H.; Shen, W.S.; Zhang, H.; Zhou, C.X.; Cao, X.Z. Impacts of construction of Qinghai-Tibet railway on landscape pattern. J. Ecol. Rural Environ. 2004, 20, 20–23. [Google Scholar]
- Ding, M.J.; Zhang, Y.L.; Shen, Z.X.; Liu, L.S.; Zhang, W.; Wang, Z.F.; Bai, W.Q.; Zheng, D. Land cover change along the Qinghai-Tibet Highway and Railway from 1981 to 2001. J. Geogr. Sci. 2006, 16, 387–395. [Google Scholar] [CrossRef]
- Tian, J.; Wang, J.L.; Li, Y.F.; Zhou, Y.J.; Guo, H.H.; Zhu, J.X. Land cover classification in Mongolian Plateau based on decision tree method: A case study in Tov Province, Mongolia. J. Geo Inform. Sci. 2014, 16, 460–469. [Google Scholar]
- Zhou, X.Y. Impact of Land Use Change and Climate Change on Vegetation in Mongolian Plateau. Master’s Thesis, Beijing Forestry University, Beijing, China, 2014. [Google Scholar]
- China Daily. A passenger train derailed in Mongolia. 2018. Available online: http://cnews.chinadaily.com.cn/2018-08/13/content_36753053.htm (accessed on 20 August 2018).
- Shi, Y.L. The study on grazing system of grassland animal husbandry in Mongolia. Master’s Thesis, Inner Mongolia University, Huhehaote, China, 2009. [Google Scholar]
- Li, J.; Hou, X.H. Risk prevention and control strategy analysis of Heilongjiang province’s response to the construction of “China-Mongolia-Russia” economic corridor. J. Cognit. Pr. 2016, 4, 107–113. [Google Scholar]
- Ao, R.Q.; Na, L. Mongolia’s ecological environment and its regional cooperation in northeast Asia. J. Financ. Econ. Theory 2010, 3, 34–37. [Google Scholar]
Land Cover Types | Rules and Reference Threshold |
---|---|
Forest | NDVI > 0.5; DEM > 1800 |
Meadow steppe | 0.4 ≤ NDVI < 0.5; Distance to water < 40; DEM ≤ 1800 |
Real steppe | 0.2 ≤ NDVI< 0.4 |
Desert steppe | 0.1 ≤ NDVI < 0.2 |
Barren | NDSI > 0.03 |
Desert | Visual interpretation |
Sand | Brightness ≥ 600 |
Cropland | Compactness ≤ 1.4 |
Built area | Visual interpretation |
Water | NDWI > 0.036 |
Years | Types of Accuracy | Forest | Meadow Steppe | Real Steppe | Desert Steppe | Barren | Sand | Cropland | Built Area | Water |
---|---|---|---|---|---|---|---|---|---|---|
1990 | UA (%) | 61.29 | 40.00 | 64.41 | 45.95 | 83.56 | 12.50 | 100 | 83.33 | 90.91 |
PA (%) | 82.61 | 33.33 | 56.72 | 41.46 | 79.22 | 100 | 100 | 100 | 95.23 | |
2010 | UA (%) | 66.67 | 100 | 80.00 | 62.16 | 91.78 | 12.50 | 100 | 85.71 | 95.45 |
PA (%) | 94.12 | 73.33 | 75.00 | 62.16 | 82.72 | 100 | 100 | 100 | 100 |
Time | Land Cover Types | 200 km (km2) | 100 km (km2) | 50 km (km2) | 30 km (km2) | 10 km (km2) | 5 km (km2) |
---|---|---|---|---|---|---|---|
1990 | Desert steppe | 45,855.20 | 13,531.30 | 8157.00 | 24,487.40 | 9265.70 | 717.00 |
Barren | 118,590 | 64,532.30 | 36,416.90 | 4352.27 | 1327.07 | 4699.20 | |
Sand | 1247.11 | 5455.29 | 3058.11 | 1793.78 | 686.88 | 361.08 | |
Desert | 150.07 | 23.84 | 3.93 | 0.13 | 0 | 0 | |
Total | 165,842.40 | 83,542.73 | 47,635.94 | 30,633.58 | 11,279.65 | 5777.28 | |
2010 | Desert steppe | 47,449.60 | 20,590.70 | 9353.56 | 4917.26 | 1463.50 | 722.09 |
Barren | 133,268 | 68,185.90 | 38,430.90 | 25,824.70 | 9909.92 | 5095.28 | |
Sand | 1899.03 | 1689.09 | 908.22 | 413.41 | 57.21 | 20.88 | |
Desert | 420.04 | 45.27 | 4.02 | 0 | 0 | 0 | |
Total | 183,036.7 | 90,510.96 | 48,696.70 | 31,155.37 | 11,430.63 | 5838.25 | |
2015 | Desert steppe | 72,276.10 | 34,531.02 | 18,465.64 | 11,148.44 | 3704.39 | 1933.07 |
Barren | 121,986.83 | 59,275.09 | 29,474.26 | 18,027.28 | 6899.97 | 3551.21 | |
Sand | 3072.35 | 2719.50 | 1936.20 | 1377.10 | 510.96 | 265.09 | |
Desert | 299.40 | 56.46 | 26.82 | 25.78 | 6.26 | 2.20 | |
Total | 197,634.68 | 96,582.07 | 49,902.92 | 30,578.60 | 11,121.58 | 5751.57 |
Time | Degradation | Area (km2) | % | Restoration | Area (km2) | % |
---|---|---|---|---|---|---|
1990–2010 | Non → desert steppe | 20,091.10 | 45.69 | Desert steppe → non | 11,010.90 | 47.53 |
Non → barren | 5304.79 | 12.06 | Barren → non | 1745.03 | 7.53 | |
Non → sand | 0.06 | 0.0001 | Barren → desert steppe | 10,232.80 | 44.17 | |
Non → desert | 18.62 | 0.04 | Sand → desert steppe | 105.51 | 0.46 | |
Desert steppe → barren | 17,771.30 | 40.42 | Sand → non | 4.29 | 0.02 | |
Desert steppe → desert | 49.28 | 0.11 | Desert → barren | 54.48 | 0.24 | |
Desert steppe → sand | 7.85 | 0.02 | Desert → desert steppe | 4.28 | 0.02 | |
Barren → sand | 474.25 | 1.08 | Desert → non | 7.27 | 0.03 | |
Barren → desert | 253.35 | 0.58 | ||||
Total | 43,970.60 | 1 | Total | 23,164.56 | 1 | |
1990–2015 | Non → desert steppe | 32,574.35 | 55.84 | Desert steppe → non | 11,330.70 | 33.26 |
Non → barren | 9541.76 | 16.36 | Barren → non | 3586.15 | 10.53 | |
Non → sand | 15.37 | 0.03 | Barren → desert steppe | 18,710.99 | 54.92 | |
Non → desert | 10.80 | 0.02 | Sand → desert steppe | 355.93 | 1.04 | |
Desert steppe → barren | 13,862.02 | 23.76 | Sand → non | 4.62 | 0.01 | |
Desert steppe → desert | 38.45 | 0.07 | Desert → barren | 12.62 | 0.04 | |
Desert steppe → sand | 66.12 | 0.11 | Desert → desert steppe | 16.12 | 0.05 | |
Barren → sand | 2105.81 | 3.61 | Desert → non | 52.25 | 0.15 | |
Barren → desert | 122.58 | 0.21 | ||||
Total | 58,337.26 | 1 | Total | 34,069.38 | 1 |
Degradation | Area (km2) | % | Restoration | Area (km2) | % |
---|---|---|---|---|---|
Non → desert steppe | 10,609.40 | 47.17 | Desert steppe → non | 7175.74 | 60.32 |
Non → barren | 2582.98 | 11.48 | Barren → non | 670.53 | 5.64 |
Non → sand | 0.03 | 0.00013 | Barren → desert steppe | 3990.89 | 33.55 |
Non → desert | 0.59 | 0.00262 | Sand → desert steppe | 52.52 | 0.44 |
Desert steppe → barren | 9175.01 | 40.79 | Sand → non | 0 | 0 |
Desert steppe → desert | 14.10 | 0.06 | Desert → barren | 0.09 | 0.00075 |
Desert steppe → sand | 1.23 | 0.00547 | Desert → desert steppe | 0.70 | 0.00588 |
Barren → sand | 108.38 | 0.48 | Desert → non | 6.04 | 0.0508 |
Barren → desert | 0.009 | 0.00004 | |||
Total | 22,491.73 | 1 | Total | 11896.51 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wei, H.; Cheng, K.; Li, G.; Ochir, A.; Bian, L.; Davaasuren, D.; Chonokhuu, S.; Nasanbat, E. Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia). Sustainability 2019, 11, 2705. https://doi.org/10.3390/su11092705
Wang J, Wei H, Cheng K, Li G, Ochir A, Bian L, Davaasuren D, Chonokhuu S, Nasanbat E. Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia). Sustainability. 2019; 11(9):2705. https://doi.org/10.3390/su11092705
Chicago/Turabian StyleWang, Juanle, Haishuo Wei, Kai Cheng, Ge Li, Altansukh Ochir, Lingling Bian, Davaadorj Davaasuren, Sonomdagva Chonokhuu, and Elbegjargal Nasanbat. 2019. "Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia)" Sustainability 11, no. 9: 2705. https://doi.org/10.3390/su11092705
APA StyleWang, J., Wei, H., Cheng, K., Li, G., Ochir, A., Bian, L., Davaasuren, D., Chonokhuu, S., & Nasanbat, E. (2019). Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia). Sustainability, 11(9), 2705. https://doi.org/10.3390/su11092705