LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale
Abstract
:1. Introduction
2. Methodology
2.1. Equipment
- Their quantity is very small with respect to the total system studied. “It is a considerable challenge the full recycling of LED devices The difficulty concerns the methods used to sort and reuse these materials, especially due to the small amounts used” [42]. However, “To compensate for the gap between the growing demands and restricted supply of these metals, many countries have given significant focus on obtaining them through the E-waste” [43].
- This material are not included in the list of material considered as dangerous by the UE Directives (RoHS [44] & WEEE [45]) and Regulations [46,47], as declared by the certificates of the LED models included in the luminaire and available in the web page of the manufacturer. Thus, they do not entail considerable environmental impacts.
2.2. Annual Energy Consumption
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lobão, J.A.; Devezas, T.; Catalão, J.P.S. Energy efficiency of lighting installations: Software application and experimental validation. Energy Rep. 2015, 1, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Ozadowicz, A.; Grela, J. The street lighting integrated system case study, control scenarios, energy efficiency. In Proceedings of the 19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014, Barcelona, Spain, 16–19 September 2014. [Google Scholar]
- Fiaschi, D.; Bandinelli, R.; Conti, S. A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables. Appl. Energy 2012, 97, 101–114. [Google Scholar] [CrossRef]
- Traverso, M.; Donatello, S.; Moons, H.; QuinteroR, R.; Gama Caldas, M.; Wolf, O. Revision of the EU green public procurement criteria for street lighting and traffic signals—Preliminary report. EJRR 2018, 9, 316–328. [Google Scholar]
- Djuretic, A.; Kostic, M. Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting. Energy 2018, 157, 367–378. [Google Scholar] [CrossRef]
- Miller, N.J.; Beeson, T.; Mcintosh, J.; Safranek, S. Top Efficacy Performers: An Investigation into High-Achieving Led Luminaires; Pacific Northwest National Laboratory: Richland, WA, USA, 2018.
- Shahzad, K.; Čuček, L.; Sagir, M.; Ali, N.; Rashid, M.I.; Nazir, R.; Nizami, A.S.; Al-Turaif, H.A.; Ismail, I.M.I. An ecological feasibility study for developing sustainable street lighting system. J. Clean. Prod. 2018, 175, 683–695. [Google Scholar] [CrossRef]
- Edwards, B. Rough Guide to Sustainability: A Design Primer, 4th ed.; RIBA Publishing: London, UK, 2014; ISBN 9781859465073. [Google Scholar]
- Hermoso-Orzáez, M.J.; Rojas-Sola, J.I.; Gago-Calderón, A. Electrical consequences of large-scale replacement of metal halide by LED luminaires. Light. Res. Technol. 2018, 50, 282–293. [Google Scholar] [CrossRef]
- Leccese, F.; Salvadori, G.; Rocca, M. Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy. Energy 2017, 138, 616–628. [Google Scholar] [CrossRef]
- Beccali, M.; Bonomolo, M.; Leccese, F.; Lista, D.; Salvadori, G. On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design. Energy 2018, 165, 739–759. [Google Scholar] [CrossRef]
- Hermoso-Orzáez, M.J.; Lozano-Miralles, J.A.; Lopez-Garcia, R.; Brito, P. Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case Study Applied with PROMETHEE Methodology. Sustainability 2019, 11, 5982. [Google Scholar] [CrossRef] [Green Version]
- Peña-García, A.; Hurtado, A.; Aguilar-Luzón, M.C. Impact of public lighting on pedestrians’ perception of safety and well-being. Saf. Sci. 2015, 78, 142–148. [Google Scholar] [CrossRef]
- Douglas, H.; Jurgens, C.; Zatcoff, E. Life Cycle Assessment of Streetlight Technologies; University of Pittsburgh, Mascaro Center for Sustainable Innovation: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Moon, D.; Sagisaka, M.; Tahara, K.; Tsukahara, K. Progress towards sustainable production: Environmental, economic, and social assessments of the cellulose nanofiber production process. Sustainability 2017, 9, 2368. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Zhou, S.; Yuan, Z.; Ou, X. Life cycle greenhouse gas analysis of multiple vehicle fuel pathways in China. Sustainability 2017, 9, 2183. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, H.; Freire, F. Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. Energy Build. 2012, 47, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Pargana, N.; Pinheiro, M.D.; Silvestre, J.D.; De Brito, J. Comparative environmental life cycle assessment of thermal insulation materials of buildings. Energy Build. 2014, 82, 466–481. [Google Scholar] [CrossRef]
- Tähkämö, L.; Räsänen, R.S.; Halonen, L. Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting. Int. J. Life Cycle Assess. 2016, 21, 137–145. [Google Scholar] [CrossRef]
- Bonamente, E.; Scrucca, F.; Rinaldi, S.; Merico, M.C.; Asdrubali, F.; Lamastra, L. Environmental impact of an Italian wine bottle: Carbon and water footprint assessment. Sci. Total Environ. 2016, 560–561, 274–283. [Google Scholar] [CrossRef]
- Fantozzi, F.; Gargari, C.; Rovai, M.; Salvadori, G. Energy upgrading of residential building stock: Use of life cycle cost analysis to assess interventions on social housing in Italy. Sustainability 2019, 11, 1452. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.L.; Tähkämö, L.; Dalhammar, C. Trade-offs with longer lifetimes? The case of LED lamps considering product development and energy contexts. J. Clean. Prod. 2019, 226, 195–209. [Google Scholar] [CrossRef]
- Butera, S.; Christensen, T.H.; Astrup, T.F. Life cycle assessment of construction and demolition waste management. Waste Manag. 2015, 44, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Miralles, J.A.; Hermoso-Orzáez, M.J.; Martínez-García, C.; Rojas-Sola, J.I. Comparative study on the environmental impact of traditional clay bricks mixed with organic waste using life cycle analysis. Sustainability 2018, 10, 2917. [Google Scholar] [CrossRef] [Green Version]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Kjeldsen, P.; Monni, S.; Faaij, A. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. 2008, 26, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Suh, S.; Weidema, B.P.; Pennington, D. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.A. Learn more about Life Cycle Assessment Life Cycle. Encycl. Ecol. 2008, 4, 2168–2174. [Google Scholar] [CrossRef]
- ISO 14040:2006. ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; BSI: London, UK, 2006. [Google Scholar]
- ISO. ISO/TR 14047:2012 Environmental Management—Life Cycle Assessment—Illustrative Examples on How to Apply ISO 14044 to Impact Assessment Situations; ISO: Geneve, Switzerland, 2012; p. 85. [Google Scholar]
- Navajas, A.; Uriarte, L.; Gandía, L.M. Application of eco-design and life cycle assessment standards for environmental impact reduction of an industrial product. Sustainability 2017, 9, 1724. [Google Scholar] [CrossRef] [Green Version]
- European Commission on Resource Efficient Opportunities in the Building Sector. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions COM(2014); EU: Brussels, Belgium, 2014; pp. 1–10. [Google Scholar]
- Steen, B.; Arvidsson, P.; Nobel Gunnar Borg, A.; Louis, S.; Thomas Rydberg, V.; Göran Swan, V.; Enso David Weiner, S. A Systematic Approach to Environmental Priority Strategies in Product Development (EPS). Version 2000—General System Characteristics; Chalmers Tekniska Högsk: Gothenburg, Sweden, 1999; p. 67. [Google Scholar]
- CML—Department of Industrial Ecology CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 5 September 2016).
- Solitec-Viasolp. Technical Catalog on Led Lighting. Outdoor Street Lights. Available online: http://www.solitecled.com (accessed on 10 January 2018).
- Azevedo, I.L.; Morgan, M.G.; Morgan, F. The Transition to Solid-State Lighting. Proc. IEEE 2009, 97, 481–510. [Google Scholar] [CrossRef]
- CIE Spanish Lighting Committee. Required Technical Requirements for Luminaires with Led Outdoor Lighting Technology; CIE: Madrid, Spain, 2015. [Google Scholar]
- CIE Spanish Lighting Committee Mixed Supply and Services Contract for the Provision of the Integral Outdoor Lighting Service of the Municipality of (AYTO) Specification sheet IDAE Contract Models. Available online: https://www.ceisp.com/el-cei/biblioteca/documentacion-eses/ (accessed on 5 December 2016).
- Zhang, H.; Burr, J.; Zhao, F. A comparative life cycle assessment (LCA) of lighting technologies for greenhouse crop production. J. Clean. Prod. 2017, 140, 705–713. [Google Scholar] [CrossRef]
- Minguez, R.; Zamora, S.; Barrenetxea, L.; Solaberrieta, E.; Etxaniz, O.; Muniozguren, J.; Izcaro, J.; Larrieta, J.; Lopez, J. Life Cycle Assessment in Switchgears for Primary Electrical Distribution. DYNA 2013, 88, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Jägerbrand, A.K. New framework of sustainable indicators for outdoor LED (light emitting diodes) lighting and SSL (solid state lighting). Sustainability 2015, 7, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
- Swain, B.; Mishra, C.; Kang, L.; Park, K.S.; Lee, C.G.; Hong, H.S. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching. Environ. Res. 2015, 138, 401–408. [Google Scholar] [CrossRef]
- Ari. Vidyadhar A Review of Technology of Metal Recovery from Electronic Waste. In Intech; Intechopen, Ed.; Ari: London, UK, 2019; Volume I, p. 13. [Google Scholar]
- Fang, S.; Yan, W.; Cao, H.; Song, Q.; Zhang, Y.; Sun, Z. Evaluation on end-of-life LEDs by understanding the criticality and recyclability for metals recycling. J. Clean. Prod. 2018, 182, 624–633. [Google Scholar] [CrossRef]
- Europe Union (EU). Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment; EU: Brussels, Belgium, 2011; Volume 174, p. 88. [Google Scholar]
- Europe Union (EU). Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste Electrical and Electronic Equipment (WEEE); EU: Brussels, Belgium, 2002; p. 15. [Google Scholar]
- The Association of Cities and Regions for Recycling (ACRR). The Management of Waste Electrical and Electronic Equipment; ACRR: Brussels, Belgium. Available online: http://www.rreuse.org/wp-content/uploads/00028-Brochure-ACRR-Part-I.pdf (accessed on 23 December 2019).
- Gramatyka, P.; Nowosielski, R.; Sakiewicz, P. Recycling of waste electrical and electronic equipment. J. Achiev. Mater. Manuf. Eng. 2007, 20, 535–538. [Google Scholar]
- Kumar, A.; Kuppusamy, V.K.; Holuszko, M.; Song, S.; Loschiavo, A. LED lamps waste in Canada: Generation and characterization. Resour. Conserv. Recycl. 2019, 146, 329–336. [Google Scholar] [CrossRef]
- Casamayor, J.L.; Su, D.; Ren, Z. Comparative life cycle assessment of LED lighting products. Light. Res. Technol. 2018, 50, 801–826. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.; Pilgrim, S. The new competition for land: Food, energy, and climate change. Food Policy 2011, 36, S40–S51. [Google Scholar] [CrossRef]
- Pieragostini, C.; Mussati, M.C.; Aguirre, P. On process optimization considering LCA methodology. J. Environ. Manag. 2012, 96, 43–54. [Google Scholar] [CrossRef]
- Mark, G.; Michiel, O.; Jorrit, L.; Tommie Ponsioen, E.M. Introduction to LCA with SimaPro, 7th ed.; PRé: Amersfoort, The Netherlands, 2010. [Google Scholar]
- Frischknecht, R. The Ecoinvent database: Overview and methological framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Jungbluth, N. Description of Life Cycle Impact Assessment Methods; Schaffhausen, Ed.; ESU-Services GmbH: Uster, Switzerland, 2019; p. 649. [Google Scholar]
- Ferrara, C.; De Feo, G. Life cycle assessment application to the wine sector: A critical review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Konstantzos, G.E.; Xevgenos, D.; Loizidou, M. Life cycle assessment of the SOL-BRINE evaporator unit. In Proceedings of the Win4Life International Conference, Tinos Island, Greece, 19–21 September 2013; National Technical University of Athens: Athens, Greece, 2013; pp. 1–2. [Google Scholar]
- Acero, A.P.; Rodríguez, C.; Ciroth, A. LCIA Methods Impact Assessment Methods in LIFE Cycle Assessment and Their Impact Categories; GreenDelta GmbH: Berlin, Germany, 2014; pp. 1–23. [Google Scholar]
- Ruiz-Amador, D.; Zúñiga-Lopez, I. Life Cycle and Carbon Footprint Analysis, 1st ed.; Código Uned: 0105004ct01a01; UNED: Madrid, Spain, 2012; ISBN 978-84-362-6563-7. [Google Scholar]
- Rode, I.; Moriarty, M.; Beattie, C.; McIntosh, J.; Hargroves, K. Technologies and Processes to Reduce Carbon Intensity of “Main Road Projects”, a research report and annotated bibliography for the Sustainable Built Environment National Research Centre (SBEnrc) by the Curtin University Sustainability Policy Institute. In A Sustainable Built Environment National Research Centre (SBEnrc) Research Report and Annotated Bibliography by Curtin University Sustainability Policy Institute; Sustainable Built Environment, National Research Centre: Perth, Australia, 2014. [Google Scholar]
- Laso, J.; García-Herrero, I.; Margallo, M.; Vázquez-Rowe, I.; Fullana, P.; Bala, A.; Gazulla, C.; Irabien, Á.; Aldaco, R. Finding an economic and environmental balance in value chains based on circular economy thinking: An eco-efficiency methodology applied to the fish canning industry. Resour. Conserv. Recycl. 2018, 133, 428–437. [Google Scholar] [CrossRef]
- Dong, L.; Wang, Y.; Li, H.X.; Jiang, B.; Al-Hussein, M. Carbon reduction measures-based LCA of prefabricated temporary housing with renewable energy systems. Sustainability 2018, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Royal Decree 1890/2008, of November 14, Which Approves the Regulation of Energy Efficiency in Outdoor Lighting Installations and Its Complementary Technical Instructions EA-01 to EA-07; Spanish Government: Madrid, Spain, 2008; p. 70.
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; López-González, L.M. Study of the technical feasibility of increasing the amount of recycled concrete waste used in ready-mix concrete production. Materials 2017, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.R.; Kang, D.; Ogunseitan, O.A.; Schoenung, J.M. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. Environ. Sci. Technol. 2013, 47, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- OSRAM. Opto Semiconductors Life Cycle Assessment of Illuminants: A Comparison of Light Bulbs, Compact Fluorescent Lamps and LED Lamps; OSRAM: Regensburg, Germany, 2009; pp. 1–26. [Google Scholar]
- Pons, J.J.; Penadés-Plà, V.; Yepes, V.; Martí, J.V. Life cycle assessment of earth-retaining walls: An environmental comparison. J. Clean. Prod. 2018, 192, 411–420. [Google Scholar] [CrossRef]
- Panizio, R.M.; Brito, P.; Calado, L.F.C.; Alves, O. Effect of the incorporation of biomass in the carbonization of waste electrical and electronic equipment. In Proceedings of the Bioenergy International Conference, Portalegre, Portugal, 11–13 September 2019; p. 23. [Google Scholar]
- Luz, F.C.; Rocha, M.H.; Lora, E.E.S.; Venturini, O.J.; Andrade, R.V.; Leme, M.M.V.; Del Olmo, O.A. Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Convers. Manag. 2015, 103, 321–337. [Google Scholar] [CrossRef]
- Prasertcharoensuk, P.; Hernandez, D.A.; Bull, S.J.; Phan, A.N. Optimisation of a throat downdraft gasifier for hydrogen production. Biomass Bioenergy 2018, 116, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Raharjo, A.; Hsu, L.H.; Shih, Y.J.; Huang, Y.H. Electrocoagulation of tetrafluoroborate (BF4−) and the derived boron and fluorine using aluminum electrodes. Water Res. 2019, 155, 362–371. [Google Scholar] [CrossRef]
Standard | Description | Edition |
---|---|---|
ISO 14040:2006 | Environmental management. Life cycle assessment. Principles and framework. | 2006 |
ISO 14044:2006 | Environmental management. Life cycle assessment. Requirements and guidelines. | 2006 |
ISO/TR 14047:2012 | Environmental management. Life cycle assessment. Illustrative examples on how to apply ISO 14044 to impact assessment situations. | 2012 |
Functional Characteristics | |
---|---|
Luminaire type | Outdoors/street lighting |
Height × length × width | 112 × 495 × 227 mm |
Heatsink material | EN AC-43100 (AISi10Mg(b)) cast aluminum |
Heatsink coating | Corrosive environments paint Zinc-free epoxy primer (Alesta) |
Optic screen | 110 × 165 × 6 mm tempered glass |
LED matrix PCB | 159 × 123 × 1.6 mm Aluminum PCB 70 μm Cu (COBRITHERM Aismalibar) |
LED model | High power LED XP-G3 (CREE) |
Integrated electronic controller | Microcontroller MSP430F2001 (TI) |
Security sensor system | Control temperature IC TM-125 (TI) |
Communication 0–10 V protocol | Lineal regulator: 78L12 (STM) AmpOp: LM358D (TI) |
Lenses | PMMA Strada C12362 (Ledil) |
Driver type | ELG-75-24B (Meanwell) |
Nominal Power (AC) | 50 W |
Lifetime expectation (Tamb 25 °C Tj 85 °C) | 80,000 h (L80B10—IES LM80 & TM21) |
Raw Materials | Kg |
---|---|
Housing/Power supply/LEDs | |
Aluminum, high density | 3.98 |
Steel | 0.85 |
Template glass | 0.27 |
Copper | 0.21 |
Paperboard | 0.10 |
Polystyrene | 0.08 |
Total | 5.49 |
Energy | MJ |
Medium voltage electricity mix | 4.400 |
Transport | tkm1 |
By plane | 3.462 |
By lorry (40 t) | 2.280 |
By van (<3,5 t) | 2.440 |
Waste | Kg |
Electronic aystem | 1.24 |
Impact Categories | Unit |
---|---|
Ecosystem production capacity | * PDF·m2·yr |
Human health | Person/yr |
Damage recourses | MJ/Kg |
Biodiversity depletion | * PDF·m2·yr |
Impact Categories | Unit |
---|---|
Global warming/climate change | Kg CO2 equiv. |
Ozone depletion | Kg CFC-11 equiv. |
Water acidification | Kg SO2 equiv. |
Creation of photochemical oxidant | Kg C2H4 equiv. |
Water eutrophication | Kg PO4 equiv. |
Damaged Categories | (kPt) Luminaire Housing | (kPt) Luminaire Driver | % of the Highest Environmental Impact |
---|---|---|---|
Human toxicity | 0.437 | 0.215 | Emissions to air CO2: 87.50% Polycyclic aromatic hydrocarbons (PAH): 23.56% |
Exhaustion of resources | 0.605 | 2.280 | Mining Petroleum: 77.20% Coal: 12.54% Natural gas: 11.88% |
Damaged Categories | (uPt) Luminaire Housing | (uPt) Luminaire Driver | % of the Highest Environmental Impact |
---|---|---|---|
Human health(global warming) | 6.78 × 10−10 | 1.80 × 10−10 | Emissions to Air CO2: 85.9% Polycyclic aromatic hydrocarbons (PAH): 25.6% |
Exhaustion of resources(abiotic depletion) | 1.60 × 10−9 | 64.47 × 10−10 | Mining Petroleum: 72.90% Coal: 15.20% Natural gas: 9.87% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Miralles, J.A.; Hermoso-Orzáez, M.J.; Gago-Calderón, A.; Brito, P. LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale. Sustainability 2020, 12, 190. https://doi.org/10.3390/su12010190
Lozano-Miralles JA, Hermoso-Orzáez MJ, Gago-Calderón A, Brito P. LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale. Sustainability. 2020; 12(1):190. https://doi.org/10.3390/su12010190
Chicago/Turabian StyleLozano-Miralles, José Adolfo, Manuel Jesús Hermoso-Orzáez, Alfonso Gago-Calderón, and Paulo Brito. 2020. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale" Sustainability 12, no. 1: 190. https://doi.org/10.3390/su12010190
APA StyleLozano-Miralles, J. A., Hermoso-Orzáez, M. J., Gago-Calderón, A., & Brito, P. (2020). LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale. Sustainability, 12(1), 190. https://doi.org/10.3390/su12010190