Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development
Abstract
:1. Introduction
2. Methods
2.1. Renewable Energy Potential on Converted Lands
2.2. Renewable Energy Credits and Deficits
2.3. Impacts of Renewable Energy Footprint
3. Results
4. Discussion
4.1. Blending Renewable Energy Planning with The Mitigation Hierarchy
4.2. Implementation Challenges and Opportunities
4.3. Analysis Caveats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palchak, D.; Cochran, J.; Ehlen, A.; McBennett, B.; Milligan, M.; Chernyakhovskiy, I.; Sreedharan, P.W. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid, Vol. I—National Study (2017); National Renewable Energy Lab. NREL: Golden, CO, USA, 2017. Available online: https://www.osti.gov/servlets/purl/1369138 (accessed on 20 October 2019). [CrossRef] [Green Version]
- Government of India. India’s Intended Nationally Determined Contribution, as Submitted to the United Nations Framework Convention on Climate Change. 2016. Available online: https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx (accessed on 28 December 2019).
- Khare, V.; Nema, S.; Baredar, P. Status of solar wind renewable energy in India. Renew. Sustain. Energy Rev. 2013, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- NITI Aayog. Report on India’s Renewable Electricity Roadmap 2030: Toward Accelerated Renewable Electricity Deployment; NITI Aayog: New Delhi, India, 2015. Available online: http://niti.gov.in/writereaddata/files/document_publication/RE_Roadmap_ExecutiveSummary.pdf (accessed on 4 April 2018).
- Patil, M. Modi Government’s Big Solar Push Could Run into Land Hurdle the Economic Times 2017. Available online: http://economictimes.indiatimes.com/industry/energy/power/modi-governments-big-solar-push-could-run-into-land-hurdle-readwhy/articleshow/57850475.cms (accessed on 8 January 2018).
- Rajaram, R. The Biggest Challenge is Acquiring Land for Wind Farms. Project Monitor 2012. Available online: http://www.projectsmonitor.com/interviews/thebiggest-challenge-is-acquiring-land-for-wind-farms/ (accessed on 8 January 2019).
- Siraj, M.A. Wind Power Faces Rough Weather [WWW Document]. The Hindu. 2015. Available online: http://www.thehindu.com/features/homes-and-gardens/wind-power-faces-roughweather/article7064997.ece (accessed on 8 January 2018).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Custom Data Acquired via Website; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Chakravorty, S. The Price of Land: Acquisition, Conflict and Consequence; Oxford University Press: New Delhi, India, 2015. [Google Scholar]
- Rights and Resources Initiative. Land Conflicts in India—An Interim Analysis, Technical Report (2016), Tata Institute of Social Sciences. Available online: https://rightsandresources.org/en/publication/land-conflicts-india-interim-analysis/#.XT6tYOtKjIU (accessed on 27 March 2019).
- India Ministry of Environment and Forests (2015). National Mission for a Green India (Under the National Action Plan on Climate Change). Available online: http://www.moef.gov.in/sites/default/files/GIM_Mission%20Document-1.pdf (accessed on 12 May 2018).
- Mahtta, R.; Joshi, P.K.; Jindal, A.K. Solar power potential mapping in India using remote sensing inputs and environmental parameters. Renew. Energy 2014, 71, 255–262. [Google Scholar] [CrossRef]
- Mentis, D.; Siyal, S.H.; Korkovelos, A.; Howells, M. A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions. Renew. Energy 2016, 97, 77–88. [Google Scholar] [CrossRef]
- CSTEP; WFMS; SSEF. Reassessment of India’s Onshore Wind Potential, Technical Report, Center for Study of Science, Technology, and Policy, WinDForce Management Services, and Shakti Sustainable Energy Foundation. 2016. Available online: http://www.indiaenvironmentportal.org.in/files/file/IndiaWindPotentialAssessment.pdf (accessed on 28 December 2019).
- India Ministry of New and Renewable Energy, Government of India. 2018. Available online: https://mnre.gov.in/physical-progress-achievements# (accessed on 4 November 2019).
- Deshmukh, R.; Wu, G.C.; Callaway, D.S.; Phadke, A. Geospatial and techno-economic analysis of wind and solar resources in India. Renew. Energy 2019, 134, 947–960. [Google Scholar] [CrossRef] [Green Version]
- National Remote Sensing Centre of India. Land Use/Land Cover Database on 1:50,000 Scale, Natural Resources Census Project, LUCMD, LRUMG, RS & GIS AA; National Remote Sensing Centre, ISRO: Hyderabad, India, 2012.
- UNEP-WCMC and IUCN. Protected Planet: India; The World Database on Protected Areas (WDPA)/The Global Database on Protected Areas Management Effectiveness (GD-PAME); UNEP-WCMC and IUCN: Cambridge, UK, 2018; Available online: www.protectedplanet.net (accessed on 27 March 2019).
- International Union for Conservation of Nature. World Database on Protected Areas (WDPA). 2017. Available online: https://www.iucn.org/theme/protected-areas/our-work/quality-and-effectiveness/world-database-protected-areas-wdpa (accessed on 27 March 2019).
- ESRI ArcGIS for Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2015.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 28 December 2019).
- Baruch-Mordo, S.; Kiesecker, J.; Kennedy, C.M.; Oakleaf, J.R.; Opperman, J.J. From Paris to practice: Sustainable implementation of renewable energy goals. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Haigh, M.; Pouwels, W.; Ramaekers, L.; Brandsma, R.; Schimschar, S.; Grözinger, J.; de Jager, D. Quantifying a realistic, worldwide wind and solar electricity supply. Glob. Environ. Chang. 2015, 31, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G.U.S. Renewable Energy Technical Potentials: A GIS Based Analysis; Report no. NREL/TP-6A20–51946; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Köberle, A.C.; Gernaat, D.E.H.J.; van Vuuren, D.P. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy 2015, 89, 739–756. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.R.; Hoffacker, M.K.; Murphy-Mariscal, M.L.; Wu, G.C.; Allen, M.F. Solar energy development impacts on land cover change and protected areas. Proc. Natl. Acad. Sci. USA 2015, 112, 13579–13584. [Google Scholar] [CrossRef] [Green Version]
- Hermann, S.; Miketa, A.; Fichaux, N. Estimating the Renewable Energy Potential in Africa GIS-Based Approach; IRENA Working Paper; International Renewable Energy Agency: Abu Dhabi, UAE, 2014. [Google Scholar]
- He, G.; Kammen, D.M. Where, when and how much solar is available? A provincial-scale solar resource assessment for China Renew. Energy 2016, 85, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Deshmukh, R.; Ndhlukula, K.; Radojicic, T.; Reilly-Moman, J.; Phadke, A.; Callaway, D.S. Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proc. Natl. Acad. Sci. USA 2017, 114, E3004–E3012. [Google Scholar] [CrossRef] [Green Version]
- Oakleaf, J.R.; Kennedy, C.M.; Baruch-Mordo, S.; Gerber, J.S.; West, P.C.; Johnson, J.A.; Kiesecker, J. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci. Data 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- IRENA (International Renewable Energy Agency). Data Quality for the Global Renewable Energy Atlas—Solar and Wind. 2013. Available online: https://www.irena.org/publications/ (accessed on 28 December 2019).
- IRENA (International Renewable Energy Agency). Global Atlas for Renewable Energy, Overview of Solar and Wind Maps. 2014. Available online: https://www.irena.org/publications/ (accessed on 28 December 2019).
- Li, X.; Hubacek, K.; Siu, Y.L. Wind power in China—Dream or reality? Energy 2012, 37, 51–60. [Google Scholar] [CrossRef]
- Goel, M. Solar rooftop in India: Policies, challenges and outlook. Green Energy Environ. 2016, 1, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Hussain, Z. Renewable Energy Governance in India: Challenges and Prospects for Achieving the 2022 Energy Goals. J. Resour. Energy Dev. 2018, 14, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Kaladharan, M. Renewable Energy in India: An Analysis of the Regulatory Environment and Evolving Policy Trends. Centre for Policy Research. 2016. Available online: https://cprindia.org/ (accessed on 17 November 2019).
- KAPSARC (King Abdullah Petroleum Studies and Research Center). Renewable Energy Policy in India: Creation, Implementation and Efficacy. 2016. Available online: https://www.kapsarc.org/wp-content/uploads/2016/08/KS-1632-WB031A-Renewable-Energy-Policy-in-India_Creation-Implementation-and-Efficacy.pdf (accessed on 27 September 2019).
- IEEFA (Institute for Energy Economics and Financial Analysis). India Electricity Sector Transformation: Global Capacity Building. 2015. Available online: http://ieefa.org/wp-content/uploads/2015/11/IEEFA-India-Electricity-Sector-Transformation_Global-Capacity-Building_11112015.pdf (accessed on 20 September 2019).
- Mohan, A. Whose land is it anyway? Energy futures & land use in India. Energy Policy 2017, 110, 257–262. [Google Scholar]
- McDonald, R.I.; Fargione, J.; Kiesecker, J.; Miller, W.M.; Powell, J. Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America. PLoS ONE 2009, 4, e6802. [Google Scholar] [CrossRef] [Green Version]
- Kiesecker, J.M.; Naugle, D.E. (Eds.) Energy Sprawl Solutions: Balancing Global Development and Conservation; Island Press: Washington, DC, USA, 2017. [Google Scholar]
- Government of India, Loksabha Unstarred Question 1026. 2018. Available online: http://164.100.47.190/loksabhaquestions/annex/14/AU1026.pdf (accessed on 4 October 2019).
- Egreenwatch, e-Green Watch—FCA Projects, Diverted Land, Compensatory Land Management 2018. Available online: http://egreenwatch.nic.in/FCAProjects/Public/Rpt_State_Wise_Count_FCA_projects.aspx (accessed on 4 October 2019).
- Kennedy, C.M.; Hawthorne, P.L.; Miteva, D.A.; Baumgarten, L.; Sochi, L.; Matsumoto, M.; Kiesecker, J. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity, and ecosystem services. Biol. Conserv. 2016, 204, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Kiesecker, J.M.; Copeland, H.; Pocewicz, A.; McKenney, B. Development by design: Blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 2010, 8, 261–266. [Google Scholar] [CrossRef]
- Vanak, A.; Hiremath, A.; Rai, N. Wastelands of the Mind: The Identity Crisis of India’s Tropical Savannas; Current Conservation, Issue 7.3. Delhi, India, 2013. Available online: https://www.currentconservation.org/wastelands-of-the-mind-the-identity-crisis-of-indias-tropical-savannas/ (accessed on 28 December 2019).
- Rawat, G.S.; Adhikari, B.S. (Eds.) Ecology and Management of Grassland Habitats in India; Wildlife Institute of India: Dehradun, India, 2015.
- Borah, J.; Jena, J.; Yumnam, B.; Puia, L. Carnivores in corridors: Estimating tiger occupancy in Kanha—Pench corridor, Madhya Pradesh, India. Reg. Environ. Chang. 2016, 16, 43–52. [Google Scholar] [CrossRef]
- Vanak, A.; Kulkarni, A.; Gode, A.; Sheth, C.; Krishnaswamy, J. Extent and Status of Semi-Arid Savanna Grasslands in Peninsular India. In Grassland Vegetation of India: An Update; Rawat, G.S., Adhikari, B.S., Eds.; ENVIS Bulletin: Wildlife & Protected Areas; Wildlife Institute of India: Dehradun, India, 2015; pp. 192–201. Available online: http://wiienvis.nic.in/WriteReadData/Publication/19_Grassland%20Habitat_2016.pdf (accessed on 4 October 2019).
- Cameron, D.R.; Crane, L.; Parker, S.S.; Randall, J.M. Solar Energy Development and Regional Conservation Planning. In Energy Sprawl Solutions; Kiesecker, J.M., Naugle, D., Eds.; Island Press: Washington, DC, USA, 2017; pp. 66–75. [Google Scholar]
- The Nature Conservancy of India. Renewable Energy by Design Siting Tool. Available online: www.tncindia.in/siteright (accessed on 28 December 2019).
- Tripathi, A.; Prasad, A.R. Agricultural Development in India since Independence: A Study on Progress, Performance, and Determinants. J. Emerg. Knowl. Emerg. Mark. 2009, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- India Ministry of Finance. India Economic Survey 2017–18; Ministry of Finance, Government of India: New Delhi, India, 2018.
- Jha, C.S.; Dutt, C.B.S.; Bawa, K.S. Deforestation and Land Use Changes in Western Ghats, India. Curr. Sci. 2000, 79, 231–238. [Google Scholar]
- Reddy, C.S.; Jha, C.S.; Dadhwal, V.K.; Hari Krishna, P.; Pasha, S.V.; Satish, S.K.; Diwakar, P.G. Quantification and Monitoring of Deforestation in India over Eight Decades (1930–2013). Biodivers. Conserv. 2016, 25, 93–116. [Google Scholar] [CrossRef]
- Yadav, P.K. Slash-and-Burn Agriculture in North-East India. J. Expert Opin. Environ. Biol. 2013, 2, 2–5. [Google Scholar] [CrossRef]
- AWEA (American Wind Energy Association) Wind Energy and Wildlife. 2009. Available online: http://www.awea.org/documents/factsheets/Wind_Energy_and_Wildlife_Mar09.pdf (accessed on 4 October 2019).
- Burt, M.; Firestone, J.; Madsen, J.A.; Veron, D.E.; Bowers, R. Tall towers, long blades and manifest destiny: The migration of land-based wind from the Great Plains to the thirteen colonies. Appl. Energy 2017, 206, 487–497. [Google Scholar] [CrossRef]
- Arnett, E.B.; Huso, M.M.P.; Schirmacher, M.M.; Hayes, J.P. Altering turbine speed reduces bat mortality at wind-energy facilities. Front. Ecol. Environ. 2011, 9, 209–214. [Google Scholar] [CrossRef] [Green Version]
Name | 2022 Vision Targets (GW) | 2017 Installed Capacity (GW) | Name | 2022 Vision Targets (GW) | 2017 Installed Capacity (GW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar Rooftop | Solar Ground-Mounted | Wind | Solar Rooftop | Solar Ground-Mounted | Wind | Solar Rooftop | Solar Ground-Mounted | Wind | Solar Rooftop | Solar Ground-Mounted | Wind | ||
Andaman & Nicobar | 0.020 | 0.007 | 0.001 | 0.011 | Lakshadweep | 0.010 | 0.001 | ||||||
Andhra Pradesh | 2.000 | 7.834 | 8.100 | 0.022 | 2.143 | 3.835 | Madhya Pradesh | 2.200 | 3.475 | 6.200 | 0.017 | 1.193 | 2.498 |
Arunachal Pradesh | 0.050 | 0.004 | <0.001 | Maharashtra | 4.700 | 7.226 | 7.600 | 0.152 | 0.620 | 4.778 | |||
Assam | 0.250 | 0.413 | 0.002 | 0.010 | Manipur | 0.050 | 0.055 | 0.001 | |||||
Bihar | 1.000 | 1.493 | 0.004 | 0.138 | Meghalaya | 0.050 | 0.111 | <0.001 | |||||
Chandigarh | 0.100 | 0.053 | 0.014 | 0.005 | Mizoram | 0.050 | 0.022 | <0.001 | |||||
Chhattisgarh | 0.700 | 1.083 | 0.013 | 0.166 | Nagaland | 0.050 | 0.011 | 0.001 | |||||
Dadar & Nagar Haveli | 0.200 | 0.249 | 0.003 | Odisha | 1.000 | 1.377 | 0.003 | 0.076 | |||||
Daman & Diu | 0.100 | 0.099 | <0.001 | 0.010 | Puducherry | 0.100 | 0.146 | <0.001 | <0.001 | ||||
Delhi | 1.100 | 1.662 | 0.067 | 0.003 | Punjab | 2.000 | 2.772 | 0.078 | 0.836 | ||||
Goa | 0.150 | 0.208 | 0.001 | Rajasthan | 2.300 | 3.462 | 8.600 | 0.053 | 2.259 | 4.282 | |||
Gujarat | 3.200 | 4.820 | 8.800 | 0.092 | 1.262 | 5.537 | Sikkim | 0.050 | <0.001 | ||||
Haryana | 1.600 | 2.542 | 0.086 | 0.130 | Tamil Nadu | 3.500 | 5.384 | 11.900 | 0.110 | 1.712 | 7.970 | ||
Himachal Pradesh | 0.320 | 0.456 | 0.001 | Telangana | 2.000 | 2.000 | 0.027 | 2.963 | 0.101 | ||||
Jammu & Kashmir | 0.450 | 0.705 | 0.001 | 0.001 | Tripura | 0.050 | 0.055 | <0.001 | 0.005 | ||||
Jharkhand | 0.800 | 1.195 | 0.007 | 0.017 | Uttar Pradesh | 4.300 | 6.397 | 0.056 | 0.495 | ||||
Karnataka | 2.300 | 3.397 | 6.200 | 0.085 | 1.717 | 3.793 | Uttarakhand | 0.350 | 0.550 | 0.018 | 0.231 | ||
Kerala | 0.800 | 1.070 | 0.038 | 0.050 | 0.052 | West Bengal | 2.100 | 3.236 | 0.023 | 0.017 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiesecker, J.; Baruch-Mordo, S.; Heiner, M.; Negandhi, D.; Oakleaf, J.; Kennedy, C.; Chauhan, P. Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development. Sustainability 2020, 12, 281. https://doi.org/10.3390/su12010281
Kiesecker J, Baruch-Mordo S, Heiner M, Negandhi D, Oakleaf J, Kennedy C, Chauhan P. Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development. Sustainability. 2020; 12(1):281. https://doi.org/10.3390/su12010281
Chicago/Turabian StyleKiesecker, Joseph, Sharon Baruch-Mordo, Mike Heiner, Dhaval Negandhi, James Oakleaf, Christina Kennedy, and Pareexit Chauhan. 2020. "Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development" Sustainability 12, no. 1: 281. https://doi.org/10.3390/su12010281
APA StyleKiesecker, J., Baruch-Mordo, S., Heiner, M., Negandhi, D., Oakleaf, J., Kennedy, C., & Chauhan, P. (2020). Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development. Sustainability, 12(1), 281. https://doi.org/10.3390/su12010281