Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. Analytical Methodology
- c: constant
- : the natural logarithm of the variables;
- : estimated cross-section fixed effect coefficients;
- : estimated period fixed effect;
- and : estimated regression model coefficients;
- : mean fuel productivity on route to in year (tonne∙km/L);
- : mean aircraft size on route i to in year (kg);
- : mean idle capacity on route to in year (ratio);
- : regression error.
- is the instrumental variable, as given in Equation (2):
- : mean weekly frequency on route to in year ;
- : regression error;
- c, a, and b: estimated regression model coefficients.
2.2. Data
- : total revenue tonne-kilometers on route to in year ;
- : total fuel burn on route to in year (liter).
- : total revenue tonne-kilometers on route to in year ;
- : total available tonne-kilometers (supplied) on route to in year .
- The aircraft size variable is represented using the mean payload supplied on the route in a certain year. The variable (in kg) it is expressed using Equation (5):
- : total payload supplied on route to in year (kg);
- : total take-offs on route to in year .
- : average weekly frequency on route to in year .
3. Results
3.1. Case Study
3.2. Panel Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernandes, E.; Pacheco, R.R. Transporte Aéreo no Brasil: Uma Visão de Mercado; Elsevier: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Doganis, R. Flying Off Course: Airline Economics and Marketing; Routledge: London, UK, 2009. [Google Scholar] [CrossRef]
- Schnell, M.C. Why Do Firms Keep Excess Capacity? Testing Hypotheses in the Airline Industry. Int. J. Transp. Econ. Riv. 2005, 32, 305–321. [Google Scholar]
- Givoni, M.; Rietveld, P. Choice of Aircraft Size—Explanations and Implications. In Tinbergen Institute Discussion Paper TI 2006-113/3; Tinbergen Institute: Amsterdam, The Netherlands, 2006; pp. 1–18. [Google Scholar]
- Daley, B. Air Transport and the Environment; Routledge: New York, NY, USA, 2016. [Google Scholar]
- ACI Releases its Global Traffic Forecast 2012–2031: Global Passenger Traffic Will Top 12 Billion by 2031. Available online: Aci.aero/news/2012/10/25/aci-releases-its-global-traffic-forecast-2012-2031-global-passenger-traffic-will-top-12-billion-by-2031/ (accessed on 25 November 2019).
- Dessens, O.; Köhler, M.O.; Rogers, H.L.; Jones, R.L.; Pyle, J.A. Aviation and Climate Change. Transp. Policy 2014, 34, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Simões, A.F.; Schaeffer, R. The Brazilian Air Transportation Sector in the Context of Global Climate Change: CO2 Emissions and Mitigation Alternatives. Energy Convers. Manag. 2005, 46, 501–513. [Google Scholar] [CrossRef]
- Chèze, B.; Gastineau, P.; Chevallier, J. Forecasting World and Regional Aviation Jet Fuel Demands to the Mid-Term (2025). Energy Policy 2011, 39, 5147–5158. [Google Scholar] [CrossRef] [Green Version]
- O’Kelly, M.E. Fuel Burn and Environmental Implications of Airline Hub Networks. Transp. Res. Part D Transp. Environ. 2012, 17, 555–567. [Google Scholar] [CrossRef]
- Chang, Y.T.; Park, H.; Jeong, J.; Lee, J. Evaluating Economic and Environmental Efficiency of Global Airlines: A SBM-DEA Approach. Res. Part D Transp. Environ. 2014, 27, 46–50. [Google Scholar] [CrossRef]
- Park, Y.; O’Kelly, M.E. Fuel Burn Rates of Commercial Passenger Aircraft: Variations by Seat Configuration and Stage Distance. J. Transp. Geogr. 2014, 41, 137–147. [Google Scholar] [CrossRef]
- Zou, B.; Elke, M.; Hansen, M.; Kafle, N. Evaluating Air Carrier Fuel Efficiency in the US Airline Industry. Transp. Res. Part A Policy Pract. 2014, 59, 306–330. [Google Scholar] [CrossRef]
- González, R.; Hosoda, E.B. Environmental Impact of Aircraft Emissions and Aviation Fuel Tax in Japan. J. Air Transp. Manag. 2016, 57, 234–240. [Google Scholar] [CrossRef]
- Cui, Q.; Wei, Y.M.; Li, Y. Exploring the Impacts of the EU ETS Emission Limits on Airline Performance via the Dynamic Environmental DEA Approach. Appl. Energy 2016, 183, 984–994. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. Airline Efficiency Measures Using a Dynamic Epsilon-Based Measure Model. Transp. Res. Part A Policy Pract. 2017, 100, 121–134. [Google Scholar] [CrossRef]
- Zou, G.; Chau, K.W. Long-and Short-Run Effects of Fuel Prices on Freight Transportation Volumes in Shanghai. Sustainability 2019, 11, 5017. [Google Scholar] [CrossRef] [Green Version]
- Twisk, J.W. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Frees, E.W. Longitudinal and Panel Data: Analysis and Applications in the Social Sciences; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Hsiao, C. Analysis of Panel Data; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Eviews 11. Eviews 11 User’s Guide II-Instrumental Variables; Eviews 11, Ed.; IHS Global Inc.: London, UK, 2019; pp. 1038–1040. [Google Scholar]
- Doganis, R. The Airport Business, 1st ed.; Routledge: London, UK, 1992. [Google Scholar]
- de Neufville, R. Airport Systems Planning; MIT Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Li, T.; Wang, Y.; Zhao, D. Environmental Kuznets Curve in China: New Evidence from Dynamic Panel Analysis. Energy Policy 2016, 91, 138–147. [Google Scholar] [CrossRef]
- Azam, M. Does Environmental Degradation Shackle Economic Growth? A Panel Data Investigation on 11 Asian Countries. Renew. Sustain. Energy Rev. 2016, 65, 175–182. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the Relationship between Urban Development Intensity and Carbon Dioxide Emissions Using a Panel Data Analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO2 Emissions, Economic Growth, Energy Consumption, Trade and Urbanization in New EU Member and Candidate Countries: A Panel Data Analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Park, Y.; O’Kelly, M.E. Examination of Cost-Efficient Aircraft Fleets Using Empirical Operation Data in US Aviation Markets. J. Air Transp. Manag. 2018, 69, 224–234. [Google Scholar] [CrossRef]
- Brueckner, J.K.; Abreu, C. Airline Fuel Usage and Carbon Emissions: Determining Factors. J. Air Transp. Manag. 2017, 62, 10–17. [Google Scholar] [CrossRef] [Green Version]
ANO | TAM | GOL | AZUL | AVIANCA | TOTAL |
---|---|---|---|---|---|
2000 | 14% | 0% | 14% | ||
2001 | 30% | 5% | 35% | ||
2002 | 34% | 11% | 45% | ||
2003 | 32% | 19% | 0% | 51% | |
2004 | 35% | 21% | 0% | 56% | |
2005 | 42% | 26% | 0% | 68% | |
2006 | 48% | 34% | 1% | 84% | |
2007 | 48% | 40% | 2% | 90% | |
2008 | 50% | 37% | 0% | 3% | 90% |
2009 | 45% | 41% | 4% | 3% | 92% |
2010 | 43% | 40% | 6% | 3% | 91% |
2011 | 40% | 37% | 9% | 3% | 89% |
2012 | 40% | 34% | 10% | 5% | 90% |
2013 | 40% | 35% | 13% | 7% | 95% |
2014 | 38% | 36% | 17% | 8% | 99% |
2015 | 37% | 36% | 17% | 9% | 99% |
2016 | 35% | 36% | 17% | 11% | 99% |
Seats | 2000 | 2007 | 2016 |
---|---|---|---|
Up to 50 | 141 | 122 | 6 |
51–100 | - | 36 | 52 |
101–150 | 212 | 182 | 139 |
151–200 | 13 | 226 | 211 |
201–250 | 13 | 50 | 48 |
251–300 | 13 | 14 | 5 |
Over 300 | - | - | 16 |
Total | 405 | 630 | 498 |
Variables | () | () | () | () |
---|---|---|---|---|
Upper | 2.82 | −0.22 | 10.47 | 6.57 |
Lower | −4.13 | −4.30 | 7.59 | 0.00 |
Mean | 0.50 | −0.90 | 9.30 | 2.47 |
Standard deviation | 0.43 | 0.31 | 0.51 | 1.22 |
Observations | 5839 | |||
Correlation Matrix | ||||
() | 1 | |||
() | −0.70 | 1 | ||
() | 0.52 | −0.31 | 1 | |
() | 0.22 | −0.23 | 0.53 | 1 |
Variables | ||||
---|---|---|---|---|
Upper | 16.80 | 0.80 | 35,100 | 714 |
Lower | 0.02 | 0.01 | 1980 | 1 |
Mean | 1.79 | 0.43 | 12,246 | 26 |
Standard deviation | 0.73 | 0.12 | 5165 | 50 |
Observations | 5839 | |||
Correlation Matrix | ||||
. | 1 | |||
−0.69 | 1 | |||
0.49 | −0.31 | 1 | ||
0.027 | −0.08 | 0.31 | 1 |
Year | FPROD (RTK/L) | IC (%) | ASIZE (kg) | WF (Per Week) |
---|---|---|---|---|
2007 | 1.95 | 0.42 | 17,310 | 8841 |
2008 | 1.95 | 0.41 | 17,215 | 9231 |
2009 | 1.96 | 0.34 | 14,892 | 10,697 |
2010 | 2.11 | 0.36 | 16,458 | 12,208 |
2011 | 2.19 | 0.35 | 16,484 | 13,676 |
2012 | 2.19 | 0.34 | 16,359 | 14,352 |
2013 | 2.19 | 0.33 | 16,344 | 15,169 |
2014 | 2.30 | 0.31 | 15,491 | 17,172 |
2015 | 2.29 | 0.34 | 16,080 | 16,942 |
2016 | 2.40 | 0.34 | 16,483 | 15,087 |
Test Cross-Section and Period Fixed Effects | |||
---|---|---|---|
Effects Test | Statistic | d.f. | p-Value |
Cross-section F | 9.91 | (987) | 0.00 |
Period F | 21.18 | (9) | 0.00 |
Cross-Section/Period F | 10.22 | (996) | 0.00 |
Test Hypothesis | |||
---|---|---|---|
Cross-Section | Time | Both | |
Breusch-Pagan | 4624.83 | 811.51 | 5436.34 |
p-value | (0.00) | (0.00) | (0.00) |
Test Summary | χ2 Statistic | χ2 d.f. | p-Value |
---|---|---|---|
Cross-section random | 304.02 | 2 | 0.00 |
Period random | 8.45 | 2 | 0.01 |
Dependent Variable: ( ) | ||||
---|---|---|---|---|
Periods Included: 10; Cross-Sections Included: 988 | ||||
Total Panel (Unbalanced) Observations: 5839 | ||||
Instrument Specification: ( ), ( ), and C | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
() | −0.94 | 0.47 | −2.01 | 0.04 |
() | 0.48 | 0.15 | 3.24 | 0.00 |
C | −4.81 | 1.80 | −2.67 | 0.01 |
Effects Specification | ||||
Cross-section fixed (dummy variables) | ||||
Period fixed (dummy variables) | ||||
R2 | 0.84 | |||
Adjusted R2 | 0.81 |
Year | Effect |
---|---|
2007 | 0.051331 |
2008 | 0.000610 |
2009 | −0.044556 |
2010 | 0.068665 |
2011 | 0.037720 |
2012 | 0.005737 |
2013 | −0.003723 |
2014 | −0.075073 |
2015 | −0.030518 |
2016 | 0.014526 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabo, M.; Fernandes, E.; Alonso, P.; Pacheco, R.R.; Fagundes, F. Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport. Sustainability 2020, 12, 303. https://doi.org/10.3390/su12010303
Cabo M, Fernandes E, Alonso P, Pacheco RR, Fagundes F. Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport. Sustainability. 2020; 12(1):303. https://doi.org/10.3390/su12010303
Chicago/Turabian StyleCabo, Manoela, Elton Fernandes, Paulo Alonso, Ricardo Rodrigues Pacheco, and Felipe Fagundes. 2020. "Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport" Sustainability 12, no. 1: 303. https://doi.org/10.3390/su12010303
APA StyleCabo, M., Fernandes, E., Alonso, P., Pacheco, R. R., & Fagundes, F. (2020). Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport. Sustainability, 12(1), 303. https://doi.org/10.3390/su12010303