Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Field Sampling and Sample Preparation/Establishment of Sampling Plots
2.3. Biomass Estimation
2.4. Nutrient Analysis
2.5. Statistical Analyses
2.5.1. Nutrient Concentration
2.5.2. Nutrient Stock
3. Results
3.1. Biomass Estimation
3.2. Nutrient Content
3.3. Stoichiometry Variation Characteristics
4. Discussion
4.1. Biomass Estimation of Different Species
4.2. Nutrients Variation Characteristic Among Different Species
4.2.1. Effects of Species and Tissues on Nutrient Concentration at the Individual Tree Level
4.2.2. Effects of Species and Tissues on Nutrient Stock at the Plot Level
4.3. Stoichiometry Characteristics among Different Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yansui, L.; Xiaoping, Z.; Xianwen, L.; Gao, J. Mechanism and regulation of land degradation in Yulin district. J. Geogr. Sci. 2003, 13, 217–224. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Yu, K.L.; Wang, B.X.; Zhang, W.Y.; Zhang, X.L.; Siddique, K.H.; Stefanova, K.; Turner, N.C.; Li, F.M. Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment. Sci. Rep. 2015, 5, 12130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.Q.; Yu, K.L.; Epstein, H.; Fang, C.; Li, J.T.; Liu, Q.Q.; Liu, X.W.; Gao, W.J.; Li, F.M. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China. Sci. Total Environ. 2016, 541, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Uchida, E.; Shah, M.; Deng, X. Impact of the Grain for Green program on forest cover in China. J. Environ. Econ. Policy 2019, 8, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, Q.; Chen, L.; Yu, T. Significance and effect of ecological rehabilitation project in inland river basins in northwest China. Environ. Manag. 2013, 52, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Tjoelker, M.G.; Machado, J.L.; Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 2006, 439, 457–461. [Google Scholar] [CrossRef]
- Dai, L.; Jia, J.; Yu, D.; Lewis, B.J.; Zhou, L.; Zhou, W.; Zhao, W.; Jiang, L. Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. For. Ecol. Manag. 2013, 300, 106–116. [Google Scholar] [CrossRef]
- Venterink, H.O.; Güsewell, S. Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Funct. Ecol. 2010, 24, 877–886. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Xu, M.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Response of forest growth to C: N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 2019, 337, 280–289. [Google Scholar] [CrossRef]
- McClaran, M.; McMurtry, C.; Archer, S. A tool for estimating impacts of woody encroachment in arid grasslands: Allometric equations for biomass, carbon and nitrogen content in Prosopis velutina. J. Arid Environ. 2013, 88, 39–42. [Google Scholar] [CrossRef]
- Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, M.A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 2007, 253, 68–80. [Google Scholar] [CrossRef]
- Návar, J. Biomass component equations for Latin American species and groups of species. Ann. For. Sci. 2009, 66, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Zapata-Cuartas, M.; Sierra, C.A.; Alleman, L. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. For. Ecol. Manag. 2012, 277, 173–179. [Google Scholar] [CrossRef]
- Manlay, R.J.; Kairé, M.; Masse, D.; Chotte, J.L.; Ciornei, G.; Floret, C. Carbon, nitrogen and phosphorus allocation in agro-ecosystems of a West African savanna: I. The plant component under semi-permanent cultivation. Agric. Ecosyst. Environ. 2002, 88, 215–232. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Wen, D.; Yu, K. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biol. Fertil. Soils 2016, 52, 41–51. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C.; Wang, X.; Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. For. Ecol. Manag. 2009, 258, 722–727. [Google Scholar] [CrossRef]
- Bert, D.; Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manag. 2006, 222, 279–295. [Google Scholar] [CrossRef]
- Han, W.X.; Wu, Y.; Tang, L.Y.; Chen, Y.H.; Li, L.P.; He, J.S.; Fang, J.Y. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Sci. Nat. Univ. Pekin. 2009, 45, 855–860. [Google Scholar]
- Santiago, L.S.; Kitajima, K.; Wright, S.J.; Mulkey, S.S. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 2004, 139, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The C: N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 33–47. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Fonseca, W.; Benayas, J.M.R.; Alice, F.E. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manag. 2011, 262, 1400–1408. [Google Scholar] [CrossRef]
- Nogueira, E.M.; Fearnside, P.M.; Nelson, B.W.; Barbosa, R.I.; Keizer, E.W. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. For. Ecol. Manag. 2008, 256, 1853–1867. [Google Scholar] [CrossRef]
- Harrison, R.B.; Reis, G.G.; Reis, M.D.; Bernardo, A.L.; Firme, D.J. Effect of spacing and age on nitrogen and phosphorus distribution in biomass of Eucalyptus camaldulensis, Eucalyptus pellita and Eucalyptus urophylla plantations in southeastern Brazil. For. Ecol. Manag. 2000, 133, 167–177. [Google Scholar] [CrossRef]
- Zianis, D.; Mencuccini, M. On simplifying allometric analyses of forest biomass. For. Ecol. Manag. 2004, 187, 311–332. [Google Scholar] [CrossRef]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Verónica, G.; Luis, P.P.; Gerardo, R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For. Ecol. Manag. 2010, 259, 1118–1126. [Google Scholar]
- Luo, T. Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models; Chinese Academy of Sciences: Beijing, China, 1996. [Google Scholar]
- Fang, J.-Y.; Wang, Z.M. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecol. Res. 2001, 16, 587–592. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, G.-S. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. For. Ecol. Manag. 2005, 207, 295–313. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Jiang, Y.; Yang, Z. Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests. For. Ecol. Manag. 2002, 169, 149–157. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Yu, P.; Xiong, W.; Mo, F.; Wang, Z. Biomass and its allocation of the main vegetation types in Liupan Mountains. For. Res. Beijing 2011, 24, 443–452. [Google Scholar]
- Konôpka, B.; Pajtík, J.; Moravčík, M.; Lukac, M. Biomass partitioning and growth efficiency in four naturally regenerated forest tree species. Basic Appl. Ecol. 2010, 11, 234–243. [Google Scholar] [CrossRef] [Green Version]
- André, F.; Jonard, M.; Ponette, Q. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci. Total Environ. 2010, 408, 2285–2294. [Google Scholar]
- Mo, J.; Zhang, D.; Huang, Z.; Yu, Q.; Kong, G. Distribution pattern of nutrient elements in plants of Dinghushan lower subtropical evergreen broad-leaved forest. J. Trop. Subtrop. Bot. 2000, 8, 198–206. [Google Scholar]
- Thompson, K.E.; Parkinson, J.A.; Band, S.R.; Spencer, R.E. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytol. 1997, 136, 679–689. [Google Scholar] [CrossRef]
- He, J.S.; Fang, J.; Wang, Z.; Guo, D.; Flynn, D.F.; Geng, Z. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 2006, 149, 115–122. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.J.; Yu, G.R.; Jiang, C.M.; Fang, H.J.; Sun, X.M. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China. Yingyong Shengtai Xuebao 2012, 23, 581–586. [Google Scholar] [PubMed]
- Ryan, M.G.; Hubbard, R.M.; Pongracic, S.; Raison, R.J.; McMurtrie, R.E. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 1996, 16, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Harmand, J.M.; Njiti, C.F.; Bernhard-Reversat, F.; Puig, H. Aboveground and belowground biomass, productivity and nutrient accumulation in tree improved fallows in the dry tropics of Cameroon. For. Ecol. Manag. 2004, 188, 249–265. [Google Scholar] [CrossRef]
- Agren, G.I. The C: N: P stoichiometry of autotrophs–theory and observations. Ecol. Lett. 2004, 7, 185–191. [Google Scholar] [CrossRef]
- Thomas, S.; Malczewski, G. Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. J. Environ. Manag. 2007, 85, 659–662. [Google Scholar] [CrossRef]
- Swamy, S.; Kushwaha, S.; Puri, S. Tree growth, biomass, allometry and nutrient distribution in Gmelina arborea stands grown in red lateritic soils of Central India. Biomass Bioenergy 2004, 26, 305–317. [Google Scholar] [CrossRef]
- Litton, C.M.; Raich, J.W.; Ryan, M.G. Carbon allocation in forest ecosystems. Glob. Chang. Biol. 2007, 13, 2089–2109. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, E.; Sanborn, P.; Fredeen, A.L.; Shaw, C.H.; Hawkins, C. Carbon stocks in managed and unmanaged old-growth western redcedar and western hemlock stands of Canada’s inland temperate rainforests. For. Ecol. Manag. 2013, 297, 108–119. [Google Scholar] [CrossRef]
- Shin, M.Y.; Miah, M.D.; Lee, K.H. Potential contribution of the forestry sector in Bangladesh to carbon sequestration. J. Environ. Manag. 2007, 82, 260–276. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Wang, S.; Zou, D. Carbon and nitrogen storage under different forest ecosystems in mid-subtropical regions. Zhongguo Shengtai Nongye Xuebao 2010, 18, 576–580. [Google Scholar] [CrossRef]
- Niklas, K.J.; Owens, T.; Reich, P.B.; Cobb, E.D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 2005, 8, 636–642. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Aeschlimann, B.; Coûteaux, M.M.; Roy, J.; Bonal, D. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol. 2008, 179, 165–175. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, H.Y.; Reich, P.B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat. Commun. 2011, 2, 344. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, Y.; Wang, N.; Wang, G. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review. Chin. J. Plant Ecol. 2012, 36, 1205–1216. [Google Scholar] [CrossRef]
- Wu, T.G.; Yu, M.K.; Wang, G.G.; Dong, Y.; Cheng, X.R. Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast. China Biochem. Syst. Ecol. 2012, 44, 255–263. [Google Scholar] [CrossRef]
Tree Species | Tree Tissues | a | b | R2 |
---|---|---|---|---|
Betula platyphylla | Total | −0.431 | 1.981 | 0.959 |
Foliage | −2.035 | 1.384 | 0.934 | |
Stem | −2.239 | 2.373 | 0.958 | |
Branch | −1.97 | 2.005 | 0.804 | |
Root | 0.001 | 1.159 | 0.835 | |
Quercus wutaishanica | Total | −0.63 | 2.061 | 0.957 |
Foliage | −3.662 | 1.872 | 0.847 | |
Stem | −0.818 | 1.966 | 0.959 | |
Branch | −6.019 | 3.232 | 0.96 | |
Root | 0.33 | 0.991 | 0.918 | |
Populus davidiana | Total | 1.37 | 1.353 | 0.81 |
Foliage | 0.499 | 0.654 | 0.198 | |
Stem | −0.319 | 1.666 | 0.803 | |
Branch | 0.658 | 1.117 | 0.559 | |
Root | −0.092 | 1.199 | 0.67 | |
Pinus armandii | Total | 0.798 | 1.419 | 0.894 |
Foliage | −2.077 | 1.434 | 0.928 | |
Stem | −1.531 | 1.898 | 0.921 | |
Branch | 0.879 | 0.984 | 0.818 | |
Root | −0.792 | 1.445 | 0.828 | |
Larix principis-rupprechtii | Total | 0.697 | 1.123 | 0.974 |
Foliage | −1.878 | 1.056 | 0.857 | |
Stem | −1.03 | 1.443 | 0.962 | |
Branch | −0.705 | 1.039 | 0.948 | |
Root | 0.282 | 0.824 | 0.805 | |
Pinus tabulaeformis | Total | −2.459 | 2.565 | 0.939 |
Foliage | −3.966 | 2.187 | 0.91 | |
Stem | −2.828 | 2.438 | 0.923 | |
Branch | −5.212 | 3.029 | 0.928 | |
Root | −4.001 | 2.51 | 0.959 |
Nutrient Content | Tree Species/Organ | Betula platyphylla (g·kg−1) | Quercus wutaishanica (g·kg−1) | Populus davidiana (g·kg−1) | Pinus armandii (g·kg−1) | Larix principis-rupprechtii (g·kg−1) | Pinus tabulaeformis (g·kg−1) | Mean (g·kg−1) |
---|---|---|---|---|---|---|---|---|
C | Foliage | 451.27 ± 11.98 d | 459.27 ± 3.31 cd | 474.27 ± 1.70 b | 504.10 ± 2.98 a | 449.43 ± 7.19 d | 476.40 ± 11.73 b | 466.31 ± 20.23 |
Branch | 457.37 ± 6.17 cd | 449.70 ± 2.07 cd | 440.07 ± 4.99 d | 499.00 ± 3.29 a | 481.33 ± 5.86 b | 463.13 ± 23.85 c | 467.42 ± 21.41 | |
Stem | 460.40 ± 38.86 ab | 435.43 ± 8.52 b | 443.23 ± 10.46 b | 482.73 ± 32.54 a | 463.03 ± 6.60 ab | 449.23 ± 29.00 ab | 456.73 ± 24.28 | |
Root | 400.97 ± 54.31 bc | 380.20 ± 28.77 c | 438.00 ± 7.76 ab | 447.00 ± 17.28 a | 433.03 ± 7.85 ab | 444.73 ± 24.39 a | 425.28 ± 32.38 | |
WMCC | 448.87 ± 28.06 | 432.668 ± 7.92 | 443.80 ± 4.30 | 481.42 ± 11.83 | 456.40 ± 3.365 | 454.01 ± 16.19 | 452.86 ± 16.35 | |
N | Foliage | 28.12 ± 4.82 a | 28.54 ± 1.35 a | 19.82 ± 0.60 c | 15.6 ± 0.59 c | 24.29 ± 2.79 b | 16.57 ± 0.85 c | 22.46 ± 5.41 |
Branch | 7.82 ± 0.278 ab | 8.78 ± 0.14 a | 7.13 ± 0.88 c | 5.85 ± 0.67 bc | 7.58 ± 0.61 c | 7.68 ± 1.96 c | 7.48 ± 1.14 | |
Stem | 6.41 ± 1.61 ab | 7.46 ± 1.11 c | 4.26 ± 0.28 ab | 4.87 ± 1.56 a | 4.21 ± 0.36 c | 3.89 ± 1.19 bc | 5.045 ± 1.57 | |
Root | 6.53 ± 1.48 a | 6.91 ± 1.41 a | 3.68 ± 0.61 b | 7.33 ± 2.23 a | 6.13 ± 0.77 ca | 5.65 ± 1.51 ab | 6.05 ± 1.61 | |
WMNC | 7.66 ± 0.85 | 8.30 ± 0.86 | 6.15 ± 0.39 | 6.38 ± 0.87 | 6.81 ± 0.38 | 6.17 ± 0.40 | 6.89 ± 0.93 | |
P | Foliage | 1.75 ± 0.07 bc | 1.93 ± 0.16 ab | 0.89 ± 0.03 b | 1.24 ± 0.032 cd | 2.32 ± 0.51 a | 1.13 ± 0.043 d | 1.65 ± 0.61 |
Branch | 0.87 ± 0.14 a | 0.73 ± 0.17 a | 0.55 ± 0.05 b | 0.48 ± 0.01 b | 0.80 ± 0.07 a | 0.51 ± 0.13 Bb | 0.68 ± 0.17 | |
Stem | 0.49 ± 0.02 a | 0.34 ± 0.05 b | 0.35 ± 0.012 b | 0.37 ± 0.04 b | 0.45 ± 0.044 a | 0.22 ± 0.07 c | 0.38 ± 0.10 | |
Root | 0.52 ± 0.14 bc | 0.63 ± 0.06 b | 0.26 ± 0.07 d | 0.42 ± 0.08 c | 0.78 ± 0.08 a | 0.46 ± 0.07 c | 0.55 ± 0.20 | |
WMPC | 0.647 ± 0.04 | 0.508 ± 0.05 | 0.43 ± 0.02 | 0.47 ± 0.02 | 0.74 ± 0.02 | 0.40 ± 0.05 | 0.53 ± 0.13 |
Stoichiometric Ratios | Tree Species/Organ | Betula platyphylla | Quercus wutaishanica | Populus davidiana | Pinus armandii | Larix principis-rupprechtii | Pinus tabulaeformis | Mean |
---|---|---|---|---|---|---|---|---|
C:N | Foliage | 16.31 ± 2.27 de | 16.12 ± 0.85 e | 23.94 ± 0.68 c | 32.35 ± 1.38 a | 18.69 ± 2.01 d | 28.78 ± 1.01 b | 22.70 ± 1.37 |
Branch | 58.56 ± 2.29 b | 51.25 ± 0.62 b | 62.39 ± 8.59 b | 85.99 ± 9.72 a | 63.91 ± 5.53 b | 63.99 ± 21.72 b | 64.35 ± 8.08 | |
Stem | 74.44 ± 16.08 bc | 59.30 ± 9.21 c | 104.35 ± 8.89 ab | 104.92 ± 28.14 a | 110.48 ± 8.23 a | 121.59 ± 29.61 a | 95.84 ± 16.71 | |
Root | 64.00 ± 20.18 b | 56.35 ± 9.93 b | 120.93 ± 18.23 a | 64.20 ± 16.00 b | 71.70 ± 10.41 b | 82.85 ± 22.90 b | 76.67 ± 16.27 | |
Weighted mean value | 66.24 ± 12.72 | 55.89 ± 7.13 | 89.25 ± 9.75 | 85.20 ± 17.69 | 83.01 ± 7.99 | 92.77 ± 24.11 | 78.73 ± 13.23 | |
C:P | Foliage | 257.74 ± 10.94 c | 239.16 ± 22.20 cd | 530.96 ± 14.14 a | 406.81 ± 12.77 b | 202.22 ± 45.33 d | 423.05 ± 10.83 b | 343.32 ± 19.37 |
Branch | 537.30 ± 91.52 b | 638.31 ± 143.14 ab | 806.95 ± 83.34 ab | 1043.01 ± 8.72 a | 608.02 ± 52.65 b | 959.08 ± 316.71 a | 765.44 ± 116.01 | |
Stem | 925.40 ± 92.07 b | 1293.01 ± 173.31 b | 1257.48 ± 67.21 b | 1302.77 ± 62.18 b | 1043.78 ± 95.08 b | 2324.64 ± 669.21 a | 1357.85 ± 193.18 | |
Root | 798.12 ± 224.23 bc | 614.38 ± 109.49 bc | 1758.81 ± 435.28 a | 1095.66 ± 215.43 b | 562.55 ± 67.55 c | 981.82 ± 180.97 b | 968.57 ± 205.49 | |
Weighted mean value | 777.38 ± 111.75 | 1033.78 ± 154.44 | 1159.92 ± 129.44 | 1116.25 ± 75.34 | 751.09 ± 74.73 | 1585.84 ± 438.30 | 1070.70 ± 164.00 | |
N:P | Foliage | 16.08 ± 2.98 b | 14.84 ± 1.18 bc | 22.18 ± 0.05 a | 12.58 ± 0.15 bc | 10.82 ± 2.17 c | 14.71 ± 0.21 bc | 15.20 ± 1.12 |
Branch | 9.15 ± 1.24 c | 12.45 ± 2.73 ab | 12.98 ± 0.63 ab | 12.22 ± 1.22 b | 9.56 ± 0.98 c | 15.103 ± 1.831 a | 11.91 ± 1.44 | |
Stem | 12.82 ± 2.81 c | 22.16 ± 4.52 a | 12.09 ± 0.91 c | 12.92 ± 2.80 bc | 9.51 ± 1.37 c | 20.37 ± 9.95 ab | 14.98 ± 3.73 | |
Root | 12.56 ± 1.09 c | 11.08 ± 2.26 a | 14.49 ± 2.37 ab | 18.26 ± 7.71 a | 7.92 ± 1.01 c | 12.14 ± 1.75 bc | 12.74 ± 2.70 | |
Weighted mean value | 11.96 ± 2.12 | 18.44 ± 3.75 | 13.51 ± 1.01 | 13.85 ± 3.20 | 9.11 ± 1.23 | 17.08 ± 5.64 | 13.99 ± 2.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, G.; Hu, T.; Liu, J.; Cheng, J.; Li, W. Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China. Sustainability 2020, 12, 339. https://doi.org/10.3390/su12010339
Jing G, Hu T, Liu J, Cheng J, Li W. Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China. Sustainability. 2020; 12(1):339. https://doi.org/10.3390/su12010339
Chicago/Turabian StyleJing, Guanghua, Tianming Hu, Jian Liu, Jimin Cheng, and Wei Li. 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China" Sustainability 12, no. 1: 339. https://doi.org/10.3390/su12010339
APA StyleJing, G., Hu, T., Liu, J., Cheng, J., & Li, W. (2020). Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China. Sustainability, 12(1), 339. https://doi.org/10.3390/su12010339