Analysis of Combustion Process of Protective Coating Paints
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitation to the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weil, E.D. Fire-Protective and Flame-Retardant Coatings—A State-of-the-Art Review. J. Fire Sci. 2011, 29, 38. [Google Scholar] [CrossRef]
- Challener, C. Fire Safety with Specialty Coatings. J. Coat. Technol. Res. 2007, 7, 78–84. [Google Scholar]
- Horrocks, J.A.R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym. Degrad. 2011, 96, 16. [Google Scholar] [CrossRef]
- Majder-Lopatka, M.; Rogula-Kozlowska, W.; Wasik, W. The application of stand-off infrared detection to identify air pollutants. E3S Web Conf. 2018, 44, 6. [Google Scholar] [CrossRef] [Green Version]
- Alongi, J.; Colleoni, F.; Rosace, G.; Malucelli, G. Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. J. Therm. Anal. Calorim. 2012, 110, 1207–1216. [Google Scholar] [CrossRef]
- Majder-Lopatka, M.; Wesierski, T.; Dmochowska, A.; Salamonowicz, Z.; Polanczyk, A. The Influence of Hydrogen on the Indications of the Electrochemical Carbon Monoxide Sensors. Sustainability 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: A review. Corros. Sci. 2018, 144, 15. [Google Scholar] [CrossRef]
- Moura, E.F.; Neto, A.O.W.; Dantas, T.N.C.; Junior, H.S.; Gurgel, A. Applications of micelle and microemulsion systems containing aminated surfactants synthesized from ricinoleic acid as carbon-steel corrosion inhibitors. Colloids Surf. A Physicochem. Eng. Asp. 2009, 340, 199–207. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Abdou, M.I.; Migahed, M.A.; Abd-Elwanees, S.; Fadl, A.M.; Deibac, A. Investigations using potentiodynamic polarization measurements, cure durability, ultra violet immovability and abrasion resistance of polyamine cured ilmenite epoxy coating for oil and gas storage steel tanks in petroleum sector. Egypt. J. Pet. 2018, 27, 415–425. [Google Scholar] [CrossRef]
- Mathiazhagan, A.; Rani, J. Nanotechnology-A New Prospective in Organic Coating -Review. Int. J. Chem. Eng. Appl. 2017, 2, 13. [Google Scholar] [CrossRef]
- Fabregat, M.G.; Azambuja, D.S.; Aleman, C.; Armelin, E. Evaluation of an environmentally friendly anticorrosive pigment for alkyd primer. Prog. Org. Coat. 2012, 73, 321–329. [Google Scholar]
- Rahman, O.U.; Ahmad, S. Physico-mechanical and electrochemical corrosion behavior of soya alkyd/Fe2O3 nanocomposite coatings. RSC Adv. 2014, 4, 14936–14947. [Google Scholar] [CrossRef]
- Calabrese, L.; Bozzoli, F.; Bochicchio, G.; Tessadri, B.; Rainieri, S.; Pagliarini, G. Thermal characterization of intumescent fire retardant paints. J. Phys. Conf. Ser. 2014, 547, 11. [Google Scholar] [CrossRef] [Green Version]
- Wesierski, T.; Majder-Lopatka, M. Comparison of Water Curtain Effectiveness in the Elimination of Airborne Vapours of Ammonia, Acetone, and Low-Molecular Aliphatic Alcohols. Appl. Sci. 2018, 8, 1971. [Google Scholar] [CrossRef] [Green Version]
- Griffin, G.J. The Modeling of Heat Transfer across Intumescent Polymer Coatings. J. Fire Sci. 2010, 28, 249–277. [Google Scholar] [CrossRef]
- Staggs, J.E.J. Thermal conductivity estimates of intumescent chars by direct numerical simulation. Fire Saf. J. 2010, 45, 228–237. [Google Scholar] [CrossRef]
- Alongi, J.; Tata, J.; Carosio, F.; Rosace, G.; Frace, A.; Camino, G. A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics. Polymers 2014, 7, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Momber, A.w.; Irmer, M.; Gluck, N. Performance characteristics of protective coatings under low-temperature offshore conditions. Part 1: Experimental set-up and corrosion protection performance. Cold Reg. Sci. Technol. 2016, 127, 76–82. [Google Scholar] [CrossRef]
- Zomorodian, A.; Garcia, M.P.; Moura, E.S.T.; Fernandes, J.C.; Fernandes, M.H.; Montemor, M.F. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 434–443. [Google Scholar] [CrossRef]
- Hanan, B.A.; M.R., A.; Mohamed, A.N.; Shenouda, S.; Abd, E.A. Innovative precursor for manufacturing of superior enhancer of intumescence for paint: Thermal insulative coating for steel structures. Prog. Org. Coat. 2018, 118, 129–140. [Google Scholar]
- Koo, J.H.; Wootan, W.; Chow, W.K.; Au Yeung, H.W.; Venumbaka, S. Flammability Studies of Fire Retardant Coatings on Wood. Fire Polym. Mater. Solut. Hazard Prev. 2001, 14, 361–374. [Google Scholar]
- Oliveira, A.; Moreno, A.J.; Viera, L. Intumescent paint as fire protection coating. Revsta Ibracon De Estrut. E Mater. 2017, 10, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Al-Hassany, Z.; Genovese, A.; Shanks, R. Fire-Retardant and Fire-Barrier Poly(vinyl acetate) Composites for Sealant Applications. Express Polym. Lett. 2010, 4, 79–93. [Google Scholar] [CrossRef]
- Jimenez, M.; Duquesne, S.; Bourbigot, S. Characterization of the performance of an intumescent fire protective coating. Surf. Coat. Technol. 2006, 201, 979–987. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Wang, M.Y.; Hall, M.E.; Sunmonu, F.; Pearson, J.S. Flame Retardant Textile Back-Coatings. Part 2. Effectiveness of Phosphorus-Containing Flame Retardants in Textile Back-Coating Formulations. Polym. Int. 2000, 49, 1079–1091. [Google Scholar] [CrossRef]
- Andersson, A.; Lundmark, S.; Maurer, F. Evaluation and Characterization of Ammonium Polyphosphate-Pentaerythritol-Based Systems for Intumescent Coatings. J. Appl. Polym. Sci. 2007, 104, 748–753. [Google Scholar] [CrossRef]
- Bourbigot, M.; Le Bras, M.; Duquesne, S.; Rochery, M. Recent Advances for Intumescent Polymers. Macromol. Sci. Eng. 2004, 289, 499–511. [Google Scholar] [CrossRef]
- Polanczyk, A.; Majder-Lopatka, M.; Salamonowicz, Z.; Dmochowska, A.; Jarosz, W.; Matuszkiewicz, R.; Makowski, R. Environmental Aspects of Sorption Process. Annu. Set Environ. Prot. 2018, 20, 451. [Google Scholar]
- Dai, X.H.; Wang, Y.C.; Bailey, C.G. Effects of Partial Fire Protection on Temperature Development in Steel Joints Protected by Intumescent Coating. Fire Saf. J. 2009, 44, 376–386. [Google Scholar] [CrossRef]
- Jun, Z.; Wei, L.; Lun, Q.; Le, Y.; Gang, H.; Yan, H.; Xiaolong, W. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity. Coatings 2018, 8, 125. [Google Scholar]
- Geofroy, L.; Samyn, F.; Jimenez, M.; Bourbigot, S. Intumescent Polymer Metal Laminates for Fire Protection. Polymers 2018, 10, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.K.; Bach, Q.V.; Lee, J.H.; Kim, I.T. Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet. Materials 2018, 11, 1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourbigot, S.; Jimenez, M.; Duquesne, S. Modeling Heat Barrier Efficiency of Flame Retarded Materials. Comsol Multiphysics Conf. 2006, 7, 59–65. [Google Scholar]
- Jimenez, M.; Duquesne, S.; Bourbigot, S. Intumescent Fire Protective Coating: Toward a Better Understanding of Their Mechanism of Action. Thermochim. Acta 2006, 449, 16–26. [Google Scholar] [CrossRef]
- Bourbigot, S.; Duquesne, S.; Leroy, J.-M. Modeling of Heat Transfer of a Polypropylene-Based Intumescent System During Combustion. J. Fire Sci. 1999, 17, 42–56. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanczyk, A.; Majder-Lopatka, M.; Dmochowska, A.; Salamonowicz, Z. Analysis of Combustion Process of Protective Coating Paints. Sustainability 2020, 12, 4008. https://doi.org/10.3390/su12104008
Polanczyk A, Majder-Lopatka M, Dmochowska A, Salamonowicz Z. Analysis of Combustion Process of Protective Coating Paints. Sustainability. 2020; 12(10):4008. https://doi.org/10.3390/su12104008
Chicago/Turabian StylePolanczyk, Andrzej, Malgorzata Majder-Lopatka, Anna Dmochowska, and Zdzislaw Salamonowicz. 2020. "Analysis of Combustion Process of Protective Coating Paints" Sustainability 12, no. 10: 4008. https://doi.org/10.3390/su12104008
APA StylePolanczyk, A., Majder-Lopatka, M., Dmochowska, A., & Salamonowicz, Z. (2020). Analysis of Combustion Process of Protective Coating Paints. Sustainability, 12(10), 4008. https://doi.org/10.3390/su12104008