What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developing Redline of Water Withdrawal for Crop Use (REWCU)
2.2. Study Area and Data
3. Results and Discussion
3.1. Crop Outputs and Associated Water Withdrawal, Consumption and Productivity in 1998–2017
3.2. Trajectory of BAWCU and Its Associated Parameters in 1998–2017
3.2.1. Green Water and Blue Water Contribution Rate
3.2.2. Green Water and Blue Water Depletion Rate in Crop Production
3.2.3. Water Consumption and Productivity of Major Crop Categories
3.3. Determining REWCU to the Year 2030
REWCU Determination Based on BAWCU Parameters and CWP
4. Implications for China
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strzepek, K.; Boehlert, B. Competition for water for the food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2927–2940. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.S. Water, agriculture and food: Challenges and issues. Water Resour. Manag. 2017, 31, 2985–2999. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture-the need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef] [Green Version]
- Karimov, A.; Molden, D.; Khamzina, T.; Platonov, A.; Ivanov, Y. A water accounting procedure to determine the water savings potential of the Fergana Valley. Agric. Water Manag. 2012, 108, 61–72. [Google Scholar] [CrossRef]
- Kumar, M.D.; van Dam, J.C. Drivers of change in agricultural water productivity and its improvement at basin scale in developing economies. Water Int. 2013, 38, 312–325. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 2016, 11, 25002. [Google Scholar] [CrossRef]
- Huang, F.; Li, B. Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach. Part I: Method development and validation. Agric. Water Manag. 2010, 97, 1077–1092. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Z.; Ridoutt, B.G.; Huang, J.; Li, B. China’s water for food under growing water scarcity. Food Secur. 2015, 7, 933–949. [Google Scholar] [CrossRef]
- Blatchford, M.; Karimi, P.; Bastiaanssen, W.G.M.; Nouri, H. From global goals to local gains—A framework for crop water productivity. ISPRS Int. J. Geoinform. 2018, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; van Oel, P.R. Advancing water footprint assessment research: Challenges in monitoring progress towards sustainable development goal 6. Water 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Baoguo, L. Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach. Part II: Application in breadbasket basins of China. Agric. Water Manag. 2010, 97, 1259–1268. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L. The quadruple squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the anthropocene. Ambio 2010, 39, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Yang, H. Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. J. Hydrol. 2010, 384, 187–197. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y.; Wada, Y. Inter-and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Adv. Water Resour. 2016, 87, 29–41. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The temporal and spatial variability of water footprint of grain: A case study of an irrigation district in China from 1960 to 2008. J. Food Agric. Environ. 2012, 10, 1246–1251. [Google Scholar]
- Shi, Y.L.; Lu, L.S. (Eds.) China Agricultural Water Requirements and Water-Saving and Efficiency Agricultural Development; China Water Conservancy and Hydropower Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Molden, D.; Frenken, K.; Barker, R.; Fraiture, C.; de Mati, B.; Svendsen, M.; Sadoff, C.; Finlayson, C.M.; Attapatu, S.; Giordano, M. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2007. [Google Scholar]
- China State Council. Directive on Implementing the Strictest Water Red-Line; Xinhua News Agency: Beijing, China, 2012.
- UNFAO. AQUASTAT. Available online: http://www.fao.org/nr/water/aquastat/data/query/results.html (accessed on 3 March 2020).
- China Ministry of Water Resources. China Annual Water Resources Bulletin; China Water Conservancy and Hydropower Press: Beijing, China, 2018.
- Falkenmark, M. Meeting water requirements of an expanding world population. Philos. Trans. R. Soc. London B 1997, 352, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, Z.; Zhang, W.; Shao, Q.; Zhang, Y.; Luo, Y.; Jiao, X.; Xu, J. Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections. Agric. Water Manag. 2014, 146, 249–261. [Google Scholar] [CrossRef]
- Ye, Q.; Yang, X.; Dai, S.; Chen, G.; Li, Y.; Zhanga, C. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agric. Water Manag. 2015, 159, 35–44. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Moiwo, J.P.; Hu, Y. Estimation of irrigation requirement for sustainable water resources reallocation in North China. Agric. Water Manag. 2010, 97, 1711–1721. [Google Scholar] [CrossRef]
- Jiang, W.L. Research and propspects on agricultural water use threshhold that is to support food security. Agric. Prospects 2010, 9, 23–25. (In Chinese) [Google Scholar]
- Liu, B.; Zhao, W.; Chang, X.; Li, S.; Zhang, Z.; Du, M. Water requirements and stability of oasis ecosystem in arid region, China. Environ. Earth Sci. 2010, 59, 1235–1244. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Chen, X.; Gao, Z.; Yang, F.; Shi, J. Multiscale remote-sensing retrieval in the evapotranspiration of Haloxylon ammodendron in the Gurbantunggut desert, China. Environ. Earth Sci. 2013, 69, 1549–1558. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Gao, M.J.; Jiang, W.L.; Tao, T.; Tang, Q. Study on resources threshold values based on agricultural comprehensive production capability security in China. Res. Agric. Mod. 2010, 4, 392–396. (In Chinese) [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Res. 2016, 94, 73–85. [Google Scholar] [CrossRef] [Green Version]
CWP (kg m−3) | Max. | Min. | Mean | Median | Change Percent % |
Grain | 1.257 | 0.952 | 1.087 | 1.078 | 27.10 |
Vegetable | 8.108 | 6.342 | 7.148 | 7.085 | 18.41 |
Oil | 0.565 | 0.385 | 0.479 | 0.486 | 46.89 |
Sugar | 3.762 | 2.002 | 2.898 | 2.666 | 27.77 |
Cotton | 0.241 | 0.190 | 0.230 | 0.234 | 35.04 |
WFP (m3 Mg−1) | Min. | Max. | Mean | Median | Change Percent % |
Grain | 795.7 | 1049.9 | 919.8 | 928.0 | 27.10 |
Vegetable | 123.3 | 157.7 | 139.9 | 141.1 | 18.41 |
Oil | 1770.1 | 2600.1 | 2088.4 | 2058.6 | 46.89 |
Sugar | 265.8 | 499.5 | 345.0 | 375.1 | 27.77 |
Cotton | 4155.6 | 5273.1 | 4351.2 | 4276.9 | 35.04 |
Items | LS | HS | ALH |
---|---|---|---|
Population | (108) | ||
- | 15.1 | 16.1 | 15.6 |
Crop categories | LS | HS | ALS |
- | (108 Mg) | ||
Grain crops | 6.812 | 7.257 | 7.035 |
Vegetables I 1 | 1.968 | 2.096 | 2.032 |
Vegetable II 1 | 6.900 | 6.900 | 6.900 |
Oil crops | 0.454 | 0.484 | 0.469 |
Sugar crops | N/A | N/A | N/A |
Cotton | 0.121 | 0.129 | 0.125 |
Items | OUP2030 (104 Mg) | CWP (kg m−3) | WFP (m3 Mg−1) | WCR (108 m3) | BWCR2030 (Unitless) | BWDR2030 (Unitless) | WWR (108 m3) | |
---|---|---|---|---|---|---|---|---|
BAU-ALH | grain | 70,350 | 1.257 | 795.74 | 5598.00 | 0.282 | 0.582 | 2711.51 |
vegetable | 80,000 | 8.108 | 123.33 | 986.66 | 0.282 | 0.582 | 477.91 | |
oil | 4690 | 0.565 | 1770.05 | 830.15 | 0.282 | 0.582 | 402.10 | |
sugar | 3000 | 3.061 | 326.68 | 98.00 | 0.282 | 0.582 | 47.47 | |
cotton | 1250 | 0.237 | 4228.29 | 528.54 | 0.282 | 0.582 | 256.01 | |
fruit | 25,195.2 | 4.391 | 227.72 | 573.74 | 0.282 | 0.582 | 277.90 | |
total | N/A | N/A | N/A | 8615.08 | N/A | N/A | 4172.91 | |
OPM-ALH | grain | 70,350 | 1.481 | 675.22 | 4750.17 | 0.282 | 0.624 | 2146.71 |
vegetable | 80,000 | 9.183 | 108.90 | 871.17 | 0.282 | 0.624 | 393.70 | |
oil | 4690 | 0.735 | 1360.54 | 638.10 | 0.282 | 0.624 | 288.37 | |
sugar | 3000 | 6.808 | 146.89 | 44.07 | 0.282 | 0.624 | 19.91 | |
cotton | 1250 | 0.26 | 3846.15 | 480.77 | 0.282 | 0.624 | 217.27 | |
fruit | 25,195.2 | 4.391 | 227.74 | 573.79 | 0.282 | 0.624 | 259.31 | |
total | N/A | N/A | N/A | 7358.07 | N/A | N/A | 3325.28 | |
DOM-ALH | grain | 70,350 | 1.257 | 795.74 | 5598.00 | 0.282 | 0.582 | 2711.51 |
vegetable | 80,000 | 8.108 | 123.33 | 986.66 | 0.282 | 0.582 | 477.91 | |
oil | 4690 | 0.565 | 1770.05 | 830.15 | 0.282 | 0.582 | 402.10 | |
sugar | 3000 | 3.762 | 265.84 | 79.75 | 0.282 | 0.582 | 38.63 | |
cotton | 1250 | 0.241 | 4155.59 | 519.45 | 0.282 | 0.582 | 251.61 | |
fruit | 25,195.2 | 4.391 | 227.74 | 573.79 | 0.282 | 0.582 | 277.93 | |
total | N/A | N/A | N/A | 8587.80 | N/A | N/A | 4159.69 | |
PEM-ALH | grain | 70,350 | 0.952 | 1049.94 | 7386.32 | 0.282 | 0.537 | 3879.02 |
vegetable | 80,000 | 6.342 | 157.69 | 1261.52 | 0.282 | 0.537 | 662.51 | |
oil | 4690 | 0.385 | 2600.06 | 1219.43 | 0.282 | 0.537 | 640.40 | |
sugar | 3000 | 2.002 | 499.46 | 149.84 | 0.282 | 0.537 | 78.69 | |
cotton | 1250 | 0.190 | 5273.11 | 659.14 | 0.282 | 0.537 | 346.16 | |
fruit | 25,195.2 | 4.391 | 227.74 | 573.79 | 0.282 | 0.537 | 301.33 | |
total | N/A | - | N/A | 11,250.04 | N/A | N/A | 5908.10 | |
Deliberative DPM-ALH | grain | 70,350 | 1.087 | 919.81 | 6470.86 | 0.282 | 0.560 | 3259.03 |
vegetable | 80,000 | 7.148 | 139.90 | 1119.17 | 0.282 | 0.560 | 563.67 | |
Oil | 4690 | 0.479 | 2088.42 | 979.47 | 0.282 | 0.560 | 493.31 | |
sugar | 3000 | 2.898 | 345.01 | 103.50 | 0.282 | 0.560 | 52.13 | |
cotton | 1250 | 0.230 | 4351.19 | 543.90 | 0.282 | 0.560 | 273.93 | |
fruit | 25,195.2 | 4.391 | 227.74 | 573.79 | 0.282 | 0.560 | 288.99 | |
total | N/A | N/A | N/A | 9790.70 | N/A | N/A | 4931.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Li, B. What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory. Sustainability 2020, 12, 4188. https://doi.org/10.3390/su12104188
Huang F, Li B. What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory. Sustainability. 2020; 12(10):4188. https://doi.org/10.3390/su12104188
Chicago/Turabian StyleHuang, Feng, and Baoguo Li. 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory" Sustainability 12, no. 10: 4188. https://doi.org/10.3390/su12104188
APA StyleHuang, F., & Li, B. (2020). What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory. Sustainability, 12(10), 4188. https://doi.org/10.3390/su12104188