Analysis for Growth Potential in Response to Changes in the Online Food Market
Abstract
:1. Introduction
2. Literature Review
2.1. Definition of Online Food Shopping
2.2. Review of Prior Studies on the Online Food Market
2.3. Status of the Online Food Market
3. Research Methodology
3.1. Variable Definition and Data Collection
3.2. Unit Root Test
3.3. Cointegration Test and Vector Error Correction (VEC) Model
4. Research Results
4.1. Basic Data Analysis
4.2. Unit Root Test and Lag Selection
4.3. Cointegration Test and VECM Analysis
4.4. Granger Causality Analysis
5. Discussions
6. Conclusions
7. Limitations and Future Direction of the Research
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Agriculture, Food and Rural Affairs; Korea Agro-Fisheries and Food Trade Corporation. 2019 Food and Food Service Statistics; Ministry of Agriculture, Food and Rural Affairs: Sejong City, Korea; Korea Agro-Fisheries and Food Trade Corporation: Naju, Korea, 2019; pp. 1–61. [Google Scholar]
- IGD, Online Global Growth of 163% Predicted by 2023, Adding $ 257BN to Food Consumer Goods Industry. Available online: https://www.igd.com/articles/article-viewer/t/igd-online-global-growth-of-163-predicted-by-2023-adding-257bn-to-food-and-consumer-goods-industry/i/21745 (accessed on 12 May 2020).
- Bellini, S.; Aiolfi, S. The impact of mobile device use on shopper behavior in store: An empirical research on grocery retailing. Int. Bus. Res. 2017, 10, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, S.; Mendez, F. Exploring convenience in mobile commerce: Moderating effects of gender. Comput. Hum. Behav. 2013, 29, 1234–1242. [Google Scholar] [CrossRef] [Green Version]
- Hanus, G. Consumer behaviour during online grocery shopping. In Proceedings of the CBU International Conference on Innovations in Science and Education, Prague, Czech Republic, 23–25 March 2016; pp. 10–13. [Google Scholar]
- Jih, W.J. Effects of consumer-perceived convenience on shopping intention in Mobile commerce: An empirical study. Int. J. E-Bus. Res. 2007, 3, 33–48. [Google Scholar] [CrossRef]
- Lim, J.W.; Jeon, H.M. A study of Factors that affect the intention to use mobile delivery app: Focused on technology acceptance model and flow experience. J. Hosp. Tour. Stud. 2016, 18, 207–226. [Google Scholar]
- Suhartanto, D.; Ali, M.H.; Tan, K.H.; Sjahroeddin, F.; Kusdibyo, L. Loyalty toward online food delivery service: The role of e-service quality and food quality. J. Foodserv. Bus. Res. 2018, 22, 81–97. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M. Analysis of online food purchase behavior and factors determining online purchases by adult consumers. J. Korea Soc. Food Sci. Nutr. 2018, 48, 97–108. [Google Scholar] [CrossRef]
- Kim, J.; Moritaka, M.; Fukuda, S. A study of indirect marketing channel in the fresh food internet transaction: Center of South Korea’s cases. In Proceedings of the Annual meeting of AESJ, Fukuoka, Japan, 29–30 March 2012; pp. 357–364. [Google Scholar]
- Jusoh, Z.M.; Ling, G.H. Factors influencing consumers’ attitude toward e-commerce purchases through online shopping. Int. J. Hum. Soc. Sci. 2012, 2, 223–230. [Google Scholar]
- Statistics Korea, Online Shopping Trend’s Survey. Available online: https://kostat.go.kr/portal/korea/kor_nw/1/12/3/index.board (accessed on 6 February 2020).
- Anckar, B.; Walden, P.; Jelassi, T. Creating customer value in online grocery shopping. Int. J. Retail. Distrib. Manag. 2002, 30, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.; Choi, B.; Song, M.R. The role of on-line retailer brand and infomediary reputation in increasing consumer purchase intention. Int. J. Electron. Commun. 2005, 9, 115–127. [Google Scholar] [CrossRef]
- Hagel, J., III; Singer, M. Net Worth; Harvard Business School Press: Boston, MA, USA, 1997; pp. 19–20. [Google Scholar]
- Verdouw, C.N.; Vucic, N.; Sundmaeker, H.; Beulens, A.J.M. Future internet as a driver for virtualization, connectivity and intelligence of agri-food supply chain networks. J. Food Syst. Dyn. 2013, 4, 261–272. [Google Scholar]
- Morganosky, M.A.; Cude, B.J. Consumer response to online grocery shopping. Int. J. Retail. Distrib. Manag. 2000, 28, 17–26. [Google Scholar] [CrossRef]
- Hansen, T. Consumer value, the theory of planned behavior and online grocery shopping. Int. J. Consum. Stud. 2008, 32, 128–137. [Google Scholar] [CrossRef]
- Scuderi, A.; Bellia, C.; Foti, V.T.; Sturiale, L.; Timpanaro, G. Evaluation of consumers’ purchasing process for organic food products. AIMS Agric. Food 2019, 4, 251–265. [Google Scholar] [CrossRef]
- Kim, J.H.; Moritaka, M.; Fukuda, S.; Yoon, S.J. A structure analysis of consumer purchasing perceptions in the internet shopping: In case of the fresh food in South Korea. J. Food Syst. Res. 2013, 19, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Hausen, T.; Schiefer, G. Development and development directions of electronic trade platforms in US and European agri-food market: Impact on sector organization. Int. Food Agribus. Manag. Rev. 2004, 7, 1–21. [Google Scholar]
- Lehmann, R.J.; Reiche, R.; Schiefer, G. Future internet and the agri-food sector: State of the art in literature research. Comput. Electron. Agric. 2012, 89, 158–174. [Google Scholar] [CrossRef]
- Boyer, K.K.; Hult, G.T.M. Extending the supply chain: Integration operations and marketing in the online grocery industry. J. Oper. Manag. 2005, 23, 642–661. [Google Scholar] [CrossRef]
- Benn, Y.; Webb, T.L.; Chang, B.P.I.; Reidy, J. What information do consumers consider, and how do they look for it, when shopping for groceries online? Appetite 2015, 89, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Sharma, S.K. Evaluating consumers’ adoption of mobile technology for grocery shopping: An application of technology acceptance model. Vis. J. Bus. Perspect. 2018, 22, 185–198. [Google Scholar] [CrossRef]
- Elghannam, A.; Mesias, F.J.; Escribano, M.; Fouad, L.; Horrillo, A.; Escribano, A.J. Consumers’ Perspectives on Alternative Short Food Supply Chains Based on Social Media: A Focus Group Study in Spain. Foods 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- IGD, Leading Global Online Grocery Markets to Create a $ 227BN Growth Opportunity by 2023. Available online: https://www.igd.com/articles/article-viewer/t/leading-global-online-grocery-markets-to-create-a-227bn-growth-opportunity-by-2023/i/20396 (accessed on 12 May 2020).
- Sims, C.A. Macroeconomics and reality. Econometrica 1980, 48, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, B. Analysis of Integrated and Cointegrated Time Series with R, 2nd ed.; Springer: New York, NY, USA, 2008; pp. 34–36. [Google Scholar]
- Usman, M.; Fatin, D.F.; Barusman, M.Y.S.; Elfaki, F.A.M. Application of vector error correction model (VECM) and impulse response function for analysis data index of farmers’ term of trade. Indian J. Sci. Technol. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Hill, R.C.; Griffiths, W.E.; Lim, G.C. Principles of Econometrics, 4th ed.; Willey: Hoboken, NJ, USA, 2011; pp. 474–497. [Google Scholar]
- Lee, J.W. Econometrics, 1st ed.; Pakyoungsa: Seoul, Korea, 2009; pp. 859–888. [Google Scholar]
- Statistics Korea, The Statistical Information Report of Online Shopping Trend’s Survey. Available online: http://meta.narastat.kr/ (accessed on 12 May 2020).
- Engle, R.F.; Granger, C.W.J. Co-integration and error correction: Representation, Estimation and Testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Park, B.J. Applied Econometrics Using R Statistical Software, 1st ed.; Sigmapress: Seoul, Korea, 2013; pp. 265–271. [Google Scholar]
- Nam, J.O.; Baek, E.Y.; Noh, S.G. Forecast for laver producer price using time series models. Ocean Policy Res. 2014, 29, 271–303. [Google Scholar]
- Hussain, K. Monetary Policy Channels of Pakistan and Their Impact on Real GDP and Inflation. In CID Graduate Student and Postdoctoral Fellow Working Papers 41; Center for International Development at Harvard University: Cambridge, MA, USA, 2009; pp. 1–33. [Google Scholar]
- Kim, C.H.; Nam, J.O. A causality analysis of the hairtail price by distribution channel using a vector autoregressive model. J. Fish. Bus. Adm. 2015, 46, 93–107. [Google Scholar]
- Tsay, R.S. Order selection in nonstationary autoregressive models. Ann. Stat. 1984, 12, 1425–1433. [Google Scholar] [CrossRef]
- Paulsen, J. Order determination of multivariate autoregressive time series with unit roots. J. Time Ser. Anal. 1984, 5, 115–127. [Google Scholar] [CrossRef]
- StataCorp LLC. STATA Time-Series Reference Manual Release 16; A Stata Press Publication: Lakeway Drive, TX, USA, 2019; pp. 826–832. [Google Scholar]
- Kim, M.K.; Koo, K.M. The impact of FMD on the relationship among pork prices. Korean J. Agric. Manag. Policy 2013, 40, 592–614. [Google Scholar]
- Lee, Y.E.; Benbasat, I. Interface design for mobile commerce. Commun. ACM 2003, 46, 49–52. [Google Scholar] [CrossRef]
- Lee, E.Y. The study of impact of mobile app attributes for fresh food on customers’ trust, satisfaction and net benefit. E-Bus. Stud. 2016, 17, 175–192. [Google Scholar] [CrossRef]
- Kim, H.J.; Yang, K.S.; Lee, Y.E. Moderating effect of trust and commitment in customer satisfaction and customer loyalty on mobile grocery purchasing quality attributes. J. Korean Soc. Food Sci. Nutr. 2018, 47, 207–221. [Google Scholar] [CrossRef]
- Cheong, J.H.; Park, M.C. Mobile internet acceptance in Korea. Internet Res. 2005, 15, 125–140. [Google Scholar] [CrossRef]
- Quan, S. Factors influencing the adoption of mobile service in China: An integration of TAM. J. Comput. 2010, 5, 799–806. [Google Scholar]
- Azapagic, A.; Perdan, S. Indicators of sustainable development for industry: A general framework. Trans. IChemE 2000, 78, 243–261. [Google Scholar] [CrossRef]
- Krajnc, D.; Glavič, P. Indicators of sustainable production. Clean Technol. Environ. Policy 2003, 5, 279–288. [Google Scholar] [CrossRef]
- McKenzie, S. Social Sustainability: Towards Some Definitions; Working Paper Series; Hawke Research Institute: Magil, Australia, 2004; p. 12. [Google Scholar]
- Malecki, E.J.; Moriset, B. The Digital Economy: Business Organization, Production Processes, and Regional Developments; Routledge: New York, NY, USA, 2004; p. 4. [Google Scholar]
- Statista, Number of Social Network Users Worldwide from 2010 to 2023. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (accessed on 14 May 2020).
- Noh, M.S.; Heo, H.N.; Choi, Y.J.; Lee, H.S. 2018 Internet Use Status Report; Ministry of Science and ICT, Korea Information Security Agency: Naju, Korea, 2019; p. 66. [Google Scholar]
- Lee, S.M.; Lee, D.H. “Untact”: A new customer service strategy in the digital age. Serv. Bus. 2020, 14, 1–22. [Google Scholar] [CrossRef]
Variable Name | Variable Definition |
---|---|
M.fresh | Mobile online shopping transaction amount of fresh food |
M.processed | Mobile online shopping transaction amount of processed food |
M.service | Mobile online shopping transaction amount of food service |
P.fresh | PC-based online shopping transaction amount of fresh food |
P.processed | PC-based online shopping transaction amount of processed food |
P.service | PC-based online shopping transaction amount of food service |
Variables | n | Mean | St. Dev. | Min | Max |
---|---|---|---|---|---|
M.fresh | 72 | 99.56 | 60.65 | 13.49 | 241.88 |
M.processed | 72 | 344.88 | 232.00 | 46.82 | 790.62 |
M.service | 72 | 238.71 | 250.64 | 17.88 | 932.28 |
P.fresh | 72 | 67.74 | 20.14 | 42.57 | 127.87 |
P.processed | 72 | 214.10 | 75.80 | 117.10 | 370.07 |
P.service | 72 | 31.39 | 10.93 | 12.77 | 59.76 |
Variables | Test Statistic | p-Value |
---|---|---|
M.fresh | 0.515 | 0.9853 |
M.processed | 2.268 | 0.9989 |
M.service | 7.608 | 1.000 |
P.fresh | −1.908 | 0.3285 |
P.processed | 0.421 | 0.9823 |
P.service | 1.135 | 0.9955 |
Lags | LL | LR | p-Value | AIC | HQIC | SBIC |
---|---|---|---|---|---|---|
0 | −1835.72 | 53.3833 | 53.4604 | 53.5776 | ||
1 | −1566.77 | 537.91 | 0.000 | 46.631 | 47.1705 | 47.9909 * |
2 | −1497.9 | 137.75 | 0.000 | 45.6782 | 46.6801 | 48.2037 |
3 | −1442.87 | 100.05 * | 0.000 | 45.1267 * | 46.5911 * | 48.8178 |
Rank | LL | Eigenvalue | Trace | Max Eigenvalue | ||
---|---|---|---|---|---|---|
Statistic | 5% Critical | Statistic | 5% Critical | |||
0 | −1538.8628 | 191.9864 | 94.15 | 79.8864 | 39.37 | |
1 | −1498.9196 | 0.6858 | 112.1000 | 68.52 | 59.7676 | 33.46 |
2 | −1469.0358 | 0.5795 | 52.3324 | 47.21 | 23.5735 | 27.07 |
3 | −1457.2491 | 0.2894 | 28.7589 * | 29.68 | 18.8890 * | 20.97 |
4 | −1447.8046 | 0.2395 | 9.8699 | 15.41 | 9.7279 | 14.07 |
5 | −1442.9407 | 0.1315 | 0.1421 | 3.76 | 0.1421 | 3.76 |
Variables | M.Fresh | M.Processed | M.Service | P.Fresh | P.Processed | P.Service |
---|---|---|---|---|---|---|
−0.364 | −0.161 | −0.354 | −0.287 | 0.262 | 0.034 | |
0.091 | 0.420 *** | 0.461 *** | 0.262 *** | 0.323 *** | 0.026 | |
−0.047 * | −0.193 *** | −0.070 *** | −0.114 *** | −0.162 *** | −0.006 | |
constant | 1.123 | 4.674 | 0.097 | −5.822* | −1.814 | 0.020 |
0.083 | 1.001 *** | 1.110 *** | 0.406 | 0.164 | 0.092 | |
0.130 | 0.589 | 1.228 *** | 0.251 | −0.048 | 0.184 ** | |
−0.259 ** | −1.266 *** | −0.709 *** | −0.113 | −0.452 ** | −0.104 *** | |
0.052 | −0.131 * | −0.455 *** | 0.074 | 0.048 | −0.108 ** | |
0.432 *** | 0.644 | −0.795 *** | 0.317 ** | 0.294 | −0.004 | |
0.274 * | 0.508 ** | −0.405 *** | 0.131 | 0.279 | 0.000 | |
0.007 | 0.185 ** | 0.443 * | −0.102 | 0.210 | 0.013 | |
0.280 | 0.770 | −0.010 | 0.181 | 0.375 | −0.006 | |
0.157 | 1.123 | 0.252 | 0.254 | 0.436 | 0.082 | |
−0.301 | −0.331 | −0.221 | −0.160 | −0.230 | 0.017 | |
0.771 | 1.292 | −0.295 | −0.027 | 0.192 | −0.721 *** | |
0.424 | 0.435 | 1.288 ** | 0.284 | 0.315 | −0.175 | |
RMSE | 13.256 | 26.825 | 13.58 | 15.143 | 22.007 | 4.007 |
R-squared | 0.711 | 0.754 | 0.82 | 0.686 | 0.63 | 0.387 |
Chi-square | 128.173 *** | 159.533 *** | 236.198 *** | 113.562 *** | 88.51 *** | 32.855 *** |
Information criterion | AIC = 45.283, HQIC = 46.631, SBIC = 48.682 | |||||
Long-run relationship |
Hypothesis | Lags | F-Value | p-Value |
---|---|---|---|
△M.processed → M.fresh | 3 | 6.37 | 0.00 *** |
△M.service → M.fresh | 11.92 | 0.00 *** | |
△M.fresh → M.processed | 3 | 6.04 | 0.00 *** |
△M.processed → M.processed | 8.04 | 0.00 *** | |
△M.service → M.processed | 9.80 | 0.00 *** | |
△P.fresh → M.processed | 7.24 | 0.00 *** | |
△M.fresh → M.service | 3 | 3.63 | 0.02 ** |
△M.processed → M.service | 7.90 | 0.00 *** | |
△M.service → M.service | 2.26 | 0.09 * | |
△P.fresh → M.service | 3.50 | 0.02 ** | |
△P.service → M.service | 2.53 | 0.07 * | |
△M.service → P.fresh | 3 | 13.83 | 0.00 *** |
△M.processed → P.processed | 3 | 4.60 | 0.01 ** |
△M.fresh → P.service | 3 | 0.29 | 0.84 |
△M.processed → P.service | 1.37 | 0.26 | |
△P.service → P.service | 0.96 | 0.42 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J. Analysis for Growth Potential in Response to Changes in the Online Food Market. Sustainability 2020, 12, 4386. https://doi.org/10.3390/su12114386
Kim J. Analysis for Growth Potential in Response to Changes in the Online Food Market. Sustainability. 2020; 12(11):4386. https://doi.org/10.3390/su12114386
Chicago/Turabian StyleKim, Jonghwa. 2020. "Analysis for Growth Potential in Response to Changes in the Online Food Market" Sustainability 12, no. 11: 4386. https://doi.org/10.3390/su12114386
APA StyleKim, J. (2020). Analysis for Growth Potential in Response to Changes in the Online Food Market. Sustainability, 12(11), 4386. https://doi.org/10.3390/su12114386