Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurement of AV
2.3. Soil Samples and Plant Collection
2.4. Environmental Indicator
2.5. Statistical Analysis
3. Results
3.1. Environment Parameters
3.2. Flux of Ammonia Volatilization in Whole Season
3.3. Optimal Ratio of BS Substitution
4. Discussion
4.1. Factors That Control the AV
4.2. Effects of Fertilizer Type on Crop Yield
4.3. Effects of Substituting Chemical Fertilizer by Biogas Slurry
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2016, 7, 63–68. [Google Scholar] [CrossRef]
- Zhao, R.F.; Chen, X.P.; Zhang, F.S.; Zhang, H.; Schröder, J.; Römheld, V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron. J. 2006, 98, 938–945. [Google Scholar] [CrossRef]
- Ju, X.T.; Chen, X.P.; Yin, B.; Zhang, L.J.; Zhang, F.S.; Zhu, Z.-L.; Xing, G.-X.; Christie, P.; Cui, Z.L.; Zhang, S.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Huang, J.; Wu, D.; Li, X. Investigation on nitrate pollution in ground water at intensive agricultural region on Huanghe-huaihe-haihe plain. Eco Agric. Res. 1999, 7, 41–43. (In Chinese) [Google Scholar]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Glob. Chang. Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Matson, P.A.; Nziguheba, G.; Naylor, R.; Zhang, F.S.; Drinkwater, L.E.; Crews, T.; Holland, E.; Katzenberger, J.; Sanchez, P.A.; et al. Nutrient Imbalances in Agricultural Development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liu, X.J.; Ju, X.T.; Zhang, F.S.; Malhi, S.S. Ammonia volatilization loss from surface-broadcast urea: Comparison of vented- and closed-chamber methods and loss in winter wheat-summer maize rotation in North China Plain. Commun. Soil Sci. Plant Anal. 2004, 35, 2917–2939. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.J.; Fangmeier, A.; Goulding, K.T.W.; Zhang, F.S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 2008, 42, 1436–1448. [Google Scholar] [CrossRef]
- Zhang, Y.; Luan, S.; Chen, L.; Shao, M. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China. J. Environ. Manag. 2011, 92, 480–493. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, G.; Huang, Y.; Xu, X.; Fu, C.; Hu, F.; Han, S.; Yan, X. The Asian Nitrogen Cycle Case Study. AMBIO A J. Hum. Environ. 2009, 31, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Yin, B.; Zhu, Z.; Shen, Q. Ammonia volatilization loss of nitrogen fertilizer from rice field and wet deposition of atmospheric nitrogen in rice growing season. J. Appl. Ecol. 2003, 14, 1884–1888. [Google Scholar]
- Matthews, E. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem. Cycles 1994, 8, 411–439. [Google Scholar] [CrossRef]
- Galloway, J.N.; Sutton, M.A.; Seitzinger, S.P.; Bekunda, M.; Townsend, A.R.; Martinelli, L.A.; Cai, Z.; Erisman, J.W.; Freney, J.R. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef]
- McNeill, A.; Unkovich, M. The Nitrogen Cycle in Terrestrial Ecosystems. Nutr. Cycl. Terr. Ecosyst. 2007, 10, 37–64. [Google Scholar] [CrossRef]
- Anderson, N.; Strader, R.; Davidson, C. Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environ. Int. 2003, 29, 277–286. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, Y.; Yin, B.; Zhu, Z. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. F. Crop. Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Kim, J.Y.; Song, C.H.; Ghim, Y.S.; Won, J.G.; Yoon, S.C.; Carmichael, G.R.; Woo, J.H. An investigation on NH3 emissions and particulate NH 4+-NO3- formation in East Asia. Atmos. Environ. 2006, 40, 2139–2150. [Google Scholar] [CrossRef]
- Pinder, R.W.; Adams, P.J.; Pandis, S.N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Environ. Sci. Technol. 2007, 41, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Powlson, D.S.; van Kessel, C.; L’hirondel, J.-L.; Addiscott, T.M.; Cassman, K.G.; Benjamin, N.; Avery, A.A.; de Kok, T.M.; van Grinsven, H. When Does Nitrate Become a Risk for Humans? J. Environ. Qual. 2008, 37, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Dou, Z.; Ma, L.; Ma, W.; Sims, J.T.; Zhang, F. Nitrogen Mass Flow in China’s Animal Production System and Environmental Implications. J. Environ. Qual. 2010, 39, 1537–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadwick, D.; Wei, J.; Yan’an, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Alam, S. Production of Organic Manure in Bangladesh; Bangladesh Livestock Research Institute’s Report; Bangladesh Livestock Research Institute: Dhaka, Bangladesh, 2006. [Google Scholar]
- Chen, G.; Zhao, G.; Zhang, H. Biogas slurry use as N fertilizer for two-season Zizania aquatica Turcz. in China. Nutr. Cycl. Agroecosyst. 2017, 107, 303–320. [Google Scholar] [CrossRef]
- Dahiya, A.K.; Vasudevan, P. Biogas Plant Slurry as an Alternative to Chemical Fertilizers. Biomass 1986, 9, 67–74. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, L.; Chen, D.; Toyota, K.; Strong, P.J.; Wang, H. Decontamination of anaerobically digested slurry in a paddy field ecosystem in Jiaxing region of China. Agric. Ecosyst. Environ. 2012, 146, 13–22. [Google Scholar] [CrossRef]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.K.; Yang, Q.C.; Du, L. Soilless cultivation for high-quality vegetables with biogas manure in China: Feasibility and beneft analysis. Renew. Agric. Food Syst. 2009, 24, 300–307. [Google Scholar] [CrossRef]
- Groot, L.; Bogdanski, A. Bioslurry: Brown Gold? A Review of Scientifc Literature on the Co-Product of Biogas Production; Environment and Natural Resources Series; FAO: Rome, Italy, 2013. [Google Scholar]
- Malav, M.K.; Khan, S.; Kumar, S. Biogas Slurry: Source of Nutrients for Eco-friendly Agriculture. Int. J. Extensive Res. 2015, 2, 42–46. [Google Scholar]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef] [PubMed]
- Serbian Environmental Protection Agency (SEPA). Standard Methods for the Examination of Water and Wastewater; Version 4; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Liu, H.; Li, H.; Zhang, A.; Rahaman, M.A.; Yang, Z. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China. Sci. Total Environ. 2020, 721, 137636. [Google Scholar] [CrossRef] [PubMed]
- Lu, R. Analytical Methods of Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Abubaker, J.; Odlare, M.; Pell, M. Nitrous Oxide Production from Soils Amended with Biogas Residues and Cattle Slurry. J. Environ. Qual. 2013, 42, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wu, W.; Li, C.; Liu, Y.; Wen, X.; Liao, Y. Soil ammonia volatilization following urea application suppresses root hair formation and reduces seed germination in six wheat varieties. Environ. Exp. Bot. 2016, 132, 130–139. [Google Scholar] [CrossRef]
- Xu, J.; Liao, L.; Tan, J.; Shao, X. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: A pots experiment. Soil Tillage Res. 2013, 126, 169–176. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, P.; Dong, S.; Zhang, J.; Zhao, B. Effects of fertilizer type and rate on summer maize grain yield and ammonia volatilization loss in northern China. J. Soils Sediments 2019, 19, 2200–2211. [Google Scholar] [CrossRef]
- Beauchamp, E.G.; Kidd, G.E.; Thurtell, G. Ammonia Volatilization From Liquid Dairy Cattle Manure in the Field. Can. J. Soil Sci. 1982, 62, 11–19. [Google Scholar] [CrossRef]
- Sommer, S.G.; Genermont, S.; Cellier, P.; Hutchings, N.J.; Olesen, N.E.; Morvan, T. Processes controlling ammonia emission from livestock slurry in the field. Eur. J. Agron. 2003, 19, 465–486. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction-invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Sommer, S.G.; Olesen, J.E. Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals. Atmos. Environ. 2000, 34, 2361–2372. [Google Scholar] [CrossRef]
- Bremner, J.M.; Douglas, L.A. Decomposition of Urea Phosphate in Soils. Soil Sci. Soc. Am. J. 1971, 35, 575–578. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar]
- Vlek, P.L.G.; Carter, M.F. The effect of soil environment and fertilizer modifications on the rate of urea hydrolysis. Soil Sci. 1983, 136, 56–63. [Google Scholar] [CrossRef]
- Matsushima, M.; Lim, S.; Kwak, J.; Park, H.; Lee, S.; Lee, D.; Choi, W. Interactive effects of synthetic nitrogen fertilizer and composted manure on ammonia volatilization from soils. Plant Soil 2009, 325, 187–196. [Google Scholar] [CrossRef]
- Vandrc, R.; Clemens, J.; Goldbach, H.; Kaupenjohann, M. NH3, and N2O Emissions after Landspreading of Slurry as Influenced by Application Technique and Dry Matter-Reduction. I. NH3 Emissions. Z. Pflanz. Bodenkd. 1997, 160, 303–307. [Google Scholar] [CrossRef]
- Gu, L.; Liu, T.; Wang, J.; Liu, P.; Dong, S.; Zhao, B.; So, H.B.; Zhang, J.; Zhao, B.; Li, J. Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. F. Crop. Res. 2016, 188, 82–95. [Google Scholar] [CrossRef]
- Ouyang, D.S.; Mackenuie, A.F.; Fan, M.X. Ammonia Volatilization from Urea Amended with Triple Superphosphate and Potassium Chloride. Soil Sci. Soc. Am. J. 1998, 62, 1443–1447. [Google Scholar] [CrossRef]
- Huang, X.; Song, Y.; Li, M.; Li, J.; Huo, Q.; Cai, X.; Zhu, T.; Hu, M.; Zhang, H. A high-resolution ammonia emission inventory in China. Global Biogeochem. Cycles 2012, 26, 1–14. [Google Scholar] [CrossRef]
- Zheng, F.; Dong, S.; Liu, P.; Zhang, J.; Zhao, B. Effects of combined application of manure and chemical fertilizers on ammonia volatilization loss and yield of winter wheat. J. Plant Nutr. Fertil. 2017, 23, 567–577. (In Chinese) [Google Scholar]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmer. Nat. Publ. Gr. 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Fan, J.; Cui, J.; Wang, Y.; Zhou, J.; Ye, M. Effects of biogas slurry application on peanut yield, soil nutrients, carbon storage, and microbial activity in an Ultisol soil in southern China. J. Soils Sediments 2016, 16, 449–460. [Google Scholar] [CrossRef]
- Du, H.; Gao, W.; Li, J.; Shen, S.; Wang, F.; Fu, L.; Zhang, K. Effects of digested biogas slurry application mixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain. Agric. Water Manag. 2019, 213, 882–893. [Google Scholar] [CrossRef]
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef] [PubMed]
Layer | Organic Matter (g kg−1) | Total N (g kg−1) | Total K (g kg−1) | Available P (mg kg−1) | Available N (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|---|
0–20 cm | 13.7 | 0.9 | 21 | 70.6 | 83.4 | 227.0 |
20–40 cm | 10.7 | 0.6 | 21 | 22.0 | 46.5 | 146.9 |
Fertilizer Type | T1 | T3 | T6 | CK | Fertilizer Type | T1 | T3 | T6 | CK | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Basal Fertilization | CF, k/ha | 68 | 68 | 68 | 68 | Tillering Fertilization | CF, Kg/ha | 0 | 79 | 126 | 158 |
BS, kg/ha | 0 | 0 | 0 | 0 | BS, Kg/ha | 158 | 79 | 32 | 0 |
Parameter | pH | TN | COD | NH4+N | NO3−N | TP | TK | Fe | As | Hg | Cu | Zn | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 8 | 1710 | 8713 | 1558 | 0.081 | 300 | 1390 | 4.50 | 5.26 | 0.09 | 103 | 877 | 0.17 | 3.61 |
Varieties | Fertilizer Type | Treatments | |||
---|---|---|---|---|---|
T1 | T3 | T6 | CK | ||
Maize | Basal fertilization | 1.70 ± 0.05b | 1.09 ± 0.03b | 1.85 ± 0.05b | 2.40 ± 0.42a |
Tillering fertilization | 14.34 ± 0.66a | 22.87 ± 0.98a | 21.13 ± 0.90a | 26.19 ± 0.10a | |
Whole season | 16.04 ± 0.43a | 23.96 ± 0.65a | 22.98 ± 0.59a | 28.59 ± 0.72a | |
Wheat | Basal fertilization | 5.88 ± 0.05b | 5.96 ± 0.05b | 6.50 ± 0.06b | 7.79 ± 0.08a |
Tillering fertilization | 5.00 ± 0.04b | 7.14 ± 0.07ab | 6.58 ± 0.05ab | 8.29 ± 0.10a | |
Whole season | 10.87 ± 0.04b | 13.10 ± 0.04b | 13.08 ± 0.04b | 16.08 ± 0.06a |
Varieties | Grain Yield, kg/ha | |||
---|---|---|---|---|
T1 (158 BS + 0 CF) | T3 (126 BS + 32 CF) | T6 (79 BS + 79 CF) | CK (0 BS + 158 CF) | |
Maize | 4625 ± 257a | 6958 ± 1214a | 5875 ± 358a | 5000 ± 118a |
Wheat | 3329 ± 146b | 4868 ± 233a | 5562 ± 29a | 6250 ± 270a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, M.A.; Zhan, X.; Zhang, Q.; Li, S.; Lv, S.; Long, Y.; Zeng, H. Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain. Sustainability 2020, 12, 4400. https://doi.org/10.3390/su12114400
Rahaman MA, Zhan X, Zhang Q, Li S, Lv S, Long Y, Zeng H. Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain. Sustainability. 2020; 12(11):4400. https://doi.org/10.3390/su12114400
Chicago/Turabian StyleRahaman, Md Arifur, Xiaoying Zhan, Qingwen Zhang, Shuqin Li, Shengmei Lv, Yuting Long, and Hailing Zeng. 2020. "Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain" Sustainability 12, no. 11: 4400. https://doi.org/10.3390/su12114400
APA StyleRahaman, M. A., Zhan, X., Zhang, Q., Li, S., Lv, S., Long, Y., & Zeng, H. (2020). Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain. Sustainability, 12(11), 4400. https://doi.org/10.3390/su12114400