Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Data Collection
2.2.2. Data Processing
2.3. Methods
2.3.1. Transition Matrix of LULC Types
2.3.2. Land Use Change Dynamic Degree
2.3.3. Estimation of ESV
2.3.4. Spatial Relationship between LULC Change and ESV
3. Results
3.1. LULC Change in Xi’an from 2000 to 2018
3.2. Changes in Land Use Dynamic Degree
3.2.1. Temporal Analysis of LULC Dynamics
3.2.2. Spatial Analysis of LULC Dynamics
3.3. Temporal and Spatial Distribution Characteristics of ESV
3.3.1. Temporal Change Characteristics of ESV
3.3.2. Spatial Change Characteristics of ESV
3.4. Spatial Relationship between LULC Change and ESV
3.4.1. OLS Model and GWR Model
3.4.2. Spatial Relationship between LULC Change and ESV
4. Discussion
4.1. Spatiotemporal Changes of ESV Response to LULC Change
4.2. The Implication of the Relationship between LULC Change and ESV
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Byrd, K.B.; Flint, L.E.; Alvarez, P.; Casey, C.F.; Sleeter, B.M.; Soulard, C.E.; Flint, A.L.; Sohil, T.L. Integrated climate and land use changes scenarios for California range land ecosystem services: Wildlife habitat, soil carbon, and water supply. Landsc. Ecol. 2015, 30, 729–750. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Li, Z.; Wang, Y.; Jiao, M.; Li, M.; Xia, B. Spatio-temporal changes in ecosystem service value in response to land-use/cover changes in the Pearl River Delta. Resour. Conserv. Recycl. 2019, 149, 106–114. [Google Scholar] [CrossRef]
- Muleta, T.T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Bryan, B.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Chukwujindu, M.A.; Bice, S.M. Ecological and human health risks arising from exposure to metals in urban soils under different land use in Nigeria. Environ. Sci. Pollut. Res. 2018, 25, 12373–12390. [Google Scholar]
- Posner, S.M.; McKenzie, E.; Ricketts, T.H. Policy impacts of ecosystem services knowledge. Proc. Natl. Acad. Sci. USA 2016, 113, 1760–1765. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, P.; Ehrlich, A. Extinction: The causes and consequences of the disappearance of species. Biol. Conserv. 1981, 26, 378–379. [Google Scholar]
- Van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; De Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Cui, X.G.; Fang, C.L.; Li, J.; Liu, H.M.; Zhang, Q. Progress in dynamic simulation modeling of urbanization and ecological environment coupling. Prog. Geogr. 2019, 38, 111–125. [Google Scholar]
- Zhao, T.Q.; Ouyang, Z.Y.; Jia, L.Q.; Zheng, H. Ecosystem services and their valuation of China grassland. Acta Ecol. Sin. 2004, 24, 1101–1110. [Google Scholar]
- Wang, J.S.; Li, W.H.; Ren, Q.S.; Liu, M.C. The value of Tibet’s forest ecosystem services. J. Nat. Res. 2007, 22, 831–841. [Google Scholar]
- Huang, A.; Xu, Y.-Q.; Sun, P.; Zhou, G.; Liu, C.; Lu, L.; Xiang, Y.; Wang, H. Land use/land cover changes and its impact on ecosystem services in ecologically fragile zone: A case study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Niu, X.; Wang, B.; Liu, S.; Liu, C.; Wei, W.; Kauppi, P.E. Economical assessment of forest ecosystem services in China: Characteristics and implications. Ecol. Complex. 2012, 11, 1–11. [Google Scholar] [CrossRef]
- Zhang, D.; Min, Q.W.; Liu, M.C.; Cheng, S.K. Ecosystem service trade-off between traditional and modern agriculture: A case study in Congjiang County, Guizhou Province, China. Front. Environ. Sci. Eng. 2012, 6, 743–752. [Google Scholar] [CrossRef]
- Richardson, L.; Loomis, J.B.; Kroeger, T.; Casey, F. The role of benefit transfer in ecosystem service valuation. Ecol. Econ. 2015, 115, 51–58. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Sannigrahia, S.; Bhatt, S.; Rahmata, S.; Paula, S.K.; Sena, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, F.; Chu, X.; Liu, W.; Zhang, Y. Ecosystem services assessment based on emergy accounting in Chongming Island, Eastern China. Ecol. Indic. 2019, 105, 464–473. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Kubiszewski, I.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.D.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Li, G.D.; Fang, C.L.; Wang, S.J. Exploring spatiotemporal changes in ecosystem-service values and hot-spots in China. Sci. Total Environ. 2016, 545, 609–620. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Li, Z.; Zhang, L.; Wang, Z. Processes and driving forces for changing vegetation ecosystem services: Insights from the Shaanxi Province of China. Ecol. Indic. 2020, 112, 106105. [Google Scholar] [CrossRef]
- Liu, Y.R.; Yan, L.J.; Wang, C. Impacts of land use change on ecosystem services in the agricultural area of North China Plain: A case study of Shangqiu City, Henan Province, China. Appl. Ecol. 2015, 29, 1597–1606. [Google Scholar]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Hu, X.; Hong, W.; Qiu, R.; Hong, T.; Chen, C.; Wu, C. Geographic variations of ecosystem service intensity in Fuzhou City, China. Sci. Total Environ. 2015, 512, 215–226. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land use and land cover change in the Qinghai Lake region of the Tibetan Plateau and its impact on ecosystem services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, P.; Li, C.X.; Peng, Y.; Wei, H. Temporal and spatial variation of ecosystem service value in the Three Gorges Reservoir region (Chongqing Section) based on land use. Sci. Silvae Sin. 2014, 50, 17–26. [Google Scholar]
- Fan, T.F.; Aruhan, Q.; Fu, C.; Peng, Z. Impact of land use change on the ecosystem services value in Wu Chuan County of inner Mongolia. J. Inn. Mong. Univ. 2019, 50, 104–112. [Google Scholar]
- Chen, S.; Li, G.; Xu, Z.; Zhuo, Y.; Wu, C.; Ye, Y. Combined impact of socioeconomic forces and policy implications: spatial-temporal dynamics of the ecosystem services value in Yangtze River Delta, China. Sustainability 2019, 11, 2622. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.M.; Yao, S.B. Rationality and decision-making attributes of sensitivity coefficient of ecosystem services based on elastic model. Sci. Geogr. Sin. 2019, 39, 1672–1679. [Google Scholar]
- Czembrowski, P.; Kronenberg, J. Hedonic pricing and different urban green space types and sizes: Insights into the discussion on valuing ecosystem services. Landsc. Urban Plan. 2016, 146, 11–19. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.-Z.; Lin, W.-X. Evaluation of ecosystem services value and its implications for policy making in China—A case study of Fujian province. Ecol. Indic. 2020, 108, 105752. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localization, indication and quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Schröter, M.; Koellner, T.; Alkemade, R.; Arnhold, S.; Bagstad, K.J.; Erb, K.; Frank, K.; Kastner, T.; Kissinger, M.; Liu, J.; et al. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar] [CrossRef]
- Zhi, W.; Shirong, L.; Liandi, Z.; ZhiHua, G.; Pengsen, S.; Hong, L. The relationship of vegetation greenness period and climate precipitation change in the north-south transect of Eastern China. Procedia Environ. Sci. 2011, 10, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yan, F.; Fan, X.T. The variability of NDVI over northwest China and its relation to temperature and precipitation. J. Remote Sens. 2005, 9, 308–313. [Google Scholar]
- China Statistical Yearbook. National Bureau of Statistics of China. 2016. Available online: http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm (accessed on 20 September 2019).
- Wang, X.L.; Bao, Y.H. Study on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 81–87. [Google Scholar]
- Hu, S.; Chen, L.; Li, L.; Wang, B.; Yuan, L.; Cheng, L.; Yu, Z.; Zhang, T. Spatiotemporal dynamics of ecosystem service value determined by land-use changes in the urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16, 5104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryan, B.; Ye, Y.; Zhang, J.; Connor, J.D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Chuai, X.W.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Nakaya, T. Local spatial interaction modelling based on the geographically weighted regression approach. GeoJournal 2001, 53, 347–358. [Google Scholar] [CrossRef]
- Kang, Y.; Cheng, C.; Liu, X.; Zhang, F.; Li, Z.; Lu, S. An ecosystem services value assessment of land-use change in Chengdu: Based on a modification of scarcity factor. Phys. Chem. Earth 2019, 110, 157–167. [Google Scholar] [CrossRef]
- Li, T.; Wenkai, L.; Zhenghan, Q. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecol. Econ. 2010, 69, 1427–1435. [Google Scholar] [CrossRef]
- Kogan, F. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Chichester, UK, 2002. [Google Scholar]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. Spatial variations in school performance: A local analysis using geographically weighted regression. Geogr. Environ. Model. 2001, 5, 43–66. [Google Scholar] [CrossRef]
- Propastin, P. Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 82–90. [Google Scholar] [CrossRef]
- Gong, N.; Niu, Z.G.; Qi, W.; Zhang, H.Y. Driving forces of wetland change in China. J. Remote Sens. 2016, 20, 172–183. [Google Scholar]
- Wang, H.B.; Hou, R.P.; Zheng, D.M.; Gao, X.H.; Xia, Z.Z.; Peng, D.L. Biomass estimation of arbor forest in subtropical region based on geographically weighted regression model. Trans. Chin. Soc. Agric. Mach. 2018, 49, 184–190. [Google Scholar]
- Wang, Y.; Zhao, J.; Fu, J.; Wei, W. Effects of the grain for green program on the water ecosystem services in an arid area of China—Using the Shiyang River Basin as an example. Ecol. Indic. 2019, 104, 659–668. [Google Scholar] [CrossRef]
- Xie, Y.F.; Yao, S.B.; Deng, Y.J.; Jia, L.; Li, Y.Y.; Gao, Q. Impact of the ‘Grain for Green’ project on the spatial and temporal pattern of habitat quality in Yan’an City, China. Chin. J. Eco Agric. 2020, 28, 575–586. [Google Scholar]
- Xu, Z.; Wei, H.; Fan, W.; Wang, X.; Huang, B.; Lu, N.; Ren, J.; Dong, X. Energy modeling simulation of changes in ecosystem services before and after the implementation of a Grain-for-Green program on the Loess Plateau—A case study of the Zhifanggou valley in Ansai County, Shaanxi Province, China. Ecosyst. Serv. 2018, 31, 32–43. [Google Scholar] [CrossRef]
- Li, X.X.; Zhang, H.J.; Zhang, Z.C.; Feng, J.; Liu, K.; Hua, Y.W.; Pang, Q.S. Spatiotemporal changes in ecosystem services along an urban rural natural gradient: A case study of Xi’an, China. Sustainability 2020, 12, 1133. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, W.; Zhang, L.; Jin, D.; Lu, C. Estimating the ecosystem service losses from proposed land reclamation projects: A case study in Xiamen. Ecol. Econ. 2010, 69, 2549–2556. [Google Scholar] [CrossRef]
- Ayanlade, A.; Proske, U. Assessing wetland degradation and loss of ecosystem services in the Niger Delta, Nigeria. Mar. Freshw. Res. 2016, 67, 828. [Google Scholar] [CrossRef]
- Du, X.; Huang, Z. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou, China. Ecol. Indic. 2017, 81, 243–251. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, I. Impacts of land change on ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Bi, X.L.; Ge, J.P. Evaluation ecosystem service valuation in china based on the IGBP land cover datasets. J. Mt. Sci. 2004, 22, 48–53. [Google Scholar]
Service Type | Secondary Classification | Farmland | Woodland | Grassland | Water Area | Developed Land |
---|---|---|---|---|---|---|
Provisioning | Food production | 1.11 | 0.24 | 0.23 | 0.80 | 0.01 |
Raw materials | 0.25 | 0.55 | 0.34 | 0.23 | 0.00 | |
Water supply | −1.31 | 0.28 | 0.19 | 8.29 | −7.51 | |
Regulating | Gas regulation | 0.89 | 1.79 | 1.21 | 0.77 | −2.42 |
Climate regulation | 0.47 | 5.37 | 3.19 | 2.29 | 0.00 | |
Waste recycling | 0.14 | 1.61 | 1.05 | 5.55 | −2.46 | |
Hydrological regulation | 1.50 | 4.05 | 2.34 | 102.24 | 0.00 | |
Supporting | Soil conservation | 0.52 | 2.19 | 1.47 | 0.93 | 0.02 |
Nutrient cycling | 0.16 | 0.17 | 0.11 | 0.07 | 0.00 | |
Biodiversity | 0.17 | 1.99 | 1.34 | 2.55 | 0.34 | |
Cultural | Aesthetic landscape | 0.08 | 0.88 | 0.59 | 1.89 | 0.01 |
Service Type | Secondary Classification | Farmland | Woodland | Grassland | Water Area | Developed Land |
---|---|---|---|---|---|---|
Provisioning | Food production | 3595.58 | 780.94 | 759.25 | 2603.14 | 32.54 |
Raw materials production | 797.21 | 1773.39 | 1117.18 | 748.40 | 0.00 | |
Water supply | −4246.37 | 911.10 | 618.24 | 269,75.00 | −24,436.94 | |
Regulating | Gas regulation | 2895.99 | 5824.52 | 3926.40 | 2505.52 | −7874.49 |
Climate regulation | 1513.07 | 17,457.28 | 10,380.00 | 7451.48 | 0.00 | |
Waste recycling | 439.28 | 5222.54 | 3427.46 | 18,059.26 | −8004.64 | |
Hydrological regulation | 4864.61 | 13,162.11 | 7603.33 | 332,680.78 | 0.00 | |
Supporting | Soil conservation | 1692.04 | 7109.82 | 4783.26 | 3026.15 | 65.08 |
Nutrient cycling | 504.36 | 536.90 | 368.78 | 227.77 | 0.00 | |
Biodiversity | 553.17 | 6475.30 | 4349.41 | 8297.50 | 1106.33 | |
Cultural | Aesthetic landscape | 244.04 | 2847.18 | 1919.81 | 6149.91 | 32.54 |
Total | 12,852.98 | 62,101.08 | 39,253.12 | 408,724.91 | −39,079.58 |
LULC Types | 2000 | 2018 | 2000–2018 | |||
---|---|---|---|---|---|---|
hm2 | % | hm2 | % | Change Area (hm2) | Change Rate (%) | |
Farmland | 398,331.60 | 39.46 | 348,575.06 | 34.54 | −49,756.54 | −12.49 |
Woodland | 301,149.11 | 29.83 | 301,006.06 | 29.82 | −143.05 | −0.05 |
Grassland | 214,614.75 | 21.26 | 209,859.88 | 20.79 | −4754.87 | −2.22 |
Water bodies | 12,282.98 | 1.22 | 13,586.51 | 1.35 | 1303.53 | 10.61 |
Developed land | 83,061.27 | 8.23 | 136,297.01 | 13.50 | 53,235.74 | 64.09 |
Total | 1,009,439.71 | 1 | 1,009,324.52 | 1 | - | - |
2018 | Farmland | Woodland | Grassland | Water Bodies | Developed Land | |
---|---|---|---|---|---|---|
2000 | ||||||
Farmland | 338,990.97 | 1964.33 | 4952.16 | 3297.56 | 49,071.01 | |
Woodland | 216.09 | 296,672.09 | 115.28 | 371.93 | 3728.03 | |
Grassland | 6003.96 | 1919.65 | 204,282.36 | 707.69 | 1679.88 | |
Water bodies | 1013.60 | 336.26 | 353.31 | 9130.38 | 1449.43 | |
Developed land | 2350.43 | 113.67 | 156.77 | 78.95 | 80,361.44 |
Land Use Types | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 | 2000–2018 |
---|---|---|---|---|---|
Farmland | −0.72 | −0.48 | −1.08 | −0.55 | −0.69 |
Woodland | −0.01 | 0.13 | −0.06 | −0.12 | −0.01 |
Grassland | 0.10 | −0.50 | −0.05 | 0.01 | −0.12 |
Water bodies | 5.25 | 0.18 | −1.14 | −2.64 | 0.59 |
Developed land | 2.43 | 2.69 | 4.27 | 2.10 | 3.56 |
CLUDD | 0.28 | 0.29 | 0.45 | 0.16 | 0.30 |
Farmland | Woodland | Grassland | Water Bodies | Developed Land | Total | ||
---|---|---|---|---|---|---|---|
2000 | ESV | 7662.73 | 27,990.80 | 12,608.65 | 7513.97 | −1820.34 | 53,955.81 |
Proportion | 14.20 | 51.88 | 23.37 | 13.93 | −3.37 | 100 | |
2018 | ESV | 6071.16 | 25,330.61 | 11,162.85 | 7525.07 | −2704.44 | 47,385.24 |
Proportion | 12.81 | 53.46 | 23.56 | 15.88 | −5.71 | 100 | |
2000–2005 | ESV change | −910.21 | −2415.71 | −1029.37 | 1157.05 | −45.30 | −3243.54 |
Change rate | −11.88 | −8.63 | −8.16 | 15.40 | −2.49 | −6.01 | |
2005–2010 | ESV change | −279.64 | −289.90 | −486.86 | −76.38 | −213.59 | −1346.38 |
Change rate | −4.14 | −1.13 | −4.20 | −0.88 | −11.45 | −2.65 | |
2010–2015 | ESV change | −118.72 | 880.76 | 394.15 | −183.33 | −539.37 | 433.49 |
Change rate | −1.83 | 3.48 | 3.55 | −2.13 | −25.94 | 0.88 | |
2015–2018 | ESV change | −283.00 | −835.35 | −323.72 | −886.25 | −85.83 | −2414.14 |
Change rate | −4.45 | −3.19 | −2.82 | −10.54 | −3.28 | −4.85 | |
2000–2018 | ESV change | −1591.57 | −2660.20 | −1445.80 | 11.09 | −884.10 | −6570.57 |
Change rate | −20.77 | −9.50 | −11.47 | 0.15 | −48.57 | −12.18 |
Time | Variables | Parameter Estimate | Standard Error | t Value | p Value |
---|---|---|---|---|---|
2000–2005 | CLUDD2000–2005 | −991,985.16 | 4967.12 | −199.71 | 0.000 |
2005–2010 | CLUDD2005–2010 | −382,928.39 | 963.08 | −9.12 | 0.000 |
2010–2015 | CLUDD2010–2015 | −368,909.53 | 4362.80 | −84.56 | 0.000 |
2015–2018 | CLUDD2015–2018 | −706,832.99 | 3332.93 | −212.07 | 0.000 |
Model | Index | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 |
---|---|---|---|---|---|
GWR | AIC | 262,807.53 | 262,110.71 | 256,629.11 | 257,128.35 |
R2 | 0.93 | 0.66 | 0.87 | 0.94 | |
R2 Adjusted | 0.93 | 0.66 | 0.87 | 0.94 | |
OLS | AIC | 274,740.70 | 270,561.92 | 272,168.25 | 269,186.61 |
R2 | 0.79 | 0.23 | 0.40 | 0.81 | |
R2 Adjusted | 0.79 | 0.23 | 0.40 | 0.81 |
Variables | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 |
---|---|---|---|---|
Maximum | 6,636,170.72 | 1,061,681.11 | 131,742.95 | 298,070.76 |
Minimum value | −37,014,722.51 | −842,885.74 | −1,383,819.72 | −9,361,097.92 |
Mean | 3,973,946.31 | 85,747.60 | −266,186.91 | −254,871.44 |
Median | −44,544.24 | −157,490.59 | −109,482.45 | −94,995.56 |
Positive coefficients Proportion (%) | 44.31 | 19.06 | 1.01 | 8.19 |
Negative coefficients Proportion (%) | 55.69 | 80.94 | 98.99 | 91.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Yuan, X.; Ma, C.; Ma, R.; Ren, Z. Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China. Sustainability 2020, 12, 4449. https://doi.org/10.3390/su12114449
Shao Y, Yuan X, Ma C, Ma R, Ren Z. Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China. Sustainability. 2020; 12(11):4449. https://doi.org/10.3390/su12114449
Chicago/Turabian StyleShao, Yajing, Xuefeng Yuan, Chaoqun Ma, Ruifang Ma, and Zhaoxia Ren. 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China" Sustainability 12, no. 11: 4449. https://doi.org/10.3390/su12114449
APA StyleShao, Y., Yuan, X., Ma, C., Ma, R., & Ren, Z. (2020). Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China. Sustainability, 12(11), 4449. https://doi.org/10.3390/su12114449