Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their Diversity and Extracellular Enzymes, Cold Adaptation Strategies, and Secondary Metabolites
Abstract
:1. Introduction
2. Soil Yeast Diversity and Their Ecological Role in East Ongul Island
3. Soil Yeast Diversity and Their Cold Adaptation Strategies in the Skarvsnes Ice-Free Area
4. Secondary Metabolites Induced by Cold Stress
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 2003, 1, 200–208. [Google Scholar] [CrossRef]
- Gerday, C.; Aittaleb, M.; Bentahir, M.; Chessa, J.P.; Claverie, P.; Collins, T.; D’Amico, S.; Dumont, J.; Garsoux, G.; Georlette, D.; et al. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol. 2000, 18, 103–107. [Google Scholar] [CrossRef]
- Welander, U. Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment. Contam. 2005, 14, 281–291. [Google Scholar] [CrossRef]
- Margesin, R.; Neuner, G.; Storey, K.B. Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 2007, 94, 77–99. [Google Scholar] [CrossRef]
- Ravindra, R.; Chaturvedi, A. Antarctica. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Berlin, Germany, 2011; pp. 45–53. [Google Scholar]
- Onofri, S.; Zucconi, L.; Tosi, S. Continental Antarctic Fungi; IHW Verlag: München, Germany, 2007. [Google Scholar]
- Bridge, P.D.; Spooner, B.M. Non-lichenized Antarctic fungi: Transient visitors or members of a cryptic ecosystem? Fungal Ecol. 2012, 5, 381–394. [Google Scholar] [CrossRef]
- Tsuji, M. A catalog of fungi recorded from the vicinity of Syowa Station. Mycoscience 2018, 59, 319–324. [Google Scholar] [CrossRef]
- Tsuji, M. An index of non-lichenized fungi recorded in the vicinity of Syowa Station, East Antarctica. In Fungi in Polar Regions; Tsuji, M., Hoshino, T., Eds.; CRC Press: Oxford, UK, 2019; pp. 1–16. [Google Scholar]
- Tsuji, M. Genetic diversity of yeasts from East Ongul Island, East Antarctica and their extracellular enzymes secretion. Polar Biol. 2018, 41, 249–258. [Google Scholar] [CrossRef]
- Fell, J.W.; Mrakia, Y. Yamada & Komagata (1987). In The Yeast, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boeckhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1503–1510. [Google Scholar]
- Fonseca, Á.; Boekhout, T.; Fell, J.W. Cryptococcus Vuillemin (1901). In The Yeast, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boeckhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1661–1737. [Google Scholar]
- Sampaio, J.P. Rhodotorula Harrison (1928). In The Yeast, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boeckhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1873–1927. [Google Scholar]
- Takashima, M.; Nakase, T. Udeniomyces Nakase & Takematsu (1992). In The Yeast, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boeckhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 2063–2068. [Google Scholar]
- Tsuji, M.; Tsujimoto, M.; Imura, S. Cystobasidium tubakii and Cystobasidium ongulense, new basidiomycetous yeast species isolated from East Ongul Island, East Antarctica. Mycoscience 2017, 58, 103–107. [Google Scholar] [CrossRef]
- Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353. [Google Scholar] [CrossRef]
- Franks, F. Protein destabilization at low temperatures. Adv. Protein Chem. 1995, 46, 105–139. [Google Scholar] [PubMed]
- Feller, G.; Gerday, C. Psychrophilic enzymes: Molecular basis of cold adaptation. Cell. Mol. Life Sci. 1997, 53, 830–841. [Google Scholar] [CrossRef]
- Gerday, C.; Aittaleb, M.; Arpigny, J.L.; Baise, E.; Chessa, J.-P.; Garsoux, G.; Petrescu, I.; Feller, G. Psychrophilic enzymes: A thermodynamic challenge. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1997, 1342, 119–131. [Google Scholar] [CrossRef]
- Carrasco, M.; Rozas, J.M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol. 2012, 12, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, A.B.M.; Rosa, L.H.; Vieira, M.L.A.; de Garcia, V.; Brandaão, L.R.; Teixeira, L.C.R.S.; Molineé, M.; Libkind, D.; van Broock, M.; Rosa, C.A. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz. J. Microbiol. 2011, 42, 937–947. [Google Scholar] [CrossRef]
- Tsuji, M.; Fujiu, S.; Xiao, N.; Hanada, Y.; Kudoh, S.; Kondo, H.; Tsuda, S.; Hoshino, T. Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctic. FEMS Microbiol. Lett. 2013, 346, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snider, C.S.; Hsiang, T.; Zhao, G.; Griffith, M. Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds. Phytopathology 2000, 90, 354–361. [Google Scholar] [CrossRef]
- Hoshino, T.; Kiriaki, M.; Nakajima, T. Novel thermal hysteresis proteins from low temperature basidiomycete, Coprinus psychromorbidus. Cryo Lett. 2003, 24, 135–142. [Google Scholar]
- Hoshino, T.; Xiao, N.; Tkachenko, O.B. Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 2009, 50, 26–38. [Google Scholar] [CrossRef]
- Xiao, N.; Suzuki, K.; Nishiyama, Y.; Kondo, H.; Miura, A.; Tsuda, S.; Hoshino, T. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces pschrotrophicus and Typhula ishikariensis. FEBS J. 2010, 277, 394–403. [Google Scholar] [CrossRef]
- Xiao, N.; Inaba, S.; Tojo, M.; Degawa, Y.; Fujiu, S.; Hanada, Y.; Kudoh, S.; Hoshino, T. Antifreeze activities of various fungi and Stramenophilia isolated from Antarctica. N. Am. Fungi 2010, 5, 215–220. [Google Scholar]
- Pathan, A.A.K.; Bhadra, B.; Begum, Z.; Shivaji, S. Diversity of Yeasts from Puddles in the Vinicity of Midre Lovénbreen Glacier, Arctic and Bioprospecting for Enzymes and Fatty acids. Curr. Microbiol. 2010, 60, 307–314. [Google Scholar] [CrossRef]
- Turk, M.; Plemenitaš, A.; Gunde-Cimerman, N. Extremophilic yeasts: Plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol. 2011, 115, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Tsuji, M.; Singh, S.M.; Roy, U.; Hoshino, T. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Cryobiology 2013, 66, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M. Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R. Soc. Open Sci. 2016, 3, 160106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, M.; Yokota, Y.; Kudoh, S.; Hoshino, T. 2015 Comparative analysis of milk fat decomposition activity by Mrakia spp. isolated from Skarvsnes ice-free area, East Antarctica. Cryobiology 2015, 70, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Goshima, T.; Matsushika, A.; Kudoh, S.; Hoshino, T. Direct ethanol fermentation from lignocellulosic biomass by Antarctic Basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 2013, 67, 241–243. [Google Scholar] [CrossRef]
- Tsuji, M.; Kudoh, S.; Hoshino, T. Ethanol productivity of cryophilic basidiomycetous yeast Mrakia spp. correlates with ethanol tolerance. Mycoscience 2016, 57, 42–50. [Google Scholar] [CrossRef]
- Tsuji, M.; Kudoh, S.; Hoshino, T. Draft genome sequence of cryophilic basidiomycetous yeast Mrakia blollopis SK-4, isolated from an algal mat of Naga-ike Lake in the Skarvsnes ice-free area, East Antarctica. Genome Announc. 2015, 3, e01454-14. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, M. Change in the secondary metabolite of Antarctic fungi by cold stress. In Proceedings of the Annual Meeting of the Society for Biotechnology, 11–14 September; The Society for Biotechnology: Tokyo, Japan, 2017. [Google Scholar]
Species | Number of Strains | Psychrophile or Psychrotolerant |
---|---|---|
Cystobasidium lysinophilum | 2 | Psychrotolerant |
Cystobasidium ongulense | 10 | Psychrotolerant |
Cystobasidium tubakii | 2 | Psychrotolerant |
Glaciozyma antarctica | 1 | Psychrophile |
Glaciozyma martinii | 10 | Psychrophile |
Goffeauzyma gilvescens | 2 | Psychrotolerant |
Holtermanniella wattica | 3 | Psychrotolerant |
Mrakia gelida | 5 | Psychrophile |
Naganishia adeliensis | 1 | Psychrotolerant |
Naganishia albidosimilis | 4 | Psychrotolerant |
Naganishia friedmannii | 17 | Psychrotolerant |
Phenoliferia glacialis | 8 | Psychrophile |
Tausonia pullulans | 1 | Psychrotolerant |
Udeniomyces puniceus | 1 | Psychrotolerant |
Vishniacozyma carnescens | 6 | Psychrotolerant |
Vishniacozyma victoriae | 22 | Psychrotolerant |
Species | Strain | Accession Number |
---|---|---|
Cystobasidium laryngis | ABH-3 | AB774463 |
Dioszegia fristingensis | ARJ-3 | AB774458 |
Dioszegia fristingensis | HYT-1 | AB774459 |
Glaciozyma watsonii | KGK-2 | AB774460 |
Goffeauzyma gastrica | TKU1-1 | AB773891 |
Goffeauzyma gastrica | BSS-1 | AB773892 |
Goffeauzyma gastrica | MOA-2 | AB774233 |
Mrakia blollopis | MOA-3 | AB775474 |
Mrakia gelida | AGK-2 | AB774465 |
Mrakia gelida | ABU1-1 | AB774468 |
Mrakia gelida | EBH-3 | AB774470 |
Mrakia gelida | EBH-4 | AB774471 |
Mrakia gelida | NKU-1 | AB775661 |
Mrakia gelida | NGU-1 | AB775662 |
Mrakia gelida | NIN-6 | AB775663 |
Mrakia gelida | BSU2-3 | AB775471 |
Mrakia gelida | EBN-1 | AB775203 |
Mrakia gelida | NRI-1 | AB775469 |
Mrakia robertii | SMI-2 | AB775472 |
Mrakia robertii | MOA-4 | AB775660 |
Mrakia robertii | NRI-1 | AB775468 |
Mrakia robertii | NRI-3 | AB775470 |
Naganishia friedmannii | NHU-1 | AB773893 |
Phenoliferia glacialis | NHT-2 | AB774464 |
Vishniacozyma victoriae | OGA-2 | AB774232 |
Vishniacozyma victoriae | ARI-3 | AB773887 |
Vishniacozyma victoriae | NIK-1 | AB774234 |
Vishniacozyma victoriae | NIK-2 | AB774235 |
Vishniacozyma victoriae | NIK-3 | AB774236 |
Vishniacozyma victoriae | NIN-5 | AB774237 |
Vishniacozyma victoriae | ARJ-4 | AB773888 |
Vishniacozyma victoriae | OGN2-4 | AB774230 |
Vishniacozyma victoriae | ABH-4 | AB773886 |
Vishniacozyma victoriae | JZN-4 | AB773890 |
Vishniacozyma victoriae | OGA-1 | AB774231 |
Species | Chemical Compound | Principal Applications of Chemical Compounds |
---|---|---|
Mrakia blollopis | Peltatol A | anti-HIV activity |
Mrakia blollopis | Pinacidil | reduces blood pressure |
Mrakia blollopis | Pirbuterol | bronchodilatation |
Cystobasidium ongulense | Altretamine | anti-neoplastic agent |
Cystobasidium ongulense | Lucyoside M | anti-inflammatory activity |
Cystobasidium ongulense | Tegafur | anti-neoplastic agent |
Tausonia pullulans | Acebutolol | the treatment of hypertension and arrhythmias |
Tausonia pullulans | Epothilone D | anti-neoplastic agent |
Tausonia pullulans | Isopentenyl adenosine | promotes cell division |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuji, M.; Kudoh, S. Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their Diversity and Extracellular Enzymes, Cold Adaptation Strategies, and Secondary Metabolites. Sustainability 2020, 12, 4518. https://doi.org/10.3390/su12114518
Tsuji M, Kudoh S. Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their Diversity and Extracellular Enzymes, Cold Adaptation Strategies, and Secondary Metabolites. Sustainability. 2020; 12(11):4518. https://doi.org/10.3390/su12114518
Chicago/Turabian StyleTsuji, Masaharu, and Sakae Kudoh. 2020. "Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their Diversity and Extracellular Enzymes, Cold Adaptation Strategies, and Secondary Metabolites" Sustainability 12, no. 11: 4518. https://doi.org/10.3390/su12114518
APA StyleTsuji, M., & Kudoh, S. (2020). Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their Diversity and Extracellular Enzymes, Cold Adaptation Strategies, and Secondary Metabolites. Sustainability, 12(11), 4518. https://doi.org/10.3390/su12114518