Visualizing Hotspots and Future Trends in Phytomining Research Through Scientometrics
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Materials
2.2. Methods
3. Results and Discussions
3.1. Academic Output Characteristics
3.2. Academic Cooperation Characteristics
3.3. Intellectual Structure
3.4. Research Trends
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Advences in Industrial and Hazardous wastes treatment. In Heavy Metals in the Environment; Wang, L.K.; Chen, J.P.; Hung, Y.-T.; Shammas, N.K. (Eds.) CRC Press: New York, NY, USA, 2009; p. 489. [Google Scholar]
- Anderson, C.W.N.; Brooks, R.R.; Chiarucci, A.; Lacoste, C.J.; Leblanc, M.; Robinson, B.H.; Simcock, R.; Stewart, R.B. Phytomining for nickel, thallium and gold. J. Geochem. Explor. 1999, 67, 407–415. [Google Scholar] [CrossRef]
- Van der Ent, A.; Echevarria, G.; Baker, A.J.M.; Morel, J.L. Agromining: Farming for Metals. In Agromining: Farming for Metals; Springer: Cham, Switzerland, 2018; pp. 75–92. ISBN 978-3-319-61898-2. [Google Scholar]
- Robinson, B.H.; Brooks, R.R.; Howes, A.W.; Kirkman, J.H.; Gregg, P.E.H. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J. Geochem. Explor. 1997, 60, 115–126. [Google Scholar] [CrossRef]
- Robinson, B.H.; Chiarucci, A.; Brooks, R.R.; Petit, D.; Kirkman, J.H.; Gregg, P.E.H.; De Dominicis, V. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J. Geochem. Explor. 1997, 59, 75–86. [Google Scholar] [CrossRef]
- Jiang, C.A.; Wu, Q.T.; Goudon, R.; Echevarria, G.; Morel, J.L. Biomass and metal yield of co-cropped Alyssum murale and Lupinus albus. Aust. J. Bot. 2015, 63, 159–166. [Google Scholar] [CrossRef]
- Van Der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Chaney, R.L.; Anderson, C.W.N.; Meech, J.A.; Erskine, P.D.; Simonnot, M.O.; Vaughan, J.; Morel, J.L.; et al. Agromining: Farming for metals in the future? Environ. Sci. Technol. 2015, 49, 4773–4780. [Google Scholar] [CrossRef]
- Rosenkranz, T.; Hipfinger, C.; Ridard, C.; Puschenreiter, M. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. J. Environ. Manag. 2019, 242, 522–528. [Google Scholar] [CrossRef]
- Svanbäck, A.; Ulén, B.; Bergström, L.; Kleinman, P.J.A. Long-term trends in phosphorus leaching and changes in soil phosphorus with phytomining. J. Soil Water Conserv. 2015, 70, 121–132. [Google Scholar] [CrossRef]
- Maluckov, B.S. Bioassisted phytomining of gold. JOM 2015, 67, 1075–1078. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Phytomining: A review. Miner. Eng. 2009, 22, 1007–1019. [Google Scholar] [CrossRef]
- Sheoran, V.; S.Sheoran, A.; Poonia, P. Phytomining of gold: A review. J. Geochem. Explor. 2013, 128, 42–50. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Liang, G.; Alex, J.; Zhang, T.; Ma, C. Research progress of energy utilization of agricultural waste in China: Bibliometric analysis by citespace. Sustainability 2020, 12, 812. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, S.; Xin, O. Analysis on the evolution path and hotspot of knowledge innovation study based on knowledge map. Sustainability 2019, 11, 5528. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse gas emissions from landfills: A review and bibliometric analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ji, X.; Luo, X. Phytoremediation of heavy metal pollution: A bibliometric and scientometric analysis from 1989 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 4755. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Mao, G.; Crittenden, J.; Liu, X.; Du, H. Groundwater remediation from the past to the future: A bibliometric analysis. Water Res. 2017, 119, 114–125. [Google Scholar] [CrossRef]
- Wilson-Corral, V.; Anderson, C.W.N.N.; Rodriguez-lopez, M. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J. Environ. Manag. 2012, 111, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Bartol, T.; Mackiewicz-Talarczyk, M. Bibliometric Analysis of Publishing Trends in Fiber Crops in Google Scholar, Scopus, and Web of Science. J. Nat. Fibers 2015, 12, 531–541. [Google Scholar] [CrossRef]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc. 2005, 57, 724–728. [Google Scholar]
- Nkrumah, P.N.; Echevarria, G.; Erskine, P.D.; Chaney, R.L.; Sumail, S.; van der Ent, A. Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops’. Plant Soil 2019, 443, 27–39. [Google Scholar] [CrossRef]
- Nkrumah, P.N.; Tisserand, R.; Chaney, R.L.; Baker, A.J.M.; Morel, J.L.; Goudon, R.; Erskine, P.D.; Echevarria, G.; van der Ent, A. The first tropical ‘metal farm’: Some perspectives from field and pot experiments. J. Geochem. Explor. 2019, 198, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Rue, M.; Rees, F.; Simonnot, M.O.; Morel, J.L. Phytoextraction of Ni from a toxic industrial sludge amended with biochar. J. Geochem. Explor. 2019, 196, 173–181. [Google Scholar] [CrossRef]
- Lopez, S.; Benizri, E.; Erskine, P.D.; Cazes, Y.; Morel, J.L.; Lee, G.; Permana, E.; Echevarria, G.; van der Ent, A. Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on nickel hyperaccumulation. J. Geochem. Explor. 2019, 202, 113–127. [Google Scholar] [CrossRef]
- Guilpain, M.; Laubie, B.; Zhang, X.; Morel, J.L.; Simonnot, M.O. Speciation of nickel extracted from hyperaccumulator plants by water leaching. Hydrometallurgy 2018, 180, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Kidd, P.S.; Bani, A.; Benizri, E.; Gonnelli, C.; Hazotte, C.; Kisser, J.; Konstantinou, M.; Kuppens, T.; Kyrkas, D.; Laubie, B.; et al. Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front. Environ. Sci. 2018, 6, 44. [Google Scholar] [CrossRef]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Chen, C. The centrality of pivotal points in the evolution of scientific networks. In Proceedings of the 10th International Conference on Intelligent User Interfaces, San Diego, CA, USA, 10 January 2005; pp. 98–105. [Google Scholar]
- Chen, C. Eugene Garfield’s scholarly impact: A scientometric review. Scientometrics 2018, 114, 489–516. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dubin, R.; Kim, M.C. Orphan drugs and rare diseases: A scientometric review (2000–2014). Expert Opin. Orphan Drugs 2014, 2, 709–724. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Barbaroux, R.; Plasari, E.; Mercier, G.; Simonnot, M.O.; Morel, J.L.; Blais, J.F. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci. Total Environ. 2012, 423, 111–119. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Bani, A.; Echevarria, G.; Sulçe, S.; Morel, J.L. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study. Int. J. Phytoremediation 2015, 17, 117–127. [Google Scholar] [CrossRef]
- Leitenmaier, B.; Küpper, H. Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 2013, 4, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.T.; Deng, T.H.B.; Wu, Q.H.; Wang, S.Z.; Qiu, R.L.; Wei, Z.B.; Guo, X.F.; Wu, Q.T.; Lei, M.; Chen, T.B.; et al. Designing Cropping Systems for Metal-Contaminated Sites: A Review. Pedosphere 2012, 22, 470–488. [Google Scholar] [CrossRef]
- Brooks, R.R.; Chambers, M.F.; Nicks, L.J.; Robinson, B.H. Phytomining. Trends Plant Sci. 1998, 3, 359–362. [Google Scholar] [CrossRef]
- Li, Y.M.; Chaney, R.; Brewer, E.; Roseberg, R.; Angle, J.S.; Baker, A.; Reeves, R.; Nelkin, J. Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant Soil 2003, 249, 107–115. [Google Scholar] [CrossRef]
- Roger, D. Reeves Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 2003, 249, 57–65. [Google Scholar]
- Broadhurst, C.L.; Chaney, R.L.; Angle, J.S.; Erbe, E.F.; Maugel, T.K. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 2004, 265, 225–242. [Google Scholar] [CrossRef]
- Robinson, B.H.; Bañuelos, G.; Conesa, H.M.; Evangelou, M.W.H.; Schulin, R. The phytomanagement of trace elements in soil. Crc. Crit. Rev. Plant Sci. 2009, 28, 240–266. [Google Scholar] [CrossRef]
- Robinson, B.H.; Lombi, E.; Zhao, F.J.; McGrath, S.P. Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol. 2003, 158, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 168–214. [Google Scholar] [CrossRef]
- Orłowska, E.; Przybyłowicz, W.; Orlowski, D.; Turnau, K.; Mesjasz-Przybyłowicz, J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ. Pollut. 2011, 159, 3730–3738. [Google Scholar] [CrossRef] [PubMed]
- Chaney, R.L.; Angle, J.S.; Broadhurst, C.L.; Peters, C.A.; Tappero, R.V.; Sparks, D.L. Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies. J. Environ. Qual. 2007, 36, 1429–1443. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.T.; Naidoo, K.; Nokes, J.; Walker, T.; Orton, F. Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J. Clean. Prod. 2009, 17, 194–200. [Google Scholar] [CrossRef]
- Robinson, B.; Fernández, J.E.; Madejón, P.; Marañón, T.; Murillo, J.M.; Green, S.; Clothier, B. Phytoextraction: An assessment of biogeochemical and economic viability. Plant Soil 2003, 249, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Koptsik, G.N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Sci. 2014, 47, 923–939. [Google Scholar] [CrossRef]
- Küpper, H.; Lombi, E.; Zhao, F.J.; Wieshammer, G.; McGrath, S.P. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 2001, 52, 2291–2300. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Nongkynrih, J.M. Metal hyperaccumulation and bioremediation. Biol. Plant. 2007, 51, 618–634. [Google Scholar] [CrossRef]
- Whiting, S.N.; Reeves, R.D.; Richards, D.; Johnson, M.S.; Cooke, J.A.; Malaisse, F.; Paton, A.; Smith, J.A.C.; Angle, J.S.; Chaney, R.L.; et al. Research priorities for conservation of metallophyte biodiversity and its sustainable uses in ecological restoration and site remediation. Restor. Ecol. 2004, 12, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Nkrumah, P.N.; Baker, A.J.M.; Chaney, R.L.; Erskine, P.D.; Echevarria, G.; Morel, J.L.; van der Ent, A. Current status and challenges in developing nickel phytomining: An agronomic perspective. Plant Soil 2016, 406, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Nkrumah, P.N.; Echevarria, G.; Erskine, P.D.; van der Ent, A. Nickel hyperaccumulation in Antidesma montis-silam: From herbarium discovery to collection in the native habitat. Ecol. Res. 2018, 33, 675–685. [Google Scholar] [CrossRef]
- Boominathan, R.; Saha-Chaudhury, N.M.; Sahajwalla, V.; Doran, P.M. Production of Nickel Bio-Ore from Hyperaccumulator Plant Biomass: Applications in Phytomining. Biotechnol. Bioeng. 2004, 86, 243–250. [Google Scholar] [CrossRef]
- Bozhkov, O.; Tzvetkova, C. Advantages of rhenium phytomining by lucerne and clover from ore dressing soils. In Proceedings of the 7th WSEAS International Conference on Environment, Ecosystems and Development (EED ‘09), Canary Islands, Spain, 14–16 December 2009; pp. 127–131. [Google Scholar] [CrossRef]
- Ha, N.T.H.; Sakakibara, M.; Sano, S.; Nhuan, M.T. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam. J. Hazard. Mater. 2011, 186, 1384–1391. [Google Scholar] [CrossRef]
- Ha, N.T.H.; Sakakibara, M.; Sano, S. Accumulation of Indium and other heavy metals by Eleocharis acicularis: An option for phytoremediation and phytomining. Bioresour. Technol. 2011, 102, 2228–2234. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C. The knowledge domain and emerging trends in phytoremediation: A scientometric analysis with CiteSpace. Environ. Sci. Pollut. Res. 2020, 26. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, Y.; Geng, Y. A bibliometric and visual study on urban mining. J. Clean. Prod. 2019, 239, 118067. [Google Scholar] [CrossRef]
# | Journal | Records | Percent (%) | Impact Factor (2019) |
---|---|---|---|---|
1 | Plant and Soil | 17 | 7.3 | 3.259 |
2 | International Journal of Phytoremediation | 13 | 5.6 | 2.237 |
3 | Journal of Geochemical Exploration | 12 | 5.2 | 3.472 |
4 | Minerals Engineering | 9 | 3.9 | 3.315 |
5 | Mineral Resources in a Sustainable World | 8 | 3.4 | book |
6 | Ecological Research | 7 | 3 | 1.546 |
7 | Science of the Total Environment | 7 | 3 | 5.589 |
8 | New Phytologist | 6 | 2.6 | 7.299 |
9 | Environmental Science & Technology | 5 | 2.2 | 7.149 |
10 | Environmental Science and Pollution Research | 5 | 2.2 | 2.914 |
# | Web of Science Categories | Records | Percent (%) |
---|---|---|---|
1 | Environmental Sciences | 70 | 30.172 |
2 | Plant Sciences | 55 | 23.707 |
3 | Soil Science | 31 | 13.362 |
4 | Mineralogy | 19 | 8.19 |
5 | Agronomy | 18 | 7.759 |
6 | Ecology | 18 | 7.759 |
7 | Engineering Chemical | 18 | 7.759 |
8 | Engineering Environmental | 15 | 6.466 |
9 | Mining Mineral Processing | 15 | 6.466 |
10 | Geochemistry Geophysics | 13 | 5.603 |
# | Author | Recs | Country | Institution |
---|---|---|---|---|
1 | Echevarria G | 43 | France | Université de Lorraine [23] |
2 | Morel JL | 28 | France | Université de Lorraine [24] |
3 | van der Ent A | 22 | Australia | The University of Queensland [24] |
4 | Simonnot MO | 20 | France | Université de Lorraine [25] |
5 | Chaney RL | 19 | USA | Chaney Environmental [23] |
6 | Benizri E | 18 | France | Université de Lorraine [26] |
7 | Baker AJM | 17 | Australia | The University of Queensland [24] |
8 | Laubie B | 12 | France | Université de Lorraine [27] |
9 | Bani A | 11 | Albania | Agricultural University of Tirana [28] |
10 | Erskine PD | 11 | Australia | The University of Queensland [23] |
11 | Robinson BH | 11 | New Zealand | Lincoln University [29] |
Cluster-ID | Size | Silhouette | Mean Year | LLR |
---|---|---|---|---|
0 | 23 | 0.927 | 2011 | nickel accumulation |
1 | 18 | 0.996 | 1996 | heavy metal uptake |
2 | 17 | 0.907 | 2004 | mining site |
3 | 16 | 0.775 | 2007 | heavy metal |
4 | 15 | 0.836 | 2001 | hyperaccumulation yield |
5 | 15 | 0.978 | 2015 | growth effect |
6 | 8 | 0.853 | 2007 | alternative method |
Cluster-ID | Most Cited | Most Citing |
---|---|---|
0 | [34,35,36] | [3,37,38] |
1 | [4,5,39] | [2,40,41] |
2 | [42,43,44] | [45,46,47] |
3 | [48,49,50] | [11,43,51] |
4 | [2,40,52] | [48,53,54] |
5 | [7,35,55] | [24,28,56] |
6 | [11,57,58] | [47,59,60] |
# | Keywords | Strength | Begin | End | 1997–2019 |
---|---|---|---|---|---|
1 | gold | 1.6139 | 1999 | 2007 | ▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
2 | zinc | 4.929 | 2000 | 2004 | ▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
3 | bioma | 2.0309 | 2003 | 2004 | ▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
4 | Berkheya coddii | 2.3504 | 2003 | 2004 | ▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
5 | metal | 3.0137 | 2003 | 2005 | ▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
6 | Arabidopsis halleri | 1.92 | 2004 | 2007 | ▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
7 | cellular compartmentation | 2.999 | 2004 | 2007 | ▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
8 | heavy metal | 2.6524 | 2006 | 2012 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂ |
9 | contaminated soil | 1.4608 | 2007 | 2009 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂ |
10 | phytoextraction | 1.101 | 2008 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂ |
11 | phytoremediation | 2.6154 | 2009 | 2012 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ |
12 | phytomining | 5.5742 | 2009 | 2012 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ |
13 | plant | 1.5838 | 2012 | 2013 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂ |
14 | flora | 1.4445 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂ |
15 | tolerance | 0.9578 | 2013 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂ |
16 | commercial phytoextraction | 3.823 | 2014 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂ |
17 | nickel | 1.8171 | 2011 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂ |
18 | extraction | 1.9554 | 2015 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂ |
19 | serpentine soil | 3.1644 | 2016 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
20 | trace element | 1.7756 | 2016 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂ |
21 | agromining | 4.5717 | 2016 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
22 | mechanism | 1.2915 | 2016 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
23 | phytomining process | 1.6152 | 2017 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
24 | nickel hyperaccumulation | 3.2463 | 2017 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
25 | Brassicaceae | 1.6152 | 2017 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Ji, X.; Luo, X. Visualizing Hotspots and Future Trends in Phytomining Research Through Scientometrics. Sustainability 2020, 12, 4593. https://doi.org/10.3390/su12114593
Li C, Ji X, Luo X. Visualizing Hotspots and Future Trends in Phytomining Research Through Scientometrics. Sustainability. 2020; 12(11):4593. https://doi.org/10.3390/su12114593
Chicago/Turabian StyleLi, Chen, Xiaohui Ji, and Xuegang Luo. 2020. "Visualizing Hotspots and Future Trends in Phytomining Research Through Scientometrics" Sustainability 12, no. 11: 4593. https://doi.org/10.3390/su12114593
APA StyleLi, C., Ji, X., & Luo, X. (2020). Visualizing Hotspots and Future Trends in Phytomining Research Through Scientometrics. Sustainability, 12(11), 4593. https://doi.org/10.3390/su12114593