Global Marine Fishing across Space and Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metacoupling Framework
2.2. Metacoupling Catch and Flow Analysis
2.3. Fisheries Metacoupling Typology
2.4. Correlation Analysis
2.5. Global Maps of Fisheries Catches and Flows
3. Results
3.1. Fisheries Catches Across Space and Time
3.2. Metacoupling Relationships among Fishing Types
3.3. Economic and Policy Effects on Metacouplings
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513−1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, W.W.; Ferreri, C.P.; Poston, F.L.; Robertson, J.M. Educating fisheries professionals using a watershed approach to emphasize the ecosystem paradigm. Fisheries 1995, 20, 6–8. [Google Scholar] [CrossRef]
- Carlson, A.K.; Taylor, W.W.; Liu, J.; Orlic, I. Peruvian anchoveta as a telecoupled fisheries system. Ecol. Soc. 2018, 23, 35. [Google Scholar] [CrossRef] [Green Version]
- Cooke, S.J.; Allison, E.H.; Beard, T.D., Jr.; Arlinghaus, R.; Arthington, A.H.; Bartley, D.M.; Cowx, I.G.; Fuentevilla, C.; Leonard, N.J.; Lorenzen, K.; et al. On the sustainability of inland fisheries: Finding a future for the forgotten. Ambio 2016, 45, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 billion by 2050—Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Pinsky, M.L.; Fogarty, M. Lagged social-ecological responses to climate and range shifts in fisheries. Clim. Chang. 2012, 115, 883–891. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.L.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef]
- Nunoo, F.K.E.; Asiedu, B.; Amador, K.; Belhabib, D.; Lam, V.; Sumaila, R.; Pauly, D. Marine fisheries catches in Ghana: Historic reconstruction for 1950 to 2010 and current economic impacts. Rev. Fish. Sci. Aquac. 2014, 22, 274–283. [Google Scholar] [CrossRef]
- Smith, N.S.; Zeller, D. Unreported catch and tourist demand on local fisheries of small island states: The case of The Bahamas, 1950–2010. Fish. Bull. NOAA 2016, 114, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Swartz, W.; Ishimura, G. Baseline assessment of total fisheries-related biomass removal from Japan’s Exclusive Economic Zones: 1950–2010. Fish. Sci. 2014, 80, 643–651. [Google Scholar] [CrossRef]
- Schiller, L.; Bailey, M.; Jacquet, J.; Sala, E. High seas fisheries play a negligible role in addressing global food security. Sci. Adv. 2018, 4, eaat8351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumaila, U.R.; Lam, V.W.Y.; Miller, D.D.; Teh, L.; Watson, R.A.; Zeller, D.; Cheung, W.W.L.; Côté, I.M.; Rogers, A.D.; Roberts, C.; et al. Winners and losers in a world where the high seas is closed to fishing. Sci. Rep. 2015, 5, 8481. [Google Scholar] [CrossRef] [PubMed]
- Belhabib, D.; Greer, K.; Pauly, D. Trends in industrial and artisanal catch per effort in West African fisheries. Conserv. Lett. 2018, 11, e12360. [Google Scholar] [CrossRef]
- Pikitch, E.K.; Rountos, K.J.; Essington, T.E.; Santora, C.; Pauly, D.; Watson, R.; Sumaila, U.R.; Boersma, P.D.; Boyd, I.L.; Conover, D.O. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 2014, 15, 43–64. [Google Scholar] [CrossRef]
- Zeller, D.; Cashion, T.; Palomares, M.; Pauly, D. Global marine fisheries discards: A synthesis of reconstructed data. Fish Fish. 2018, 19, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 2017, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. Integration across a metacoupled world. Ecol. Soc. 2017, 22, 29. [Google Scholar] [CrossRef]
- Crona, B.I.; Van Holt, T.; Petersson, M.; Daw, T.M.; Buchary, E. Using social-ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Chang. 2015, 35, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Dreher, A.; Gaston, N.; Martens, P. Measuring Globalisation: Gauging Its Consequences; Springer: New York, NY, USA, 2008. [Google Scholar]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Liu, J. An integrated framework for achieving sustainable development goals around the world. Ecol. Econ. Soc. (INSEE) 2018, 1, 11–17. [Google Scholar] [CrossRef]
- Schaffer-Smith, D.; Tomscha, S.A.; Jarvis, K.J.; Maguire, D.Y.; Treglia, M.L.; Liu, J. Network analysis as a tool for quantifying the dynamics of metacoupled systems: An example using global soybean trade. Ecol. Soc. 2018, 23, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Liu, Y.; Daryanto, S.; Fu, B.; Wang, S.; Liu, Y. Metacoupling supply and demand for soil conservation service. Curr. Opin. Env. Sust. 2018, 33, 136–141. [Google Scholar] [CrossRef]
- Herzberger, A.; Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. Telecoupled food trade affects pericoupled trade and intracoupled production. Sustainability 2019, 11, 2908. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Viña, A.; Yang, W.; Li, S.; Xu, W.; Zheng, H. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 2018, 43, 1–34. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Bodin, Ö.; Liu, J.; Zhang, M.; Liu, X. Alignment of social and ecological structures increased the ability of river management. Sci. Bull. 2019, 64, 1318–1324. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, H.; Österblom, H.; Crona, B.; Troell, M.; Andrew, N.; Wilen, J.; Folke, C. Contagious exploitation of marine resources. Front. Ecol. Environ. 2015, 13, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.K.; Taylor, W.W.; Liu, J.; Orlic, I. The telecoupling framework: An integrative tool for enhancing fisheries management. Fisheries 2017, 42, 395–397. [Google Scholar] [CrossRef]
- Carlson, A.K.; Taylor, W.W.; Hughes, S.M. The metacoupling framework informs stream salmonid management and governance. Front. Environ. Sci. 2020, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2018; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/documents/card/en/c/I9540EN/ (accessed on 2 April 2020).
- Chuenpagdee, R.; Liguori, L.; Palomares, M.D.; Pauly, D. Bottom-up, Global Estimates of Small-Scale Marine Fisheries Catches; University of British Columbia Fisheries Centre Research Reports: Vancouver, BC, Canada, 2006; Volume 14, 112p, Available online: https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0074761 (accessed on 1 May 2020).
- Pauly, D.; Zeller, D.; Palomares, M.L.D. Sea Around Us. Concepts, Design and Data. 2020. Available online: http://www.seaaroundus.org/ (accessed on 2 April 2020).
- Swartz, W.; Sala, E.; Tracey, S.; Watson, R.; Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS ONE 2010, 5, e15143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Aeronautics and Space Administration (NASA). SeaWiFS. 2020. Available online: https://oceancolor.gsfc.nasa.gov/data/seawifs/ (accessed on 1 May 2020).
- Belhabib, D.; Koutob, V.; Sali, A.; Lam, V.W.Y.; Pauly, D. Fisheries catch misreporting and its implications: The case of Senegal. Fish. Res. 2014, 151, 1–11. [Google Scholar] [CrossRef]
- The World Bank. GDP (current US$). 2019. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (accessed on 2 April 2020).
- Alder, J.; Sumaila, U.R. Western Africa: A fish basket of Europe past and present. J. Environ. Dev. 2004, 13, 156–178. [Google Scholar] [CrossRef]
- Bell, C. Stable Seas Maritime Security Index. One Earth Future. 2017. Available online: https://stableseas.org/issue-areas/overview#0 (accessed on 2 April 2020).
- Le Cornu, E.; Doerr, A.N.; Finkbeiner, E.M.; Gourlie, D.; Crowder, L.B. Spatial management in small-scale fisheries: A potential approach for climate change adaptation in Pacific Islands. Mar. Policy 2018, 88, 350358. [Google Scholar] [CrossRef]
- Agnew, D.J.; Pearce, J.; Pramod, G.; Peatman, T.; Watson, R.; Beddington, J.R.; Pitcher, T.J. Estimating the worldwide extent of illegal fishing. PLoS ONE 2009, 4, e4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-Lewin, S.; Vergara, K.; De La Barra, C.; Godoy, N.; Castilla, J.C.; Gelcich, S. Distal impacts of aquarium trade: Exploring the emerging sandhopper (Orchestoidea tuberculata) artisanal shore gathering fishery in Chile. Ambio 2017, 46, 706–716. [Google Scholar] [CrossRef]
- Carlson, A.K.; Taylor, W.W.; Liu, J. Using the telecoupling framework to improve Great Lakes fisheries management. Aquat. Ecosyst. Health 2019, 22, 342–354. [Google Scholar] [CrossRef]
- Crona, B.I.; Daw, T.M.; Swartz, W.; Norström, A.V.; Nyström, M.; Thyresson, M.; Folke, C.; Hentati-Sundberg, J.; Österblom, H.; Deutsch, L.; et al. Masked, diluted and drowned out: How global seafood trade weakens signals from marine ecosystems. Fish Fish. 2016, 17, 1175–1182. [Google Scholar] [CrossRef]
- Fuller, E.C.; Samhouri, J.F.; Stoll, J.S.; Levin, S.A.; Watson, J.R. Characterizing fisheries connectivity in marine social-ecological systems. ICES J. Mar. Sci. 2017, 74, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- Österblom, H.; Folke, C. Globalization, marine regime shifts and the Soviet Union. Philos. Trans. R. Soc. B 2015, 370, 20130278. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, N.; Rising, J.A.; Oremus, K.L. The small world of global marine fisheries: The cross-boundary consequences of larval dispersal. Science 2019, 364, 1192–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlson, A.K.; Taylor, W.W.; Rubenstein, D.I.; Levin, S.A.; Liu, J. Global Marine Fishing across Space and Time. Sustainability 2020, 12, 4714. https://doi.org/10.3390/su12114714
Carlson AK, Taylor WW, Rubenstein DI, Levin SA, Liu J. Global Marine Fishing across Space and Time. Sustainability. 2020; 12(11):4714. https://doi.org/10.3390/su12114714
Chicago/Turabian StyleCarlson, Andrew K., William W. Taylor, Daniel I. Rubenstein, Simon A. Levin, and Jianguo Liu. 2020. "Global Marine Fishing across Space and Time" Sustainability 12, no. 11: 4714. https://doi.org/10.3390/su12114714
APA StyleCarlson, A. K., Taylor, W. W., Rubenstein, D. I., Levin, S. A., & Liu, J. (2020). Global Marine Fishing across Space and Time. Sustainability, 12(11), 4714. https://doi.org/10.3390/su12114714