Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index
Abstract
:1. Introduction
2. Theory and Analytical Framework
2.1. Literature Review
2.2. Conceptual Framework
3. Study Area
3.1. Case Study Sites
3.2. Physical Geography
3.2.1. Coastal Andhra Pradesh (CAP)
3.2.2. Krishna District
3.2.3. Guntur District
3.3. Key Agriculture Issues
4. Methodology
4.1. Data and Methods
4.2. Parameters/Indicators
4.3. Index
5. Results
5.1. Analysis of the AGCVI Values
5.2. Application of Agricultural Coastal Vulnerability Scores
5.3. Overall AGCVI Scores and Trends
6. Discussion
6.1. Agricultural Vulnerability from a Physiological and Environmental Perspective
6.2. Agricultural Vulnerability from a Socio-Economic and Cultural Perspective
7. Conclusions
7.1. Main Research Findings
7.2. Policy Implications
7.3. Research Challenges and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Bank. Agriculture Is Environment. Available online: http://siteresources.worldbank.org/DATASTATISTICS/Resources/WDI07section3-intro.pdf (accessed on 10 December 2019).
- Food and Agricultural Organisation (FAO). Integration of Agriculture into Coastal Area Management. Available online: http://www.fao.org/3/W8440e07.htm (accessed on 12 December 2019).
- Calabi-Floody, M.; Medina, J.; Rumpel, C.; Condron, L.M.; Hernandez, M.; Dumont, M.; de la Luz Mora, M. Smart fertilizers as a strategy for sustainable agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2018; Volume 147, pp. 119–157. [Google Scholar]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Dawson, T.P.; Perryman, A.H.; Osborne, T.M. Modelling impacts of climate change on global food security. Clim. Chang. 2016, 134, 429–440. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar]
- United Nations (UN). Devastating Impacts of Climate Change Threatening Farm Outputs, Increasing Global Hunger, Delegates Say as Second Committee Takes up Agriculture, Food Security. Available online: https://www.un.org/press/en/2018/gaef3499.doc.htm (accessed on 12 October 2019).
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Dokken, D.; Mach, K.; Mastrandrea, M.; Bilir, T.; Chatterjee, M.; Ebi, K.; Estrada, Y.; Genova, R. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasul, G.; Mahmood, A.; Sadiq, A.; Khan, S. Vulnerability of the Indus delta to climate change in Pakistan. Pak. J. Meteorol. 2012, 8, 89–107. [Google Scholar]
- Akanda, M.; Howlader, M. Coastal farmers’ perception of climate change effects on agriculture at Galachipa Upazila under Patuakhali District of Bangladesh. Glob. J. Sci. Front. Res. Agric. Vet. 2015, 15, 30–39. [Google Scholar]
- Huq, N.; Hugé, J.; Boon, E.; Gain, A.K. Climate change impacts in agricultural communities in rural areas of coastal Bangladesh: A tale of many stories. Sustainability 2015, 7, 8437–8460. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, T.; Hasan, M.K.; Haque, A.; Jayasinghe, S.L.; Kumar, L. Sustainability of Coastal Agriculture under Climate Change. Sustainability 2019, 11, 7200. [Google Scholar] [CrossRef] [Green Version]
- Geethalakshmi, V.; Manikandan, N.; Sumathi, S.; Bhuvaneswari, K.; Gowtham, R.; Pannerselvam, S. Impact of Climate Change on Coastal Agriculture. Int. J. Econ. Plants 2016, 3, 93–97. [Google Scholar]
- Banerjee, S.; Samanta, S.; Chakraborti, P.K. Impact of Climate Change on Coastal Agro-Ecosystems. In Sustainable Agriculture Reviews 33; Springer: Berlin/Heidelberg, Germany, 2018; pp. 115–133. [Google Scholar]
- Van Dan, T.; Bond, J.; Thuy, N.T.T. Assessment of Impacts of Climate Change on Agriculture and Fisheries in the Coastal Areas of Thua Thien Hue Province, Vietnam. Agric. Dev. Notes 2018, 8, 1–4. [Google Scholar]
- Hoque, M.Z.; Cui, S.; Xu, L.; Islam, I.; Tang, J.; Ding, S. Assessing Agricultural Livelihood Vulnerability to Climate Change in Coastal Bangladesh. Int. J. Environ. Res. Public Health 2019, 16, 4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareemulla, K.; Venkattakumar, R.; Samuel, M.P. An analysis on agricultural sustainability in India. Curr. Sci. 2017, 112, 258–266. [Google Scholar] [CrossRef]
- Natcom, I.; Ministry of Environment and Forests, Government of India. India: Second National Communication to the United Nations Framework Convention on Climate Change. 2013. Available online: http://envfor.nic.in/ (accessed on 10 December 2019).
- Auffhammer, M.; Ramanathan, V.; Vincent, J.R. Climate change, the monsoon, and rice yield in India. Clim. Chang. 2012, 111, 411–424. [Google Scholar] [CrossRef]
- Cline, W.R. Global Warming and Agriculture: Impact Estimates by Country; Peterson Institute, Columbia University Press: Washington, DC, USA, 2007. [Google Scholar]
- Centre for Coastal Zone Management and Coastal Shelter Belt. Coastal States of India. Available online: http://iomenvis.nic.in/index2.aspx?slid=758&sublinkid=119&langid=1&mid=1 (accessed on 1 January 2020).
- Rosenzweig, C.; Hillel, D. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Hareau, A.; Hofstadter, R.; Saizar, A. Vulnerability to climate change in Uruguay: Potential impacts on the agricultural and coastal resource sectors and response capabilities. Clim. Res. 1999, 12, 185–193. [Google Scholar] [CrossRef]
- Wisner, B.; Luce, H.R. Disaster vulnerability: Scale, power and daily life. GeoJournal 1993, 30, 127–140. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: London, UK, 2014. [Google Scholar]
- Cutter, S.L. Vulnerability to environmental hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Fuchs, S.; Birkmann, J.; Glade, T. Vulnerability assessment in natural hazard and risk analysis: Current approaches and future challenges. Nat. Hazards 2012, 64, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Dilley, M.; Boudreau, T.E. Coming to terms with vulnerability: A critique of the food security definition. Food Policy 2001, 26, 229–247. [Google Scholar] [CrossRef]
- Yin, P.; Fang, X.; Yun, Y. Regional differences of vulnerability of food security in China. J. Geogr. Sci. 2009, 19, 532. [Google Scholar] [CrossRef]
- Füssel, H.-M.; Klein, R.J. Climate change vulnerability assessments: An evolution of conceptual thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Yenneti, K.; Tripathi, S.; Wei, Y.D.; Chen, W.; Joshi, G. The truly disadvantaged? Assessing social vulnerability to climate change in urban India. Habitat Int. 2016, 56, 124–135. [Google Scholar] [CrossRef]
- Lavell, A. Unpacking climate change adaptation and disaster risk management: Searching for the links and the differences: A conceptual and epistemological critique and proposal. IUCN-Flacso Proj. Clim. Chang. Adapt. Disaster Risk Reduct. 2011. [Google Scholar]
- Kelly, P.M.; Adger, W.N. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Dong, Z.; Pan, Z.; An, P.; Wang, L.; Zhang, J.; He, D.; Han, H.; Pan, X. A novel method for quantitatively evaluating agricultural vulnerability to climate change. Ecol. Indic. 2015, 48, 49–54. [Google Scholar] [CrossRef]
- Hulme, D.; Mosley, P. Finance for the Poor Or Poorest?: Financial Innovation, Poverty and Vulnerability; University of Reading, Department of Economics and Department of Agricultural Economics: Reading, UK, 1996. [Google Scholar]
- Fischer, G.; Frohberg, K.; Parry, M.L.; Rosenzweig, C. Impacts of potential climate change on global and regional food production and vulnerability. In Climate Change and World Food Security; Springer: Berlin/Heidelberg, Germany, 1996; pp. 115–159. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Mitter, H.; Kirchner, M.; Schmid, E.; Schönhart, M. The participation of agricultural stakeholders in assessing regional vulnerability of cropland to soil water erosion in Austria. Reg. Environ. Chang. 2014, 14, 385–400. [Google Scholar] [CrossRef]
- Berry, P.; Rounsevell, M.; Harrison, P.; Audsley, E. Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environ. Sci. Policy 2006, 9, 189–204. [Google Scholar] [CrossRef]
- Fellmann, T. The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. Build. Resil. Adapt. Clim. Chang. Agric. Sect. 2012, 23, 37. [Google Scholar]
- Wu, H.; Qian, H.; Chen, J.; Huo, C. Assessment of agricultural drought vulnerability in the Guanzhong Plain, China. Water Resour. Manag. 2017, 31, 1557–1574. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Wilhite, D.A. Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Neset, T.-S.; Wiréhn, L.; Opach, T.; Glaas, E.; Linnér, B.-O. Evaluation of indicators for agricultural vulnerability to climate change: The case of Swedish agriculture. Ecol. Indic. 2019, 105, 571–580. [Google Scholar] [CrossRef]
- Liang, L.; Ridoutt, B.G.; Wu, W.; Lal, R.; Wang, L.; Wang, Y.; Li, C.; Zhao, G. A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecol. Indic. 2019, 97, 350–362. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Hu, W.; Berry, P.; Ju, H.; Lin, E.; Wang, W.; Li, K.; Pan, J. Integrated assessment of China’s agricultural vulnerability to climate change: A multi-indicator approach. Clim. Chang. 2015, 128, 355–366. [Google Scholar] [CrossRef]
- Pathiraja, E.; Griffith, G.; Farquharson, B.; Faggian, R. The Economic Cost of Climate Change and the Benefits from Investments in Adaptation Options for Sri Lankan Coconut Value Chains. In Proceedings of the International European Forum, Innsbruck-Igls, Austria, 13–17 February 2017; pp. 460–485. [Google Scholar]
- Fischer, G.; Shah, M.M.; Van Velthuizen, H. Climate Change and Agricultural Vulnerability; IIASA: Laxenburg, Austria, 2002. [Google Scholar]
- Wiréhn, L.; Danielsson, Å.; Neset, T.-S.S. Assessment of composite index methods for agricultural vulnerability to climate change. J. Environ. Manag. 2015, 156, 70–80. [Google Scholar] [CrossRef]
- Teshome, M. Rural households’ agricultural land vulnerability to climate change in Dembia woreda, Northwest Ethiopia. Environ. Syst. Res. 2016, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Dwarakish, G.; Vinay, S.; Natesan, U.; Asano, T.; Kakinuma, T.; Venkataramana, K.; Pai, B.J.; Babita, M. Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean Coast. Manag. 2009, 52, 467–478. [Google Scholar] [CrossRef]
- Rani, N.S.; Satyanarayana, A.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Patnaik, U.; Narayanan, K. Vulnerability and Climate Change: An Analysis of the Eastern Coastal Districts of India; University Library of Munich: Munich, Germany, 2009. [Google Scholar]
- Panda, A. Vulnerability to climate variability and drought among small and marginal farmers: A case study in Odisha, India. Clim. Dev. 2017, 9, 605–617. [Google Scholar] [CrossRef]
- Islam, M.A.; Shitangsu, P.K.; Hassan, M.Z. Agricultural vulnerability in Bangladesh to climate change induced sea level rise and options for adaptation: A study of a coastal Upazila. J. Agric. Environ. Int. Dev. (Jaeid) 2015, 109, 19–39. [Google Scholar]
- Kumar, A.A.; Kunte, P.D. Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques. Nat. Hazards 2012, 64, 853–872. [Google Scholar] [CrossRef]
- Shukla, R.; Sachdeva, K.; Joshi, P. Inherent vulnerability of agricultural communities in Himalaya: A village-level hotspot analysis in the Uttarakhand state of India. Appl. Geogr. 2016, 74, 182–198. [Google Scholar] [CrossRef]
- Smit, B.; Pilifosova, O.; Burton, I.; Challenger, B.; Huq, S.; Klein, R.; Yohe, G.; McCarthy, J.J.; Canziano, O.F. Adaptation and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change: Adaptation to Climate Change in the Context of Sustainable Development and Equity; Cambridge University Press: Cambridge, UK, 2001; pp. 877–912. [Google Scholar]
- Kantamaneni, K.; Phillips, M.; Thomas, T.; Jenkins, R. Assessing coastal vulnerability: Development of a combined physical and economic index. Ocean Coast. Manag. 2018, 158, 164–175. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Sudha Rani, N.; Rice, L.; Sur, K.; Thayaparan, M.; Kulatunga, U.; Rege, R.; Yenneti, K.; Campos, L.C. A systematic review of coastal vulnerability assessment studies along Andhra Pradesh, India: A critical evaluation of data gathering, risk levels and mitigation strategies. Water 2019, 11, 393. [Google Scholar] [CrossRef] [Green Version]
- Krishna, V.K.R. Ground Water Brochure-Krishna District. Available online: http://cgwb.gov.in/District_Profile/AP/Krishna.pdf (accessed on 20 October 2019).
- Vijayawada Municipal Corporation. District Profile. Available online: https://vijayawada.cdma.ap.gov.in/en/district-profilehttps://vijayawada.cdma.ap.gov.in/en/district-profile (accessed on 8 July 2019).
- Directorate of Census Operations. Village Town Directory. Available online: http://censusindia.gov.in/2011census/dchb/2816_PART_A_DCHB_KRISHNA.pdf (accessed on 22 October 2019).
- Kumar, S.J. Groundwater Brochure, Guntur District-Andhra Pradesh. Available online: http://cgwb.gov.in/district_profile/ap/guntur.pdf (accessed on 12 August 2019).
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for agriculture: Maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Atapattu, S.S.; Kodituwakku, D.C. Agriculture in South Asia and its implications on downstream health and sustainability: A review. Agric. Water Manag. 2009, 96, 361–373. [Google Scholar] [CrossRef]
- Dasgupta, S.; Hossain, M.M.; Huq, M.; Wheeler, D. Climate change and soil salinity: The case of coastal Bangladesh. Ambio 2015, 44, 815–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamboll, R.; Stathers, T.; Morton, J. Climate change and agricultural systems. In Agricultural Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 441–490. [Google Scholar]
- Masutomi, Y.; Takahashi, K.; Harasawa, H.; Matsuoka, Y. Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric. Ecosyst. Environ. 2009, 131, 281–291. [Google Scholar] [CrossRef]
- Rao, K.N.; Subraelu, P.; Kumar, K.C.V.N.; Demudu, G.; Malini, B.H.; Ratheesh, R.; Rajawat, A. Climate change and sea-level rise: Impact on agriculture along Andhra Pradesh coast—A geomatics analysis. J. Indian Soc. Remote Sens. 2011, 39, 415–422. [Google Scholar]
- Greeshma, R.; Bhave, M.; Kumar, P.S. Application of growth models for area, production and productivity trends of sugarcane crop for coastal Andhra region of Andhra Pradesh. Int. J. Agric. Sci. Res. 2017, 7, 7–14. [Google Scholar]
- Malathi, M.; Rajakumari, S. Review of depleting coastal resource areas in GODAVARI delta upon human interventions, Andhra Pradesh. J. Coast. Conserv. 2019, 23, 543–551. [Google Scholar] [CrossRef]
- Ray, K.; Arora, K.; Srivastav, A. Weather Extremes and Agriculture. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Volume XLII-3/W6, ISPRS-GEOGLAM-ISRS Joint Int. Workshop on “Earth Observations for Agricultural Monitoring”. New Delhi, India, 18–20 February 2019. [Google Scholar]
- Das, H.P. Agrometeorological impact assessment of natural disasters and extreme events and agricultural strategies adopted in areas with high weather risks. In Natural Disasters and Extreme Events in Agriculture; Springer: Berlin/Heidelberg, Germany, 2005; pp. 93–118. [Google Scholar]
- Sivakumar, M.V.; Motha, R.P.; Das, H.P. Natural Disaster and Extreme Events in Agriculture; Springer: Berlin/Heidelberg, Germany, 2005; Volume 376. [Google Scholar]
- Riebau, A.R.; Fox, D.G. Damage assessment of agrometeorological relevance from natural disasters: Economic and social consequences. In Natural Disasters and Extreme Events in Agriculture; Springer: Berlin/Heidelberg, Germany, 2005; pp. 119–135. [Google Scholar]
- Falco, S.D.; Adinolfi, F.; Bozzola, M.; Capitanio, F. Crop insurance as a strategy for adapting to climate change. J. Agric. Econ. 2014, 65, 485–504. [Google Scholar] [CrossRef]
- Mcleman, R.; Smit, B. Vulnerability to climate change hazards and risks: Crop and flood insurance. Can. Geogr./Le Géographe Can. 2006, 50, 217–226. [Google Scholar] [CrossRef]
- Naab, F.Z.; Dinye, R.D.; Kasanga, R.K. Urbanisation and its impact on agricultural lands in growing cities in developing countries: A case study of Tamale in Ghana. Mod. Soc. Sci. J. 2013, 2, 256–287. [Google Scholar]
- PRS Legislative Research. State of Agriculture in India. Available online: https://prsindia.org/policy/discussion-papers/state-agriculture-india (accessed on 5 June 2020).
Reference | CVI- Vulnerability Method | Geographical Area |
---|---|---|
Gornitz and Kanciruk (1989) | Developed the first coastal hazard database/vulnerability index | Global |
Hareau, A., Hofstadter, R. & Saizar, A. (1999) | Vulnerability to climate change. Considered coastal resources as well | Uruguay |
Cutter et al. (2003) | Social vulnerability index | USA |
Kaly and Commission (1999) | Environmental vulnerability index | Global |
Pethick and Crooks 2000; | CVI- Geographical perspective | Conceptual paper |
Nelson et al. (2005) | CVI for broad acre agriculture | Australia |
Gbetibouo and Ringler (2009) | Mapped the farmers vulnerability to climate change | Africa |
McLaughlin and Cooper 2010 | Multi-scale CVI for assessing erosion impacts | UK |
Kumar and Kunte (2012) | CVI -South India | India |
Balica et al. (2012) | Flood vulnerability index | Global |
Wiréhn et al. (2015) | Appraisal of composite index methods for agricultural vulnerability | Sweden |
Huq et al. (2015) | Assessed impacts of climate change and associate factors on coastal agricultural communities | Bangladesh |
Shukla et al. (2016) | Established Inherent vulnerability of agricultural communities at village level | India |
Teshome (2016) | Apprised farmers’ agricultural land vulnerability to climate change | Africa |
Panda (2017) | Generated an index to evaluate farmers vulnerability to drought | India |
Jose et al. (2017) | Established agricultural vulnerability index to floods | Philippines |
Kantamaneni et al. (2018) | Established combined coastal vulnerability index | UK |
Ng et al. (2019) | Established CVI to evaluate small islands vulnerability | Portugal |
Ducusin et al. (2019) | Assessed agricultural vulnerability to climate change | Philippines |
Sneessens et al. (2019) | A framework has been established to measure the fiscal vulnerability of farming systems | France |
Mahmood et al. (2020) | Coastal vulnerability assessment of Meghna estuary of Bangladesh | Bangladesh |
Sekovski et al. (2020) | Established CVI for Ravenna province | Italy |
Mohamed (2020) | Established CVI for Nile delta. | Egypt |
No. | Guntur District |
---|---|
1. | Nutakki |
2. | Vadlapudi |
3. | Pedapalem |
4. | Nidamarru |
5. | Aatmakuru |
6. | Revendrapadu |
7. | Namburu |
8. | Kaza |
9. | Kunchanapalli |
10. | Vaddeswaram |
11. | Kotha Palem |
12. | Ippatam |
13. | Nizampatnam |
14. | Penumaka |
15. | Paturu |
16. | Tadepalli |
17. | Bommivani palem |
18. | Chirravuru |
19. | Tulluru |
20 | Mangalagiri |
Krishna District | |
21. | Madalavarigudem |
22. | Vijayawada rural |
Vegetable Crops | Leafy Vegetable Crops | Fruit Crops | Food Grain Crops | Flower Crops | Other Crops |
---|---|---|---|---|---|
Beans | Amaranthus leaves | Groundnut | Corn | Mary gold | |
Colocasia | Coriander | Guava | Maize | Rose | Cotton |
Cucumber | Chinese Spinach | Banana | Rice | Jasmin | Jute |
Cauliflower | Curry leaves | Mango | Sapota | Jasminum | Mulberry |
Cabbage | Mint | Papaya | Jasminum multiflorum | Sugar cane | |
Citrus | Sour Spinach | Lily | Betel leaves | ||
Chillies | |||||
Drumstick | Chrysanths | ||||
Green Gram | |||||
Bottle gourd | |||||
Brinjal | |||||
Black gram | |||||
Bitter gourd | |||||
Lady fingers | |||||
Onion | |||||
Ridge gourd | |||||
Tomato | |||||
Tapoica | |||||
Turmeric | |||||
Ivy gourd | |||||
Teasel gourd | |||||
Yam |
Number | Parameters | Designated Symbol for AGCVI |
---|---|---|
1 | Fruit crops | a |
2 | Vegetable crops | b |
3 | Flower crops | c |
4 | Leafy vegetable crops | d |
5 | Food grain crops | e |
6 | Other crops | f |
No. | Agricultural Parameters | Designated Symbol for AGCVI | Vulnerability Threshold (£millions) | |||
---|---|---|---|---|---|---|
Low (1) | Moderate (2) | High (3) | Very High (4) | |||
1 | Fruit crops | a | <0.5 | 0.5–1.5 | >1.5–2.5 | >2.5 |
2 | Vegetable crops | b | <1.5 | 1.5–2.5 | >2.5–3.2 | >3.2 |
3 | Flower crops | c | <0.4 | 0.4–1.2 | >1.2–2.4 | >2.4 |
4 | Leafy vegetable crops | d | <1.0 | 1.0–2.0 | >2–3.1.0 | >3.1 |
5 | Food grain crops | e | <0.4 | 0.4–1.1 | >1.1–1.5 | >1.5 |
6 | Other crops | f | <0.6 | 0.6–1.2 | >1.2–2.2 | >2.2 |
Total Relative Vulnerability Score | Vulnerability |
---|---|
<11 | Low |
11–14 | Moderate |
15–18 | High |
19–24 | Very High |
Number | Site Name | Agricultural Land Length in Coastal Areas Considered | Cell Range | Total Assessed Cells |
---|---|---|---|---|
Guntur district -sites | ||||
1 | Nutakki | 12 | 1–12 | 12 |
2 | Vadlapudi | 21 | 13–33 | 21 |
3 | Pedapalem | 4 | 34–37 | 4 |
4 | Nidamarru | 2 | 38–39 | 2 |
5 | Aatmakuru | 4 | 40–43 | 4 |
6 | Revendrapadu | 3 | 44–46 | 3 |
7 | Namburu | 38 | 47–84 | 38 |
8 | Kaza | 4 | 85–88 | 4 |
9 | Kunchanapalli | 4 | 89–92 | 4 |
10 | Vaddeswaram | 2 | 93–94 | 2 |
11 | Kotha Palem | 4 | 95–98 | 4 |
12 | Ippatam | 4 | 99102 | 4 |
13 | Nizampatnam | 2 | 103–104 | 2 |
14 | Penumaka | 4 | 105–108 | 4 |
15 | Paturu | 4 | 109–112 | 4 |
16 | Tadepalli | 8 | 113–120 | 8 |
17 | Bommivani palem | 4 | 121–124 | 4 |
18 | Chirravuru | 8 | 125–132 | 8 |
19 | Tulluru | 9 | 133–141 | 9 |
20 | Mangalagiri | 2 | 142–143 | 2 |
Krishna district -sites | ||||
21 | Madalavari gudem | 4 | 144–147 | 4 |
22 | Vijayawada | 2 | 148–149 | 2 |
Total Hectares—149 | Total Cells—149 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantamaneni, K.; Rice, L.; Yenneti, K.; Campos, L.C. Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index. Sustainability 2020, 12, 4771. https://doi.org/10.3390/su12114771
Kantamaneni K, Rice L, Yenneti K, Campos LC. Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index. Sustainability. 2020; 12(11):4771. https://doi.org/10.3390/su12114771
Chicago/Turabian StyleKantamaneni, Komali, Louis Rice, Komali Yenneti, and Luiza C. Campos. 2020. "Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index" Sustainability 12, no. 11: 4771. https://doi.org/10.3390/su12114771
APA StyleKantamaneni, K., Rice, L., Yenneti, K., & Campos, L. C. (2020). Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index. Sustainability, 12(11), 4771. https://doi.org/10.3390/su12114771