Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review
Abstract
:1. Introduction
2. Air Stripping
2.1. Effects of the Operational Parameters on the Removal Efficiency of Ammonia Nitrogen and Main Drawbacks of Air Stripping Application
2.2. Processes of Nutrient Recovery and Alternative Schemes of Air Stripping
2.2.1. Ammonium Sulphate Recovery by Air Stripping
2.2.2. Air Stripping Applications in Literature
3. Effect of Air Stripping on Raw SW
3.1. Characteristics of Swine Wastewater
3.2. Efficiency of Air Stripping on Raw SW
4. Effect of Air Stripping on Digested SW
4.1. Characteristics of Digested SW
4.2. Efficiency of Air Stripping on Digested SW
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, J.-H.; Chen, M.; Kishida, N.; Sudo, R. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res. 2004, 38, 3340–3348. [Google Scholar] [CrossRef]
- Hill, V.R. Prospects for pathogen reductions in livestock wastewaters: A review. Crit. Rev. Environ. Sci. Technol. 2003, 33, 187–235. [Google Scholar] [CrossRef]
- Mores, R.; Treichel, H.; Augusto, C.; Kunz, A.; Steffens, J.; Marcos, R. Remove of phosphorous and turbidity of swine wastewater using electrocoagulation under continuous flow. Sep. Purif. Technol. 2016, 171, 112–117. [Google Scholar] [CrossRef]
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to recover nutrients from waste streams: A critical review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 385–427. [Google Scholar] [CrossRef] [Green Version]
- Safavi, S.M.; Unnthorsson, R. Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environ. Technol. 2017, 3330, 1–11. [Google Scholar] [CrossRef]
- Motteran, F.; Pereira, E.L.; Campos, C.M.M. The behaviour of an anaerobic baffled reactor (ABR) as the first stage in the biological treatment of hog farming effluent. Braz. J. Chem. Eng. 2013, 30, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Lo, K.V.; Yip, K.H. Swine wastewater treatment in a two stage sequencing batch reactor using real-time control. J. Environ. Sci. Heal.—Part B Pestic. Food Contam. Agric. Wastes 2000, 35, 379–398. [Google Scholar] [CrossRef]
- Cai, J.; Mo, X.; Cheng, G.; Du, D. Pretreatment of piggery wastewater by a stable constructed microbial consortium for improving the methane production. Water Sci. Technol. 2015, 71, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Deng, L.; Zheng, D.; Wang, L.; Liu, Y. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process. J. Environ. Manag. 2016, 168, 87–93. [Google Scholar] [CrossRef]
- Cao, L.; Zhou, T.; Li, Z.; Wang, J.; Tang, J.; Ruan, R.; Liu, Y. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater. Bioresour. Technol. 2018, 263, 10–16. [Google Scholar] [CrossRef]
- De Haas, D.W.; Wentzel, M.C.; Ekama, G.A. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal. Part 1: Literature review. Water SA 2001, 27, 151–165. [Google Scholar]
- Liu, Y.; Shi, H.; Li, W.; Hou, Y.; He, M. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal. Bioresour. Technol. 2011, 102, 4008–4012. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.E.; Camberato, J.J.; Smith, B.R. Phosphate availability and inorganic transformation in an alum sludge-affected soil. J. Environ. Qual. 1997, 26, 1393–1398. [Google Scholar] [CrossRef]
- Loughrin, J.H.; Quintanar, A.I.; Cook, K.L.; Lovanh, N.C.; Lane, B. Seasonal variation in heat fluxes, predicted emissions of malodorants, and wastewater quality of an anaerobic swine waste lagoon. Water Air Soil Pollut. 2012, 223, 3611–3618. [Google Scholar] [CrossRef]
- Trias, M.; Hu, Z.; Mortula, M.M.; Gordon, R.J.; Gagnon, G.A. Impact of seasonal variation on treatment of swine wastewater. Environ. Technol. 2004, 25, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Craggs, R.A.; Park, J.A.; Heubeck, S.A. Methane emissions from anaerobic ponds on a piggery and a dairy farm in New Zealand. Aust. J. Exp. Agric. 2008, 48, 142–146. [Google Scholar] [CrossRef]
- Zema, D.A.; Andiloro, S.; Bombino, G.; Tamburino, V.; Sidari, R.; Caridi, A. Depuration in aerated ponds of citrus processing wastewater with a high concentration of essential oils. Environ. Technol. 2012, 33, 1255–1260. [Google Scholar] [CrossRef]
- Andiloro, S.; Bombino, G.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Aerated lagooning of agro-industrial wastewater: Depuration performance and energy requirements. J. Agric. Eng. 2013, 44, 827–832. [Google Scholar] [CrossRef]
- Zema, D.A.; Andiloro, S.; Bombino, G.; Caridi, A.; Sidari, R.; Tamburino, V. Comparing different schemes of agricultural wastewater lagooning: Depuration performance and microbiological characteristics. Water Air Soil Pollut. 2016, 439, 227–439. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Fòlino, A.; Tamburino, V.; Zappia, G.; Zema, D.A. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosyst. Eng. 2018, 172, 19–28. [Google Scholar] [CrossRef]
- Zema, D.A.; Fòlino, A.; Zappia, G.; Calabrò, P.S.; Tamburino, V.; Zimbone, S.M. Anaerobic digestion of orange peel in a semi-continuous pilot plant: An environmentally sound way of citrus waste management in agro-ecosystems. Sci. Total Environ. 2018, 630. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabro, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Wastewater management in citrus processing industries: An overview of advantages and limits. Water 2019, 11, 2481. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lee, J.W.; Jahng, D. Ammonia stripping for enhanced biomethanization of piggery wastewater. J. Hazard. Mater. 2012, 199–200, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Zhang, L.; Jahng, D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: Effects of alkali types. J. Hazard. Mater. 2010, 182, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.D.; Allen, E.; Murphy, J.D. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environ. Technol. (United Kingdom) 2013, 34, 2027–2038. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Nawaz, T.; Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Rep. 2015, 1, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Chen, Y.; Jilani, G.; Wu, W.; Liu, W.; Han, Z. Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants. Bioresour. Technol. 2012, 116, 386–395. [Google Scholar] [CrossRef]
- Perera, M.K.; Englehardt, J.D.; Dvorak, A.C. Technologies for recovering nutrients from wastewater: A critical review. Environ. Eng. Sci. 2019, 36, 511–529. [Google Scholar] [CrossRef]
- Sagberg, P.; Berg, K.G. Cost optimisation of nitrogen removal in a compact nitrogen and phosphorus WWTP. Water Sci. Technol. 2000, 41, 147–154. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Chimmiri, V. Critical review of abatement of ammonia from wastewater. J. Mol. Liq. 2018, 261, 21–31. [Google Scholar] [CrossRef]
- Kinidi, L.; Tan, I.A.W.; Binti, N.; Wahab, A.; Fikri, K.; Tamrin, B.; Hipolito, C.N.; Salleh, S.F. Recent development in ammonia stripping process for industrial wastewater treatment. Int. J. Chem. Eng. 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Maurer, M.; Pronk, W.; Larsen, T.A. Treatment processes for source-separated urine. Water Res. 2006, 40, 3151–3166. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, A.; Nieto, D.R.; Christensen, K.V.; Søtoft, L.F. Ammonium fertilizers production from manure: A critical review. Environ. Sci. Technol. 2015, 45, 1469–1521. [Google Scholar] [CrossRef]
- Macura, B.; Johannesdottir, S.L.; Piniewski, M.; Haddaway, N.R.; Kvarnström, E. Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: A systematic review protocol. Environ. Evid. 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient recovery from digestate: Systematic technology review and product classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Altinbas, M.; Koyuncu, I.; Arikan, O.; Gomec-Yangin, C. Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Manag. 2003, 23, 441–446. [Google Scholar] [CrossRef]
- Bonmatí, A.; Flotats, X. Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manag. 2003, 23, 261–272. [Google Scholar] [CrossRef]
- Lei, X.; Sugiura, N.; Feng, C.; Maekawa, T. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. J. Hazard. Mater. 2007, 145, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Wastewater Engineering, Treatment and Resourse Recovery, 4th ed.; McGraw-Hill Education (Ed.) Metcalf & Eddy Inc.: New York, NY, USA, 2003. [Google Scholar]
- Guštin, S.; Marinšek-Logar, R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- El-Gohary, F.A.; Kamel, G. Characterization and biological treatment of pre-treated landfill leachate. Ecol. Eng. 2016, 94, 268–274. [Google Scholar] [CrossRef]
- Quan, X.; Wang, F.; Zhao, Q.; Zhao, T.; Xiang, J. Air stripping of ammonia in a water-sparged aerocyclone reactor. J. Hazard. Mater. 2009, 170, 983–988. [Google Scholar] [CrossRef]
- Cussler, E.L. Diffusion Mass Transfer in Fluid System, 3rd ed.; Cambridge University Press, Ed.; Cambridge University Press: New York, NY, USA, 2007; ISBN 9780521871211. [Google Scholar]
- Hidalgo, D.; Corona, F.; Martín-Marroquín, J.M.; del Álamo, J.; Aguado, A. Resource recovery from anaerobic digestate: Struvite crystallisation versus ammonia stripping. Desalin. Water Treat. 2016, 57, 2626–2632. [Google Scholar] [CrossRef]
- Markou, G.; Agriomallou, M.; Georgakakis, D. Forced ammonia stripping from livestock wastewater: The influence of some physico-chemical parameters of the wastewater. Water Sci. Technol. 2017, 75, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Saracco, G.; Genon, G. High temperature ammonia stripping and recovery from process liquid wastes. J. Hazard. Mater. 1994, 37, 191–206. [Google Scholar] [CrossRef]
- Laureni, M.; Palatsi, J.; Llovera, M.; Bonmatí, A. Influence of pig slurry characteristics on ammonia stripping efficiencies and quality of the recovered ammonium-sulfate solution. J. Chem. Technol. Biotechnol. 2013, 88, 1654–1662. [Google Scholar] [CrossRef]
- Desloover, J.; Abate Woldeyohannis, A.; Verstraete, W.; Boon, N.; Rabaey, K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ. Sci. Technol. 2012, 46, 12209–12216. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.K.; Desloover, J.; Fennell, D.E.; Rabaey, K. Electrochemically driven extraction and recovery of ammonia from human urine. Water Res. 2015, 87, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Sigurnjak, I.; Brienza, C.; Snauwaert, E.; De Dobbelaere, A.; De Mey, J.; Vaneeckhaute, C.; Michels, E.; Schoumans, O.; Adani, F.; Meers, E. Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-)scrubbing technology. Waste Manag. 2019, 89, 265–274. [Google Scholar] [CrossRef]
- Speight, J.G. Industrial inorganic chemistry. In Environmental Inorganic Chemistry for Engineers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 111–169. [Google Scholar]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Vaneeckhaute, C. Nutrient Recovery from Bio-Digestion Waste: From Field Experimentation to Model-Based Optimization. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2015. [Google Scholar]
- 55. Ammonium Sulfate Prices | Historical & Current | Intratec.us. Available online: https://www.intratec.us/chemical-markets/ammonium-sulfate-price (accessed on 30 May 2020).
- SE Asia Ammonium Sulphate | Fertilizerworks.com. Available online: http://fertilizerworks.com/reports/se-asia-am-sulphate (accessed on 31 May 2020).
- GEA Messo PT Ammonium Sulfate Fertilizer Industry. Available online: https://www.gea.com/en/binaries/ammonium-sulfate-crystallization-fertilizer-gea_tcm11-34855.pdf (accessed on 17 June 2020).
- Kandil, A.-H.T.; Cheira, M.F.; Gado, H.S.; Soliman, M.H.; Akl, H.M. Ammonium sulfate preparation from phosphogypsum waste. J. Radiat. Res. Appl. Sci. 2017, 10, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Rauls, M.; Bartosch, K.; Kind, M.; Kuch, S.; Lacmann, R.; Mersmann, A. Influence of impurities on crystallization kinetics—A case study on ammonium sulfate. J. Cryst. Growth 2000, 213, 116–128. [Google Scholar] [CrossRef]
- Maurer, M.; Schwegler, P.; Larsen, T.A. Nutrients in urine: Energetic aspects of removal and recovery. Water Sci. Technol. 2003, 48, 37–46. [Google Scholar] [CrossRef] [PubMed]
- European Union Council Directive of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:01991L0676-20081211 (accessed on 2 June 2020).
- USDA-NRCS National Conservation Practice Standards | NRCS. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/cp/ncps/ (accessed on 2 June 2020).
- USDA-NRCS Agricultural Waste Management Field Handbook | NRCS. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?&cid=stelprdb1045935 (accessed on 2 June 2020).
- Congreso Nacional de Bolivia. Law No. 1333—Environmental Law. 1992. Available online: https://digitalrepository.unm.edu/la_energy_policies/271 (accessed on 18 June 2020).
- Hernández-Padilla, F.; Margni, M.; Noyola, A.; Guereca-Hernandez, L.; Bulle, C. Assessing wastewater treatment in Latin America and the Caribbean: Enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. J. Clean. Prod. 2017, 142, 2140–2153. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, T.; He, X.; Jiang, R. Assessment of phosphorus recovery from swine wastewater in Beijing, China. Sustainability 2017, 9, 1845. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Ecology and Environment. The People’s Republic of China Discharge Standard of Water Pollutants for Ammonia Industry (GB 13458-2013). Available online: http://english.mee.gov.cn/Resources/standards/water_environment/Discharge_standard/201307/t20130705_254903.shtml (accessed on 2 June 2020).
- Li, W.W.; Sheng, G.P.; Zeng, R.J.; Liu, X.W.; Yu, H.Q. China’s wastewater discharge standards in urbanization: Evolution, challenges and implications: Evolution, challenges and implications. Environ. Sci. Pollut. Res. 2012, 19, 1422–1431. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, M.; Sosulski, T.; Szara, E.; Was, A.; Sulewski, P.; Van Pruissen, G.W.P.; Cornelissen, R.L. Ammonium sulphate from a bio-refinery system as a fertilizer-agronomic and economic effectiveness on the farm scale. Energies 2019, 12, 4721. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, W.; Wang, X.; Gabauer, W.; Ortner, M.; Li, Z. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China. Renew. Sustain. Energy Rev. 2018, 97, 186–199. [Google Scholar] [CrossRef]
- Branch Environmentl Corp. Ammonia Stripper | Branch Environmental Corp. Available online: https://www.branchenv.com/ammonia-stripper/ (accessed on 2 June 2020).
- Colsen N-Recovery | Colsen. Available online: https://www.colsen.nl/en/services/n-recovery (accessed on 2 June 2020).
- GNS Digestate Treatment System GNS. Available online: https://www.gns-halle.de/english.html (accessed on 2 June 2020).
- CMI Europe Environnement Treatment of Odorous and Chemical Air Pollution of Industrial and Collective Plants. Available online: http://www.europe-environnement.com/en/technologies/ (accessed on 2 June 2020).
- Chen, L.; Cong, R.G.; Shu, B.; Mi, Z.F. A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project. Renew. Sustain. Energy Rev. 2017, 78, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Wang, J.; Zhou, T.; Li, Z.; Xiang, S.; Xu, F.; Ruan, R.; Liu, Y. Evaluation of ammonia recovery from swine wastewater via a innovative spraying technology. Bioresour. Technol. 2019, 272, 235–240. [Google Scholar] [CrossRef]
- Ata, O.N.; Aygun, K.; Okur, H.; Kanca, A. Determination of ammonia removal from aqueous solution and volumetric mass transfer coefficient by microwave-assisted air stripping. Int. J. Environ. Sci. Technol. 2016, 13, 2459–2466. [Google Scholar] [CrossRef] [Green Version]
- Ippersiel, D.; Mondor, M.; Lamarche, F.; Tremblay, F.; Dubreuil, J.; Masse, L. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J. Environ. Manag. 2012, 95, S165–S169. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Ukwuani, A.T.; Agyeman, F. Recovery of ammonia in anaerobic digestate using vacuum thermal stripping—Acid absorption process: Scale-up considerations. Water Sci. Technol. 2018, 78, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Ukwuani, A.T.; Tao, W. Developing a vacuum thermal stripping—Acid absorption process for ammonia recovery from anaerobic digester effluent. Water Res. 2016, 106, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Deĝermenci, N.; Ata, O.N.; Yildiz, E. Ammonia removal by air stripping in a semi-batch jet loop reactor. J. Ind. Eng. Chem. 2012, 18, 399–404. [Google Scholar] [CrossRef]
- Yuan, M.H.; Chen, Y.H.; Tsai, J.Y.; Chang, C.Y. Removal of ammonia from wastewater by air stripping process in laboratory and pilot scales using a rotating packed bed at ambient temperature. J. Taiwan Inst. Chem. Eng. 2016, 60, 488–495. [Google Scholar] [CrossRef]
- Alitalo, A.; Kyrö, A.; Aura, E. Ammonia stripping of biologically treated liquid manure. J. Environ. Qual. 2012, 41, 273–280. [Google Scholar] [CrossRef]
- Yang, K.; Oh, C.; Hwang, S. Optimizing volatile fatty acid production in partial acidogenesis of swine wastewater. Water Sci. Technol. 2004, 50, 169–176. [Google Scholar] [CrossRef]
- Cheng, H.H.; Narindri, B.; Chu, H.; Whang, L.M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Curtis, T.P.; Dolfing, J. Determination of the internal chemical energy of wastewater. Environ. Sci. Technol. 2011, 45, 827–832. [Google Scholar] [CrossRef]
- Bousek, J.; Scroccaro, D.; Sima, J.; Weissenbacher, N.; Fuchs, W. Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate. Bioresour. Technol. 2016, 203, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Westerholm, M.; Qiao, W.; Wandera, S.M.; Dong, R. High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor. Energy 2020, 193, 116783. [Google Scholar] [CrossRef]
- Wang, J.; Westerholm, M.; Qiao, W.; Mahdy, A.; Wandera, S.M.; Yin, D.; Bi, S.; Fan, R.; Dong, R. Enhancing anaerobic digestion of dairy and swine wastewater by adding trace elements: Evaluation in batch and continuous experiments. Water Sci. Technol. 2019, 80, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qiao, W.; Ren, Z.; Mahdy, A.; Wandera, S.M.; Li, Y.; Dong, R. Influence of operation conditions on methane production from swine wastewater treated by a self-agitation anaerobic reactor. Int. Biodeterior. Biodegrad. 2019, 143, 104710. [Google Scholar] [CrossRef]
- Schröder, J.J.; Uenk, D.; Hilhorst, G.J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 2007, 299, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Le Corre, K.; Valsami-Jones, E.; Hobbs, P.; S, P. Phosphorous recovery from waste water by struvite crysatllisation: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef] [Green Version]
- Iglesia, A. La Estimating the thermodynamic properties of phosphate minerals at high and low temperature from the sum of constituent units. Estud. Geol. 2009, 65, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Chen, S.; Lu, M.; Shi, J.; Lin, L.; Wang, S. Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source. Water Sci. Technol. 2011, 64, 334–341. [Google Scholar] [CrossRef]
- La, J.; Kim, T.; Jang, J.K.; Chang, I.S. Ammonia nitrogenrRemoval and recovery from swine wastewater by microwave radiation. Environ. Eng. Res. 2014, 19, 381–385. [Google Scholar] [CrossRef]
- Viancelli, A.; Kunz, A.; Steinmetz, R.L.R.; Kich, J.D.; Souza, C.K.; Canal, C.W.; Coldebella, A.; Esteves, P.A.; Barardi, C.R.M. Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens. Chemosphere 2013, 90, 1539–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Zheng, S.; Ding, A.; Sun, G.; Yang, M. Performance of a zero valent iron-based anaerobic system in swine wastewater treatment. J. Hazard. Mater. 2015, 286, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Liu, Y.W.; Zhou, J.L.; Chang, S.W.; Nguyen, D.D.; Bui, X.T.; Zhang, X.B. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 2017, 621, 1664–1682. [Google Scholar] [CrossRef]
- Girault, R.; Rousseau, P.; Steyer, J.P.; Bernet, N.; Béline, F. Combination of batch experiments with continuous reactor data for ADM1 calibration: Application to anaerobic digestion of pig slurry. Water Sci. Technol. 2011, 63, 2575–2582. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Shin, S.G.; Cho, K.; Lee, C.; Hwang, S. Performance of methanogenic reactors in temperature phased two-stage anaerobic digestion of swine wastewater. J. Biosci. Bioeng. 2012, 114, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Cho, K.; Lee, S.; Hwang, S. Comparison of methanogenic community structure and anaerobic process performance treating swine wastewater between pilot and optimized lab scale bioreactors. Bioresour. Technol. 2013, 145, 48–56. [Google Scholar] [CrossRef]
- Zhai, W.; Qin, T.; Guo, T.; Khan, M.I.; Tang, X.; Xu, J. Arsenic transformation in swine wastewater with low-arsenic content during anaerobic digestion. Water (Switzerland) 2017, 9, 826. [Google Scholar] [CrossRef] [Green Version]
- Auphimai, C.; Rukruam, W.; Chaiprasert, P. Efficacies of various inoculum sources on methane production from agro-industrial wastewaters. Energy Procedia 2014, 52, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.; Ho, G. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: Use of pH reduction, zeolite, biomass and humic acid. Water Res. 2012, 46, 4339–4350. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, V.; Fernández, M.; Santalla, E. The effect of different inoculums on anaerobic digestion of swine wastewater. J. Environ. Chem. Eng. 2016, 4, 115–122. [Google Scholar] [CrossRef]
- Córdoba, V.; Fernández, M.; Santalla, E. The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ. Sci. Pollut. Res. 2018, 25, 21308–21317. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M.; Finzi, A.; Guido, V.; Riva, E.; Provolo, G. Effect of ammonia stripping and use of additives on separation of solids, phosphorus, copper and zinc from liquid fractions of animal slurries. Sci. Total Environ. 2019, 672, 30–39. [Google Scholar] [CrossRef]
- Belmonte, M.; Hsieh, C.-F.; Figueroa, C.; Campos, J.L.; Vidal, G. Effect of free ammonia nitrogen on the methanogenic activity of swine wastewater. Electron. J. Biotechnol. 2011, 14. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, Z.; Yuan, T.; Lei, Z.; Cai, W.; Li, H.; Zhang, Z. Effective ammonia recovery from swine excreta through dry anaerobic digestion followed by ammonia stripping at high total solids content. Biomass Bioenergy 2016, 90, 139–147. [Google Scholar] [CrossRef]
- Huang, H.; Guo, G.; Zhang, P.; Zhang, D.; Liu, J.; Tang, S. Feasibility of physicochemical recovery of nutrients from swine wastewater: Evaluation of three kinds of magnesium sources. J. Taiwan Inst. Chem. Eng. 2017, 70, 209–218. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, D.; Liu, J.; Hou, L.; Ding, L. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef]
- Deng, L.; Yang, H.; Liu, G.; Zheng, D.; Chen, Z.; Liu, Y.; Pu, X.; Song, L.; Wang, Z.; Lei, Y. Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater. Appl. Energy 2014, 134, 349–355. [Google Scholar] [CrossRef]
- Van der Heyden, C.; Demeyer, P.; Volcke, E.I.P. Mitigating emissions from pig and poultry housingfacilities through air scrubbers and biofilters: State-of-the-art andperspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Liao, P.H.; Chen, A.; Lo, K.V. Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour. Technol. 1995, 54, 17–20. [Google Scholar] [CrossRef]
- Zhang, R.; Anderson, E.; Addy, M.; Deng, X.; Kabir, F.; Lu, Q.; Ma, Y.; Cheng, Y.; Liu, Y.; Chen, P.; et al. An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment. Bioresour. Technol. 2017, 244, 1073–1080. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Yen, H.W.; Ho, S.H.; Lo, Y.C.; Cheng, C.L.; Ren, N.; Chang, J.S. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour. Technol. 2015, 198, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ho, S.H.; Cheng, C.L.; Nagarajan, D.; Guo, W.Q.; Lin, C.; Li, S.; Ren, N.; Chang, J.S. Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresour. Technol. 2017, 242, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Zhang, C.; Zhang, Y.; Ho, S.H. Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28. Bioresour. Technol. 2019, 289, 121702. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; He, H.; Yang, C.; Wen, S.; Zeng, G.; Wu, M.; Zhou, Z.; Lou, W. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour. Technol. 2016, 216, 135–141. [Google Scholar] [CrossRef]
- Guo, G.; Cao, W.; Sun, S.; Zhao, Y.; Hu, C. Nutrient removal and biogas upgrading by integrating fungal–microalgal cultivation with anaerobically digested swine wastewater treatment. J. Appl. Phycol. 2017, 29, 2857–2866. [Google Scholar] [CrossRef]
- Sui, Q.; Zhu, Z.; Dong, H.; Wang, Y. Nitrogen removal from anaerobically digested swine wastewater through combined ammonia stripping and membrane bioreactor processes. Trans. ASABE 2015, 58, 1289–1298. [Google Scholar]
- Zhang, M.; Lawlor, P.G.; Hu, Z.; Zhan, X. Nutrient removal from separated pig manure digestate liquid using hybrid biofilters. Environ. Technol. (United Kingdom) 2013, 34, 645–651. [Google Scholar] [CrossRef]
- Song, Y.; Qiu, G.; Yuan, P.; Cui, X.; Peng, J.; Zeng, P. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J. Hazard. Mater. 2011, 190, 140–149. [Google Scholar] [CrossRef]
- Lin, H.; Lin, Y.; Wang, D.; Pang, Y.; Zhang, F.; Tan, S. Ammonium removal from digested effluent of swine wastewater by using solid residue from magnesium-hydroxide flue gas desulfurization process. J. Ind. Eng. Chem. 2018, 58, 148–154. [Google Scholar] [CrossRef]
- Ashrafizadeh, S.N.; Khorasani, Z. Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chem. Eng. J. 2010, 162, 242–249. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Xiang, S.; Huang, Z.; Ruan, R.; Liu, Y. Nutrient removal from digested swine wastewater by combining ammonia stripping with struvite precipitation. Environ. Sci. Pollut. Res. 2019, 26, 6725–6734. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Ye, C.; Xiong, Y.; Xiang, J.; Wang, F. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J. Hazard. Mater. 2010, 178, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Dong, H.; Zhu, Z.; Zhan, Y. Optimization of ammonia stripping of piggery biogas slurry by response surface methodology. Int. J. Environ. Res. Public Health 2019, 16, 3819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Type | Advantages | Limitations |
---|---|---|---|
Chemical | Coagulation – Flocculation – Disinfection (possible) | Water disinfection Microbes and solids can be removed by sedimentation or filtration after flocculation by the addition of coagulants [2] Chemical accumulation of nutrients Soluble nutrients bound to colloids precipitate as solids and separated by settling in clarifiers [4] Removal of organic matter and other inorganic species, such as arsenic and fluoride [4] Flexibility of the operational process. The use of simultaneous chemical precipitation in modified activated sludge systems [11] Low capital cost for reducing phosphorous concentration in the effluent [11] | Possible undesired by-products, such as trihalomethanes and chlorites in case of chlorination [2] Variability of process conditions depending on the level of disinfection required [2] Operating costs [11] Sludge production and possible presence of heavy metals [11] Possible inhibitory effects in the following biological treatment [12] Low nutrients availability and agronomic utilisation, particularly with aluminium and iron coagulation [13] |
Physical | Sedimentation | Fertiliser production by bio-solid recovery [2] Pathogens reduction, such as Salmonella typhimurium, E. coli, Streptococcus faecalis [2] Reduction of the organic load for the following treatments [2] | Energy costs of filtration membranes [4] Not suitable direct use of the concentrate due to the accumulation of undesired contaminants [4] Pre-treatment needed to prevent membrane fouling [4] High cost for membrane replacement due to fouling |
Membrane filtration | Selective separation of the constituents from waste streams based on the membrane used [4] | ||
Biological system | Activated sludge process | Odour control, nitrogen management, and biodegradation of organic waste [2] Pathogens inactivation and/or removal [2] | Possible inhibition due to the presence of toxic compounds (such as resistant pathogens, heavy metals, other organic compounds) Process sensitivity to environmental conditions (pH, temperature, organic load) |
Parameter | Variation | Effect on Air Stripping |
---|---|---|
pH | ||
Temperature | ||
Air flow rate |
Country | Constructor/ Plant Site | Type of Wastewater | Systems/Applications |
---|---|---|---|
USA | Branch Environmental Corporation [71] | Industrial wastewater | Closed loop system The discharged air is treated with an acid wash to form a salt from the ammonia and the air is reused in the stripper.Capacities up to 681 m3 h−1 |
Air Stripping Columns Used for relatively highly volatile organic compounds (VOC) in a liquid stream. VOCs evaporate by flowing and mixing the water using an air flow. | |||
Packed Towers Used for the absorption of a variety of gases and solvents, such as acidic gas, alcohol and ammonia. | |||
EU- | Colsen (The Netherlands) [72] | Digestate Manure Highly polluted wastewater | AMFER® Nitrogen recovery from waste and wastewater flows with high levels of ammonium. No need of de-watering or of pre-treatment of the waste flow. It consists of just one process step. CO2 and NH3 are successively removed from the substrate in a stripping column. The stripping air is passed through a gas scrubber, where ammonium sulphate or ammonium nitrate is produced. |
GNS (Röblingen am See, DE) [73] | Digeste | ANAStrip® plant Removal equal to 65% of the total nitrogen in the mineral fertilisers; recovery of calcium carbonate; recovery of heat from the process. Technical operational process: Digestate input [m3 h−1]: 5.5–12.6; NH4+-N [g L−1]: 3–6; Ammonium sulphate output [t d−1]: 13–27; Calcium carbonate output [t d−1]: 4–8 | |
CMI Europe Environnement (France) [74] | Digestate Polluted liquid waste | RECOV’AMMONIA™ Removal efficiency: > 92%; Technical operational process: Pollutants: NH4+ at 2,4 g L−1 for a 102 kg h−1 flow; Liquid flow: 42 m3 h−1 at 60°C and pH = 9; Process gas flow: 80,000 m3 h−1 | |
Asia | DQY biogas project (Beijing, China) | Raw manure | Recovery of ammonia before anaerobic digestion plant treating 100% chicken manure [75] |
SW | pH [-] | TS [%] | VS [%TS] | NH4+-N [gN L−1] | NH3-N [gN L−1] | TAN [gN L−1] | TN [gN L−1] | CODt [g L−1] | CODs [g L−1] | TP [g L−1] | PO43−—P [g L−1] | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | 7.4 ± 0.5 | - | - | - | - | - | 3.8 ± 0.2 | 50.9 ± 5.5 | 18.3 ± 3.0 | - | - | [100] |
8.0 ± 0.1 | 4.2 ± 0.5 * | 2.7 ± 0.3 *,** | - | 2.2 ± 0.0 | - | 5.4 ± 0.0 | 69.4 ± 4.2 | 31.8 ± 2.4 | - | - | [101] | |
7.7 ± 0.1 | 7.9 ± 0.4 * | 5.3 ± 0.3 | - | 6.6 ± 0.1 | - | 9.4 ± 0.2 | 155.5 ± 9.5 | 62.4 ± 5.7 | - | - | [102] | |
7.1 ± 0.1 | - | - | 0.892 ± 0.003 | - | - | - | - | - | - | - | [103] | |
7.2 ± 0.1 | - | - | 0.599 ± 0.006 | - | - | - | - | - | - | - | [103] | |
7.1 ± 0.0 | - | - | 0.346 ± 0.014 | - | - | - | - | - | - | - | [103] | |
7.2 | 18.82 * | 14.69 * | - | - | - | 6.5 | 181.1 | 19.1 | - | - | [104] | |
7.3 - 7.7 | - | 0.50–0.52 *,** | 1.8–2.0 | 0.004–0.01 | - | - | 10.593 13.220 | 6.129–7.010 | - | - | [105] | |
7.8 ± 0.4 | 5.52 ± 1.47 * | 3.62 ± 0.86 *,** | 3.6 ± 1.7 | - | - | 7.3 ± 1.9 | 86.4 ± 18.6 | - | - | - | [101] | |
- | - | - | - | 1.207 ± 0.111 | - | 2.023 ± 0.154 | 22.929 ±.889 | - | 0.358 ± 0.033 | - | [97] | |
- | - | - | - | 0.603 ± 0.008 | - | 0.958 ± 0.005 | 8.375 ± 0.152 | - | 0.216 ± 0.004 | - | [9] | |
6.18 | 7.21 ± 0.39 | 86.39 ± 0.24 | 1.021 ± 0.038 | - | - | - | 63.724 ± 6.061 | - | - | - | [106] | |
6.15 | 5.57 ± 0.66 | 4.60 ± 0.66 | - | - | 1.959 ± 0.05 | - | 56.109 ± 3.794 | - | - | - | [107] | |
7.5 | 5.29 * | 3.52 *,** | 3.39 * | - | - | 5.63 * | 70.59 * | - | - | - | [38] | |
6.64 | 5.95 * | 3.89 *,** | 4.95 | - | - | 7.6 | 94.2 | 54.2 | - | - | [23] | |
6.75 ± 0.18 | 2.5 ± 0.18 | 63.0 ± 2.28 | 2.26 * | - | - | 3.93 * | - | - | 0.371 ± 0.043 * | - | [108] | |
7.60 ± 0.15 | - | - | 0.599 ± 0.014 | - | - | 0.798 ± 0.023 | 2.383 ± 0.065 | - | 0.043 ± 0.00031 | - | [10] | |
7.3 ± 0.5 | 2.04 ± 0.29 * | 1.46 ± 0.17 *,** | 2.7 ± 0.1 | - | - | 3.2 ± 0.1 2.7 | 25.2 ± 4.1 | - | - | - | [109] | |
8.6 ± 0.1 | 37.1 ± 0.2 | 77.6 ± 0.2 | - | - | 10.6 ± 0.3 *** | 29.8 ± 1.5 **** | - | - | - | - | [110] | |
6.64 | 5.95 | 3.89 ** | - | 4.95 | - | 7.6 | 94.2 | 54.2 | - | - | [25] | |
7.57 ± 0.03 | - | - | 0.612 ± 0.00814 | - | - | 0.724 ± 0.009 | 4.960 ± 0.106 | - | 0.0614 ± 0.00065 | - | [76] | |
8.11–8.27 | - | - | 1.013–1.426 | - | - | 1.381–2.001 | 5.338–7.065 | - | 0.0893–0.1894 | 0.0551–0.1397 | [28] | |
8.02 ± 0.11 | - | - | - | 2.74 ± 0.017 | - | 3.054 ± 0.019 | 23.82 ± 2.59 | 10.87 ± 0.41 | 0.527 ± 0.067 | - | [96] | |
7.7 ± 0.05 | - | - | - | - | 0.730 ± 0.051 | - | 3.532 ± 0.231 | - | - | - | [111] | |
Filtered | 7.66 | 0.54 | 55 | 0.993 | - | - | 1.180 | 3.625 | - | - | - | [48] |
7.65 | 1.06 | 55 | 1.298 | - | - | 1.636 | 9.579 | - | - | - | [48] | |
7.6 | 5.04 | 70 | 4.197 | - | - | 5.564 | 86.569 | - | - | - | [48] | |
7.61 | 5.19 | 61 | 6.708 | - | - | 8.349 | 77.886 | - | - | - | [48] | |
- | - | - | - | - | 4.0 | - | - | - | - | - | [84] | |
7.7 ± 0.2 | - | - | - | - | 0.378 ± 0.024 | - | 2.756 ± 0.184 | - | 0.105 ± 0.0084 | - | [112] | |
6.6–7.3 | - | - | 0.400–0.600 | - | - | - | 3.500–6.000 | - | 0.080–0.110 | - | [98] | |
- | 3.93 | 73.62 | - | - | - | - | 28.000 | - | - | - | [5] |
System | Notes | Chemical Addition | Adjusted pH | Temperature [°C] | Time [h] | Air Flow Rate [Lair LSW−1 min−1] | Ammonia Removal Efficiency [%] | Ammonium Sulphate Recovery | Ref. |
---|---|---|---|---|---|---|---|---|---|
AS | - | n.a. | 11.5 | 22 | 7 | 30 * | 90.3 | No | [115] |
9.5 | 22 | 55 | 15 * | 91.0 | |||||
10.5 | 22 | 10 | 30 * | 90.0 | |||||
9.5 | 22 | 30 | 30 * | 90.0 | |||||
VFA production | NaOH | 10.5 | Room | 1 | 15 | 25.0 | No | [84] | |
2 | 40.0 | ||||||||
6 | 62.5 | ||||||||
24 | 70.0 | ||||||||
48 | 77.5 | ||||||||
96 | 80.0 | ||||||||
AS + AD | AD | NaOH | 9.5 | 37 | 24 | 1.0 * | 49.3 * | No | [25] |
10.0 | 70.5 * | ||||||||
KOH | 9.5 | 40.4 * | No | [25] | |||||
10.0 | 71.3 * | ||||||||
CaO | 9.5 | 30.5 * | |||||||
10.0 | 49.1 * | ||||||||
- | None | 7.7 | 80 | 4 | 0.05 * | 65 | Yes | [38] | |
Ca(OH)2 | 9.5 | 69 | |||||||
11.5 | 98.8 | ||||||||
AS + gas adsorption | - | NaOH (40% w/w) | 7.2 | 37 | 48 | 1.0 | 28.0 | No | [23] |
9.0 | 47.0 | ||||||||
10.0 | 80.0 | ||||||||
11.0 | 88.1 | ||||||||
- | NaOH (40% w/w) | 9.0 | 37 | 48 | 1.0 | 46.0 | No | [23] | |
2.0 | 62.2 | ||||||||
4.0 | 77.9 | ||||||||
10.0 | 92.0 | ||||||||
COD > 27 g L−1 | None | - | 50 | 3.75 | 10 * | 43.2–50.0 | Yes | [48] | |
COD < 10 g L−1 | None | - | 50 | 3.75 | 10 * | > 90 | |||
COD < 27 g L−1 | NaOH | 9.5 | 50 | 3.75 | 10 * | > 80 | |||
AS + MW | Power = 700 W | NaOH | 11.0 | Not controlled | 0.06 * | 0 | 88.2 | Yes | [96] |
0.5 * | 90.3 | ||||||||
1 * | 91.6 | ||||||||
Struvite decomposition + AS | 97% phosphorous removal efficiency | NaOH | 8.0–10.5 | 40–80 | n.a. | 800–4400 ** | 80–95 * | Yes | [112] |
Struvite crystallisation + AS | - | MgO | > 10.0 | 25 | 3 | 5 | 94.3 | Yes | [111] |
MgO | > 10.0 | 45 | 3 | 5 | 96.7 | ||||
Adsorption + AS | Used for biomass production | n.a. | 11.0 | 30 | 1 | 18.2 * | 80.5 | Yes | [10] |
Digestate Type | pH [-] | TS [%] | VS [%TS] | NH4+-N [gN L−1] | NH3-N [gN L−1] | TAN [gN L−1] | TN [gN L−1] | CODt [g L−1] | CODs [g L−1] | TP | PO43−—P [g L−1] | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DSW | 8.2–8.5 | - | 0.36–0.42 *,** | 2.104–2.111 | 0.916–0.920 | - | - | 7.134–7.924 | 3.138–4.889 | - | - | [105] |
8.4 | 3.172 * | 1.717 *,** | 3.68 * | - | - | 4.73 * | - | 41.23 * | - | - | [38] | |
8.1 ± 0.08 | 4.2 ± 0.44 | 58.2 ± 0.89 | 3.4 * | - | - | 4.6 * | - | - | 1.137 ± 0.355 * | - | [108] | |
8.17 | 1.48 | 51 | 3.013 | - | - | 3.415 | 14.943 | - | - | - | [48] | |
8.75 | 1.13 | 48 | 2.686 | - | - | 3.353 | 9.790 | - | - | - | [48] | |
7.63 ± 0.04 | 1.149 ± 0.0724 * | 0.0461 ± 0.0012 *,** | 0.298 ± 0.0024 | - | - | 0.460 ± 0.0092 | 1.602 ± 0.032 | - | 1.14.9 ± 0.00724 | - | [127] | |
7.18 ± 0.18 | - | - | 0.706 ± 0. 216 | - | - | - | 2.108 ± 0. 479 | - | - | 0.0403 ± 0.0095 | [124] | |
7.3–8.0 | - | - | - | > 0.160 | - | - | 0.150–0.500 | - | > 0.03 | - | [128] | |
Co-DSW | 7.76 ± 0.09 | - | - | - | - | 0.874 ± 0.112 | 0.968 ± 0.123 | 1.595 ± 0.361 | - | - | - | [122] |
7.94 | 0.070 * | 0.032 *,** | 2.2 | - | - | - | 5.4 | - | - | - | [41] | |
7.50 | - | - | 1.510 | 0.034 | - | 1.770 | 2.290 | - | 0.432 | 0.227 | [39] |
System | Notes | Chemical Addition | Adjusted pH | Temperature [°C] | Time [h] | Air Flow Rate [Lair LSW−1 min−1] | Ammonia Removal Efficiency [%] | Ammonium Sulphate/Nutrient Recovery | Ref. |
---|---|---|---|---|---|---|---|---|---|
AS | Continuous bench plant spraying DSW | NaOH | 8.5 | 50 | n.a. | 1875 *** | 27 | Yes | [41] |
10.5 | 93 | ||||||||
10.0 | 30 | 1875 *** | 30 | ||||||
70 | 92 | ||||||||
10.0 | 50 | 412 *** | 55 | ||||||
2100 *** | 88 | ||||||||
CO2 stripping + AS + Biogas purification | Ca(OH)2 | 12.0 | 15 | 24 | 0 | 25 | Yes | [39] | |
12.0 | 15 | 24 | 3 | 72 | |||||
12.0 | 15 | 12 | 5 | 90 | |||||
12.0 | 15 | 12 | 10 | 95 | |||||
Biogas flow | None | >7.5 | 65 | 4 | 5 | 47 | No | [87] | |
Flue gas flow | 86 | ||||||||
- | NaOH | 10.5 | 30 | 2 | 2000 | 67 | Yes | [129] | |
11.0 | 2 | 2000 | 69 | ||||||
11.5 | 2 | 2000 | 71 | ||||||
12.0 | 2 | 2000 | 74 | ||||||
AS + adsorption | Filtration before AS | None | 8.5 | 80 | 5 | 0.05 * | >96 | Yes | [38] |
Ca(OH)2 | 9.5 | 4 | >96 | ||||||
11.5 | >96 | ||||||||
COD < 10 g L−1 | NoneNaOH | >8.0 | 50 | 3.75 | 10 * | >90 | Yes | [48] | |
9.5 | 50 | 3.75 | 10 * | >90 | |||||
AS + struvite | - | MgO | 9–10 | 40 | 3 | 8 | 88 ** | Yes | [127] |
Chemical precipitation + AS | Simultaneous removal of N, P and COD by a WSA | Ca(OH)2 | >11.0 | 28–30 | 1 | 13 *,*** | 94 | Yes | [128] |
Ca(OH)2 | >11.0 | 28–30 | 1 | 39 *,*** | >92 | ||||
Ca(OH)2 | >11.0 | 28–30 | 1 | 9 *,*** | >92 * | ||||
Struvite crystallization + AS | CO2 stripping—SBR | None | - | 0–20 | 1–4 | 0.25 * | 40–90 | Yes | [124] |
Continuous flow—HRT = 6–15 h | None | - | 0–30 | - | 0.42 * | 40–90 | |||
AS + MBR | Continuous process | NaOH | 10.0–10.5 | 30 | n.a. | 2800 *** | 83 | No | [122] |
9.0–9.5 | 30 | n.a. | 2800 *** | 65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folino, A.; Zema, D.A.; Calabrò, P.S. Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. Sustainability 2020, 12, 4971. https://doi.org/10.3390/su12124971
Folino A, Zema DA, Calabrò PS. Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. Sustainability. 2020; 12(12):4971. https://doi.org/10.3390/su12124971
Chicago/Turabian StyleFolino, Adele, Demetrio Antonio Zema, and Paolo S. Calabrò. 2020. "Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review" Sustainability 12, no. 12: 4971. https://doi.org/10.3390/su12124971
APA StyleFolino, A., Zema, D. A., & Calabrò, P. S. (2020). Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. Sustainability, 12(12), 4971. https://doi.org/10.3390/su12124971