Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Efficiency
2.2. Pollution Haven Versus Pollution Halo Hypothesis
2.3. Spatial Econometric Studies
3. Research Method and Data
3.1. Data Sources and Summary
3.2. Directional Output Distance Functions and Production Possibilities Frontier
3.3. Iterated PPF and Environmental Efficiency Scores
3.4. Model Specification and the Choice of Environmental Efficiency Determinants
3.5. Taxonomy of the Spatial Panel Models
4. Results
4.1. Environmental Efficiency Scores
4.2. Non-Spatial Estimation Results and the Analysis of Fixed Effects
4.3. Spatial Panel Model Specification Tests
4.4. Estimation Results of the Spatial Panel Models
4.5. Robustness of Empirical Results with Respect to the Choice of Directional Output Vectors
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|---|---|---|---|
Region | Environmental Efficiency Scores | |||||||||
Beijing | 82.57% | 83.94% | 88.84% | 87.58% | 88.66% | 95.46% | 99.87% | 98.07% | 99.83% | 92.12% |
Tianjin | 64.39% | 62.35% | 63.41% | 63.43% | 61.48% | 55.46% | 48.91% | 48.44% | 41.50% | 40.66% |
Hebei | 14.73% | 11.98% | 7.70% | 5.93% | 4.81% | 3.85% | 1.75% | 1.58% | 1.00% | 1.12% |
Shanghai | 63.71% | 66.71% | 71.75% | 66.53% | 69.13% | 67.95% | 61.81% | 62.71% | 49.79% | 55.40% |
Jiangsu | 43.95% | 40.81% | 34.76% | 35.30% | 37.51% | 33.83% | 19.00% | 20.07% | 14.86% | 16.18% |
Zhejiang | 61.97% | 56.16% | 50.21% | 47.98% | 47.14% | 47.78% | 38.95% | 42.85% | 35.34% | 34.57% |
Fujian | 82.75% | 80.23% | 80.53% | 78.85% | 69.19% | 69.37% | 56.60% | 58.95% | 56.30% | 41.84% |
Shandong | 17.09% | 12.05% | 7.11% | 5.26% | 5.21% | 3.75% | 2.34% | 1.93% | 1.64% | 1.09% |
Guangdong | 100.00% | 100.00% | 100.00% | 99.98% | 100.00% | 99.71% | 81.68% | 100.00% | 93.58% | 99.83% |
Hainan | 94.81% | 89.91% | 81.90% | 79.53% | 77.07% | 76.60% | 69.55% | 65.44% | 63.13% | 55.10% |
Shanxi | 9.03% | 6.33% | 4.37% | 4.11% | 3.91% | 3.09% | 1.63% | 1.21% | 1.20% | 0.48% |
Inner Mongolia | 26.84% | 11.33% | 14.87% | 8.99% | 7.19% | 5.57% | 1.97% | 1.54% | 1.10% | 0.80% |
Anhui | 52.10% | 48.95% | 45.06% | 36.19% | 31.73% | 31.48% | 25.71% | 23.01% | 15.57% | 12.75% |
Jiangxi | 67.82% | 64.64% | 64.15% | 62.35% | 60.79% | 56.32% | 48.30% | 46.77% | 37.02% | 32.76% |
Henan | 27.75% | 22.14% | 16.33% | 14.12% | 13.94% | 12.28% | 7.68% | 9.84% | 7.84% | 6.90% |
Hubei | 46.49% | 40.79% | 36.52% | 36.59% | 33.82% | 29.21% | 20.50% | 20.25% | 24.01% | 21.62% |
Hunan | 52.49% | 49.77% | 43.55% | 43.60% | 42.34% | 43.35% | 34.03% | 35.20% | 32.40% | 32.23% |
Liaoning | 20.07% | 16.91% | 12.73% | 10.47% | 9.99% | 8.30% | 5.58% | 4.74% | 4.06% | 3.44% |
Jilin | 49.93% | 47.59% | 47.12% | 39.72% | 38.81% | 35.61% | 26.56% | 26.07% | 22.97% | 20.23% |
Heilongjiang | 42.85% | 39.66% | 36.28% | 31.45% | 29.56% | 27.53% | 21.79% | 18.77% | 17.24% | 14.21% |
Guangxi | 74.61% | 72.30% | 70.42% | 68.81% | 64.65% | 57.92% | 43.31% | 36.74% | 31.88% | 28.80% |
Chongqing | 68.51% | 65.52% | 66.04% | 63.04% | 60.38% | 59.92% | 51.32% | 51.81% | 56.41% | 48.64% |
Sichuan | 54.01% | 49.66% | 44.94% | 40.42% | 35.18% | 38.37% | 37.20% | 35.37% | 28.41% | 24.10% |
Guizhou | 44.63% | 38.45% | 35.77% | 32.34% | 27.85% | 28.18% | 21.81% | 17.29% | 12.79% | 11.74% |
Yunnan | 48.40% | 43.82% | 42.76% | 39.14% | 34.97% | 34.04% | 30.04% | 27.09% | 23.29% | 24.87% |
Shaanxi | 48.37% | 39.38% | 36.30% | 30.08% | 26.31% | 20.63% | 14.84% | 9.97% | 6.34% | 4.57% |
Gansu | 54.10% | 50.91% | 48.02% | 44.69% | 44.08% | 40.68% | 31.60% | 28.46% | 22.57% | 19.32% |
Qinghai | 84.71% | 81.81% | 81.45% | 78.17% | 76.54% | 77.75% | 71.56% | 64.00% | 56.02% | 53.72% |
Ningxia | 64.15% | 60.66% | 59.27% | 53.17% | 48.34% | 43.00% | 29.61% | 24.87% | 18.66% | 15.36% |
Xinjiang | 50.49% | 44.48% | 41.75% | 34.91% | 27.44% | 23.65% | 15.35% | 10.26% | 5.43% | 3.27% |
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|---|---|---|---|
Region | Environmental Efficiency Scores | |||||||||
Beijing | 81.59% | 83.08% | 88.26% | 86.99% | 88.13% | 95.25% | 99.86% | 97.99% | 100.00% | 91.89% |
Tianjin | 62.72% | 60.69% | 61.85% | 62.00% | 60.04% | 53.87% | 47.37% | 46.99% | 40.20% | 39.48% |
Hebei | 12.61% | 10.16% | 6.50% | 4.97% | 3.98% | 3.16% | 1.39% | 1.25% | 0.80% | 0.90% |
Shanghai | 61.74% | 64.95% | 70.34% | 65.05% | 67.78% | 66.57% | 60.40% | 61.39% | 48.43% | 54.22% |
Jiangsu | 41.14% | 38.06% | 32.42% | 33.10% | 35.31% | 31.67% | 17.30% | 18.34% | 13.49% | 14.77% |
Zhejiang | 59.82% | 53.89% | 48.09% | 45.96% | 45.13% | 45.82% | 37.09% | 41.07% | 33.75% | 33.05% |
Fujian | 81.77% | 79.16% | 79.54% | 77.87% | 67.89% | 68.08% | 55.10% | 57.57% | 55.06% | 40.51% |
Shandong | 14.69% | 10.11% | 5.93% | 4.34% | 4.29% | 3.04% | 1.88% | 1.52% | 1.31% | 0.85% |
Guangdong | 100.00% | 100.00% | 100.00% | 99.98% | 100.00% | 99.76% | 80.76% | 100.00% | 93.28% | 99.99% |
Hainan | 94.62% | 89.53% | 81.15% | 78.78% | 76.30% | 75.80% | 68.66% | 64.57% | 62.40% | 54.39% |
Shanxi | 7.46% | 5.12% | 3.56% | 3.39% | 3.23% | 2.52% | 1.31% | 0.96% | 0.98% | 0.37% |
Inner Mongolia | 24.45% | 9.66% | 13.21% | 7.80% | 6.16% | 4.72% | 1.60% | 1.24% | 0.89% | 0.65% |
Anhui | 49.90% | 46.78% | 43.02% | 34.23% | 29.83% | 29.61% | 24.08% | 21.49% | 14.43% | 11.77% |
Jiangxi | 66.27% | 63.04% | 62.61% | 60.90% | 59.34% | 54.77% | 46.78% | 45.32% | 35.73% | 31.59% |
Henan | 25.14% | 19.78% | 14.53% | 12.54% | 12.39% | 10.86% | 6.69% | 8.72% | 6.96% | 6.12% |
Hubei | 44.10% | 38.42% | 34.38% | 34.61% | 31.88% | 27.32% | 18.93% | 18.75% | 22.65% | 20.37% |
Hunan | 50.25% | 47.57% | 41.45% | 41.66% | 40.44% | 41.47% | 32.30% | 33.54% | 30.97% | 30.90% |
Liaoning | 17.69% | 14.79% | 11.14% | 9.13% | 8.69% | 7.17% | 4.76% | 4.03% | 3.48% | 2.95% |
Jilin | 47.78% | 45.48% | 45.15% | 37.83% | 36.98% | 33.79% | 24.96% | 24.56% | 21.73% | 19.14% |
Heilongjiang | 40.42% | 37.31% | 34.15% | 29.49% | 27.66% | 25.69% | 20.22% | 17.35% | 16.05% | 13.19% |
Guangxi | 73.36% | 71.00% | 69.10% | 67.55% | 63.31% | 56.39% | 41.72% | 35.21% | 30.58% | 27.63% |
Chongqing | 67.02% | 63.99% | 64.57% | 61.62% | 58.94% | 58.46% | 49.85% | 50.44% | 55.34% | 47.57% |
Sichuan | 51.77% | 47.41% | 42.84% | 38.42% | 33.20% | 36.42% | 35.43% | 33.67% | 26.96% | 22.77% |
Guizhou | 42.46% | 36.31% | 33.76% | 30.51% | 26.12% | 26.47% | 20.37% | 16.03% | 11.85% | 10.92% |
Yunnan | 46.21% | 41.66% | 40.75% | 37.26% | 33.15% | 32.24% | 28.45% | 25.61% | 22.08% | 23.75% |
Shaanxi | 46.18% | 37.14% | 34.23% | 28.20% | 24.52% | 18.97% | 13.53% | 8.94% | 5.65% | 4.04% |
Gansu | 52.18% | 49.01% | 46.14% | 42.94% | 42.41% | 38.98% | 30.07% | 27.05% | 21.44% | 18.36% |
Qinghai | 84.14% | 81.15% | 80.71% | 77.40% | 75.79% | 77.02% | 70.77% | 63.15% | 55.22% | 53.04% |
Ningxia | 62.71% | 59.19% | 57.74% | 51.65% | 46.83% | 41.41% | 28.16% | 23.56% | 17.66% | 14.54% |
Xinjiang | 48.42% | 42.40% | 39.77% | 33.06% | 25.69% | 21.98% | 14.07% | 9.25% | 4.83% | 2.86% |
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|---|---|---|---|
Region | Environmental Efficiency Scores | |||||||||
Beijing | 80.39% | 82.04% | 87.58% | 86.35% | 87.58% | 95.02% | 99.86% | 97.92% | 100.00% | 91.73% |
Tianjin | 60.81% | 58.85% | 60.13% | 60.54% | 58.62% | 52.28% | 45.96% | 45.72% | 39.21% | 38.64% |
Hebei | 10.02% | 8.02% | 5.22% | 4.01% | 3.17% | 2.49% | 1.08% | 0.98% | 0.64% | 0.74% |
Shanghai | 59.09% | 62.65% | 68.63% | 63.36% | 66.25% | 65.03% | 58.95% | 60.09% | 47.25% | 53.26% |
Jiangsu | 36.99% | 34.16% | 29.48% | 30.45% | 32.64% | 29.12% | 15.47% | 16.51% | 12.16% | 13.43% |
Zhejiang | 56.76% | 50.79% | 45.44% | 43.58% | 42.81% | 43.57% | 35.13% | 39.24% | 32.29% | 31.71% |
Fujian | 80.52% | 77.85% | 78.36% | 76.77% | 66.46% | 66.65% | 53.60% | 56.24% | 54.00% | 39.45% |
Shandong | 11.48% | 7.65% | 4.61% | 3.37% | 3.33% | 2.32% | 1.44% | 1.15% | 1.03% | 0.65% |
Guangdong | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 99.76% | 79.67% | 100.00% | 92.95% | 100.00% |
Hainan | 94.45% | 89.22% | 80.42% | 78.12% | 75.66% | 75.12% | 67.99% | 63.97% | 61.99% | 54.05% |
Shanxi | 5.77% | 3.89% | 2.77% | 2.72% | 2.61% | 2.02% | 1.05% | 0.77% | 0.83% | 0.31% |
Inner Mongolia | 21.74% | 7.89% | 11.47% | 6.65% | 5.20% | 3.93% | 1.28% | 0.99% | 0.74% | 0.54% |
Anhui | 47.25% | 44.26% | 40.70% | 32.18% | 27.90% | 27.69% | 22.55% | 20.14% | 13.53% | 11.05% |
Jiangxi | 64.49% | 61.28% | 60.91% | 59.40% | 57.91% | 53.22% | 45.39% | 44.08% | 34.77% | 30.79% |
Henan | 21.78% | 16.88% | 12.49% | 10.87% | 10.76% | 9.39% | 5.74% | 7.66% | 6.22% | 5.49% |
Hubei | 41.13% | 35.60% | 31.93% | 32.48% | 29.84% | 25.35% | 17.45% | 17.38% | 21.53% | 19.42% |
Hunan | 47.45% | 44.92% | 39.04% | 39.57% | 38.42% | 39.48% | 30.62% | 31.99% | 29.79% | 29.86% |
Liaoning | 14.74% | 12.27% | 9.38% | 7.73% | 7.37% | 6.02% | 4.01% | 3.39% | 3.02% | 2.56% |
Jilin | 45.33% | 43.18% | 43.00% | 35.91% | 35.18% | 31.98% | 23.53% | 23.28% | 20.81% | 18.40% |
Heilongjiang | 37.46% | 34.55% | 31.76% | 27.44% | 25.74% | 23.82% | 18.77% | 16.09% | 15.12% | 12.46% |
Guangxi | 71.93% | 69.57% | 67.61% | 66.23% | 61.97% | 54.87% | 40.27% | 33.89% | 29.60% | 26.82% |
Chongqing | 65.36% | 62.34% | 62.98% | 60.18% | 57.54% | 57.02% | 48.52% | 49.27% | 54.53% | 46.84% |
Sichuan | 48.90% | 44.63% | 40.38% | 36.25% | 31.10% | 34.34% | 33.67% | 32.03% | 25.72% | 21.71% |
Guizhou | 40.21% | 34.16% | 31.69% | 28.77% | 24.55% | 24.91% | 19.17% | 15.07% | 11.22% | 10.43% |
Yunnan | 43.75% | 39.31% | 38.57% | 35.39% | 31.39% | 30.50% | 27.04% | 24.37% | 21.19% | 23.02% |
Shaanxi | 43.71% | 34.72% | 32.00% | 26.30% | 22.78% | 17.37% | 12.37% | 8.08% | 5.14% | 3.68% |
Gansu | 50.19% | 47.12% | 44.20% | 41.28% | 40.90% | 37.43% | 28.80% | 25.98% | 20.71% | 17.80% |
Qinghai | 83.68% | 80.64% | 80.02% | 76.77% | 75.22% | 76.45% | 70.21% | 62.61% | 54.80% | 52.75% |
Ningxia | 61.46% | 57.95% | 56.29% | 50.35% | 45.62% | 40.10% | 27.07% | 22.69% | 17.09% | 14.14% |
Xinjiang | 46.21% | 40.25% | 37.68% | 31.27% | 24.08% | 20.43% | 12.99% | 8.47% | 4.42% | 2.61% |
References
- Zhao, X.; Burnett, W.J.; Fletcher, J. Spatial Analysis of China Provincial-Level CO2 Emission Intensity. Renew. Sustain. Energy Rev. 2014, 33, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, N. Environmental regulation and environmental productivity: The case of China. Renew. Sustain. Energy Rev. 2016, 62, 758–766. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Hochman, G.; Li, H. Energy intensity and energy conservation potential in China: A regional comparison perspective. Energy 2018, 155, 782–795. [Google Scholar] [CrossRef]
- Repkine, A.; Min, D. An Iterative Approach to the Estimation of the Abatement Costs of Harmful Emissions. J. Product. Anal. 2018, 49, 123–136. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Noh, D.W.; Weber, W. Characteristics of a Polluting Technology: Theory and Practice. J. Econom. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Yin, C. Environmental efficiency and its determinants in the development of China’s western regions in 2000–2014. Chin. J. Popul. Resour. Environ. 2017, 15, 157–166. [Google Scholar] [CrossRef]
- Cuesta, R.A.; Lovell, C.A.K.; Zofio, J.L. Environmental efficiency measurement with translog distance functions: A parametric approach. Ecol. Econ. 2009, 68, 2232–2242. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Boston, MA, USA, 1988. [Google Scholar]
- Wang, Z.; Wei, S.-J. What accounts for the rising sophistication of China’s exports? In China’s Growing Role in World Trade; University of Chicago Press: Chicago, IL, USA, 2010. [Google Scholar]
- NBS China Explanatory Notes on Main Statistical Indocators. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 5 June 2020).
- Lovely, M.E.; Huang, Z. Foreign Direct Investment in China’s High-Technology Manufacturing Industries. China World Econ. 2018, 26, 104–126. [Google Scholar] [CrossRef]
- Copeland, B.; Taylor, M.S. Trade, growth and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is Free Trade Good for the Environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, F.; Xu, M. Investigation of pollution haven hypothesis for China: An ARDL approach with breakpoint unit root tests. J. Clean. Prod. 2017, 161, 153–164. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, P.; Zhou, D.Q. Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis. Energy Econ. 2013, 40, 795–803. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, X.P.; Sun, Y.P.; Cui, J.; Shao, S. Have China’s provinces achieved their targets of energy intensity reduction? Reassessment based on nighttime lighting data. Energy Policy 2019, 128, 276–283. [Google Scholar] [CrossRef]
- Wendling, Z.A.; Emerson, J.W.; Esty, D.C.; Levy, M.A.; de Sherbinin, A. 2018 Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2018. [Google Scholar]
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment–Part II: Life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 2012, 24, 181–201. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Chen, Z. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Lu, C.; Meng, P.; Zhao, X.; Jiang, L.; Zhang, Z.; Xue, B. Assessing the Economic-Environmental Efficiency of Energy Consumption and Spatial Patterns in China. Sustainability 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, C. Industrial environmental efficiency, foreign direct investment and export—Evidence from 30 provinces in China. J. Clean. Prod. 2019, 212, 1490–1498. [Google Scholar] [CrossRef]
- Long, X.; Wu, C.; Zhang, J.; Zhang, J. Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach. Renew. Sustain. Energy Rev. 2018, 82, 3962–3971. [Google Scholar] [CrossRef]
- López, L.A.; Guadalupe, A.; Kronenberg, T.; Rodrigues, J.F.D. Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. J. Clean. Prod. 2018, 175, 599–611. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, J.; Kong, Y.; Wu, R. How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data. Sustainability 2018, 10, 2163. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J. Matlab software for spatial panels. Int. Reg. Sci. Rev. 2012, 35, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.Q.; Zhao, T.; Yang, Y.Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 63, 231–239. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China >> Annual Data. Available online: http://www.stats.gov.cn/english/statisticaldata/annualdata/ (accessed on 4 June 2019).
- National Bureau of Statistics of China China Population and Employment Statistics Yearbook; China Statistics Press: Beijing, China, 2016; ISBN 978-7-5037-6078-5.
- Pan, C.; Min, D. The Analysis of Carbon Emission Efficiency and Its Determinants in China. Environ. Resour. Econ. Rev. 2017, 26, 205–227. [Google Scholar]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. Estimates of China’s Inter-Provincial Capital Stock: 1952–2000. Econ. Res. 2004, 10, 35–44. [Google Scholar]
- National Bureau of Statistics of China China Energy Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016; ISBN 978-7-5037-8064-6.
- Intergovernmental Panel on Climate Change Emission Factor Database 2020. Available online: https://www.ipcc-nggip.iges.or.jp/EFDB/main.php (accessed on 5 June 2020).
- Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Quéré, C.L.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A. Global carbon budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liang, D.; Xing, X. Environmental efficiency of industrial sectors in China: An improved weighted SBM model. Math. Comput. Model. 2013, 58, 990–999. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Xu, L.; Chen, Z. Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy 2017, 134, 659–671. [Google Scholar] [CrossRef]
- Li, K.; Jiang, W. China’s foreign trade: Reform, performance and contribution to economic growth. In China’s 40 Years of Reform and Development: 1978–2018; Garnaut, R., Song, L., Fang, C., Eds.; Australian National University Place: Acton, Australia, 2018. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009; ISBN 1-4200-6425-8. [Google Scholar]
- Kelejian, H.H.; Prucha, I.R. A generalized spatial two stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Financ. Econ. 1998, 17, 99–121. [Google Scholar] [CrossRef]
- Manski, C.F. Identification of endogenous social effects: The reflection problem. Rev. Econ. Stud. 1993, 60, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Rosenblum, J.; Horvath, A.; Hendrikson, C. Environmental Implications of Service Industries. Environ. Sci. Technol. 2000, 34, 4669–4676. [Google Scholar] [CrossRef] [Green Version]
- Alcántara, V.; Padilla, E. Input–output subsystems and pollution: An application to the service sector and CO2 emissions in Spain. Ecol. Econ. 2009, 68, 905–914. [Google Scholar] [CrossRef]
- Tarancón, M.A.; del Río, P. A combined input–output and sensitivity analysis approach to analyse sector linkages and CO2 emissions. Energy Econ. 2007, 29, 578–897. [Google Scholar] [CrossRef]
- Wang, L. The changes of China’s environmental policies in the latest 30 years. Procedia Environ. Sci. 2010, 2, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- China Statistical Yearbook-2017. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexeh.htm (accessed on 13 June 2019).
- Frisch, R. Theory of Production; D. Reidel: Dordrecht, The Netherlands, 1965. [Google Scholar]
Variable | Definition | Unit of Measurement |
---|---|---|
Production Technology | ||
RGDP | Regional GDP | 100 million yuan |
B | CO2 emissions | 10,000 ton |
K | Physical capital | 100 million yuan |
L | Labor force | 10,000 persons |
F | Fuel | 10,000 tons of coal equivalent |
Determinants of Environmental Efficiency | ||
Pollution-Related Determinants | ||
COALRATE | Coal share in total energy consumption | % |
HEAVY | Share of heavy industry enterprises in regional GDP | % |
TERTIARY | Share of tertiary sector in regional GDP | % |
ENVINVSH | Share of investment in environmental quality in regional GDP | % |
Determinants Related to Pollution Haven- and Halo-Hypotheses | ||
FKSHARE | Share of foreign capital in foreign-funded enterprises | % |
FEXPINT | Share of exports of foreign-funded enterprises in the total volume of their international trade | % |
TROPEN | Share of the international trade by foreign-funded enterprises in regional GDP | % |
Economic Affluence Determinant | ||
RGDPL | Regional GDP per capita | 10,000 yuan |
Variable | Mean | Standard Deviation | Min | Max | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|---|---|
Original Data | Rescaled Data | |||||||
Production Technology | ||||||||
RGDP | 10,293.22 | 8934.07 | 465.52 | 49,707.92 | 0.999 | 0.868 | 0.045 | 4.829 |
B | 9798.01 | 6903.14 | 445.25 | 35,300.93 | 1.000 | 0.705 | 0.043 | 3.603 |
K | 22,284.39 | 18,992.48 | 1228.80 | 104,840.40 | 1.000 | 0.852 | 0.055 | 4.705 |
L | 2555.14 | 1698.98 | 291.04 | 6614.00 | 1.000 | 0.665 | 0.114 | 2.589 |
F | 15,451.58 | 10,585.14 | 845.90 | 55,598.92 | 1.000 | 0.685 | 0.055 | 3.598 |
Determinants of Environmental Efficiency | ||||||||
Pollution-Related Determinants | ||||||||
COALRATE | 61.45 | 16.06 | 14.16 | 97.48 | 1.000 | 0.261 | 0.230 | 1.586 |
HEAVY | 75.07 | 10.39 | 4.20 | 95.40 | 1.000 | 0.138 | 0.056 | 1.271 |
TERTIARY | 40.92 | 8.34 | 28.30 | 77.90 | 1.000 | 0.204 | 0.692 | 1.904 |
ENVINVSH | 0.24 | 0.22 | 0.01 | 2.04 | 1.000 | 0.907 | 0.045 | 8.509 |
Determinants Related to Pollution Haven- and Halo- Hypotheses | ||||||||
FKSHARE | 73.85 | 8.12 | 44.39 | 88.40 | 1.000 | 0.110 | 0.601 | 1.197 |
FEXPINT | 49.57 | 14.52 | 1.87 | 86.92 | 1.000 | 0.293 | 0.038 | 1.753 |
TROPEN | 2.97 | 4.41 | 0.001 | 19.13 | 0.999 | 1.483 | 0.003 | 6.434 |
Economic Affluence Determinant | ||||||||
RGDPL | 2.38 | 1.47 | 0.45 | 7.80 | 1.000 | 0.616 | 0.188 | 3.274 |
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|---|---|---|---|
Directional Output Vector | Average Environmental Efficiency Score | |||||||||
53.78 | 49.97 | 47.80 | 44.76 | 42.60 | 41.02 | 34.03 | 33.11 | 29.41 | 27.26 | |
51.95 | 48.23 | 46.23 | 43.31 | 41.18 | 39.64 | 32.80 | 31.99 | 28.47 | 26.42 | |
49.77 | 46.22 | 44.49 | 41.81 | 39.75 | 38.26 | 31.66 | 31.00 | 27.74 | 25.81 |
Fixed Effects | ||||
---|---|---|---|---|
None | Spatial | Time-Period | Spatial and Time-Period | |
COALRATE | −2.121 (−5.902) *** | −1.556 (−3.231) *** | −2.128 (−5.842) *** | −1.764 (−3.662) *** |
HEAVY | −2.548 (−4.825) *** | −0.321 (−0.764) | −2.760 (−5.064) *** | −0.586 (−1.390) |
TERT | 4.370 (6.006) *** | −1.325 (−1.496) | 4.401 (5.974) *** | −0.738 (−0.746) |
GDPC | −1.287 (−11.033) *** | −1.136 (−16.074) *** | −1.191 (−8.738) *** | −0.923 (−5.344) *** |
GDPC2 | 0.107 (6.383) *** | 0.097 (9.118) *** | 0.103 (5.849) *** | 0.088 (5.998) *** |
FKSH | 1.932 (2.654) *** | 0.373 (0.765) | 1.887 (2.531) ** | −0.038 (−0.076) |
FEXPINT | −1.312 (−4.065) *** | 0.801 (3.349) *** | −1.359 (−4.140) *** | 0.905 (3.670) *** |
TROPEN | 10.244 (6.512) *** | 3.077 (1.273) | 8.680 (4.850) *** | 5.139 (2.031) ** |
ENVINVSH | −41.897 (−1.709) * | −32.452 (−2.441) ** | −28.749 (−1.118) | −17.249 (−1.212) |
CONST | 1.327 (1.516) | 1.423 (2.026) ** | 1.388 (1.546) | 1.603 (2.246) ** |
Adjusted R2 | 0.560 | 0.928 | 0.582 | 0.930 |
No. Obs. | 300 | 300 | 300 | 300 |
LM Spatial Lag | 22.877 *** | 24.94 *** | 21.277 *** | 18.566 *** |
Robust LM Spatial Lag | 18.373 *** | 1.862 | 16.411 *** | 1.108 |
LM Spatial Error | 7.020 *** | 25.053 *** | 7.557 *** | 17.557 *** |
Robust LM Spatial Error | 2.515 | 1.975 | 2.692 | 0.098 |
Type of Fixed Effects | |||
---|---|---|---|
Spatial | Time-Period | Spatial and Time-Period | |
Manski vs. SDM | 169.309 *** | 171.260 *** | 172.733 *** |
SDM vs. SLM | 35.359 *** | 108.181 *** | 26.964 ** |
Manski vs. SDEM | 169.009 *** | 169.489 *** | 170.118 *** |
Manski vs. KP | 97.525 *** | 118.499 *** | 70.491 *** |
KP vs. SEM | 203.44 *** | 178.2 *** | 170.02 *** |
Spatial Panel Model | ||||||
---|---|---|---|---|---|---|
Manski | SDEM | |||||
Fixed Effects | Spatial | Time-Period | Spatial and Time-Period | Spatial | Time-Period | Spatial and Time-Period |
COALRATE | −1.564 (−3.363) *** | −1.867 (−4.515) *** | −1.869 (−3.979) *** | −1.507 (−3.423) *** | −1.964 (−5.526) | −1.661 (−3.755) *** |
HEAVY | −0.600 (−1.581) | −4.374 (−7.845) *** | −0.636 (−1.691) * | −0.617 (−1.693) * | −4.350 (−7.772) *** | −0.688 (−1.861) * |
TERT | −2.017 (−2.311) ** | 5.355 (7.083) *** | −2.617 (−2.477) ** | −1.892 (−2.272) ** | 5.424 (7.316) *** | −2.271 (−2.227) ** |
GDPC | −1.204 (−9.248) *** | −1.112 (−8.376) *** | −0.971 (−5.798) *** | −1.199 (−9.023) *** | −1.129 (−8.734) *** | −1.021 (−6.310) *** |
GDPC2 | 0.114 (8.987) *** | 0.103 (6.302) *** | 0.104 (7.426) *** | 0.113 (8.818) *** | 0.104 (6.307) *** | 0.105 (7.522) *** |
FKSH | 0.064 (0.145) | 1.440 (2.106) ** | 0.116 (0.261) | 0.024 (0.055) | 1.557 (2.416) ** | −0.022 (−0.051) |
FEXPINT | 1.121 (5.068) *** | −0.521 (−1.757) * | 1.079 (4.454) *** | 1.096 (5.098) *** | −0.479 (−1.710) ** | 1.014 (4.414) *** |
TROPEN | 3.770 (1.548) | 5.155 (2.683) *** | 5.018 (2.069) ** | 3.957 (1.761) * | 5.120 (2.640) *** | 5.168 (2.226) ** |
ENVINVSH | −19.270 (−1.473) | −57.217 (−2.678) *** | −13.046 (−0.915) | −18.612 (−1.533) | −58.519 (−2.754) *** | −12.662 (−0.922) |
W*COALRATE | −3.160 (−2.786) *** | −6.177 (−5.981) *** | −4.237 (−3.697) *** | −2.974 (−2.957) *** | −6.415 (−7.305) *** | −3.627 (−3.494) *** |
W*HEAVY | 0.987 (1.095) | −0.323 (−0.230) | 0.529 (0.547) | 1.025 (1.168) | −0.640 (−0.509) | 0.642 (0.702) |
W*TERT | −3.690 (−1.664) * | 4.252 (2.294) ** | −5.739 (−1.969) ** | −3.197 (−1.581) | 4.654 (2.913) *** | −4.336 (−1.567) |
W*GDPC | 0.031 (0.373) | 0.057 (0.147) | 0.541 (1.160) | 0.126 (0.666) | −0.070 (−0.258) | 0.753 (1.950) * |
W*GDPC2 | −0.015 (−0.387) | −0.025 (−0.569) | −0.026 (−0.609) | −0.027 (−1.057) | −0.013 (−0.338) | −0.062 (−1.773) * |
W*FKSH | 1.281 (1.277) | 4.871 (3.694) *** | 1.194 (1.134) | 1.232 (1.242) | 4.916 (3.682) *** | 1.022 (0.990) |
W*FEXPINT | 0.553 (0.952) | 3.435 (4.716) *** | 0.852 (1.356) | 0.417 (0.858) | 3.399 (4.569) *** | 0.448 (0.840) |
W*TROPEN | −16.170 (−3.042) *** | −14.557 (−3.135) *** | −9.559 (−1.548) | −16.825 (−3.261) *** | −13.899 (−3.190) *** | −13.078 (−2.252) ** |
W*ENVINVSH | −44.595 (−1.208) | 34.258 (0.522) | −23.858 (−0.571) | −44.246 (−1.306) | 24.159 (0.385) | −25.935 (−0.646) |
−0.068 (−0.245) | 0.088 (0.948) | −0.251 (−1.205) | NA | NA | NA | |
0.436 (2.029) ** | 0.201 (0.419) | 0.570 (4.294) *** | 0.372 (5.601) *** | 0.269 (3.755) *** | 0.364 (5.461) *** | |
Log-Likelihood | −366.2377 | −612.386 | −360.655 | −450.742 | −697.13 | −445.714 |
No. Observations | 300 | 300 | 300 | 300 | 300 | 300 |
Fixed Effects | Fixed Effects | |||
---|---|---|---|---|
Spatial | Spatial and Time-Period | Spatial | Spatial and Time-Period | |
COALRATE | −1.501 (−3.341) *** | −1.818 (−4.006) *** | −1.599 (−3.401) *** | −1.872 (−3.939) *** |
HEAVY | −0.577 (−1.569) | −0.607 (−1.672) * | −0.614 (−1.601) | −0.657 (−1.727) * |
TERT | −1.940 (−2.299) ** | −2.548 (−2.496) ** | −1.974 (−2.236) ** | −2.542 (−2.380) ** |
GDPC | −1.161 (−9.174) *** | −0.934 (−5.770) *** | −1.224 (−9.380) *** | −0.990 (−5.846) *** |
GDPC2 | 0.110 (8.953) *** | 0.100 (7.430) *** | 0.115 (9.030) *** | 0.105 (7.402) *** |
FKSH | 0.062 (0.145) | 0.132 (0.309) | 0.040 (0.089) | 0.062 (0.138) |
FEXPINT | 1.078 (5.051) *** | 1.045 (4.467) *** | 1.150 (5.120) *** | 1.089 (4.453) *** |
TROPEN | 3.685 (1.557) | 4.829 (2.061) ** | 3.735 (1.524) | 5.082 (2.072) ** |
ENVINVSH | −18.369 (−1.444) | −12.180 (−0.884) | −21.290 (−1.619) | −15.370 (−1.065) |
W*COALRATE | −2.965 (−2.684) *** | −4.085 (−3.687) *** | −3.322 (−2.921) *** | −4.290 (−3.708) *** |
W*HEAVY | 0.969 (1.124) | 0.509 (0.545) | 0.982 (1.062) | 0.540 (0.552) |
W*TERT | −3.517 (−1.644) | −5.627 (−1.998) ** | −3.726 (−1.658) * | −5.598 (−1.902) * |
W*GDPC | 0.058 (0.154) | 0.527 (1.170) | −0.014 (−0.038) | 0.550 (1.164) |
W*GDPC2 | −0.018 (−0.456) | −0.025 (−0.590) | −0.0111 (−0.290) | −0.029 (−0.669) |
W*FKSH | 1.225 (1.269) | 1.181 (1.162) | 1.285 (1.258) | 1.133 (1.063) |
W*FEXPINT | 0.477 (0.845) | 0.816 (1.343) | 0.650 (1.112) | 0.869 (1.371) |
W*TROPEN | −15.862 (−3.124) *** | −9.187 (−1.541) | −16.042 (−2.934) *** | −9.847 (−1.577) |
W*ENVINVSH | −42.954 (−1.200) | −21.745 (−0.539) | −46.819 (−1.254) | −28.024 (−0.663) |
−0.035 (−0.119) | −0.246 (0.237) | −0.127 (0.258) | −0.269 (−1.292) | |
0.414 (1.776) * | 0.575 (4.365) *** | 0.467 (2.461) ** | 0.562 (4.182) *** | |
Log-Likelihood | −355.546 | −349.971 | −370.549 | −364.778 |
No. Observations | 300 | 300 | 300 | 300 |
Fixed Effects | Fixed Effects | |||
---|---|---|---|---|
Spatial | Spatial and Time-Period | Spatial | Spatial and Time-Period | |
COALRATE | −1.473 (−3.463) *** | −1.624 (−3.797) *** | −1.492 (−3.348) *** | −1.644 (−3.676) *** |
HEAVY | −0.585 (−1.663) * | −0.655 (−1.836) * | −0.646 (−1.750) * | −0.716 (−1.917) * |
TERT | −1.879 (−2.335) ** | −2.221 (−2.252) ** | −1.743 (−2.071) ** | −2.166 (−2.106) ** |
GDPC | −1.159 (−9.066) *** | −0.981 (−6.276) *** | −1.216 (−8.953) *** | −1.045 (−6.392) *** |
GDPC2 | 0.109 (8.867) *** | 0.101 (7.521) *** | 0.114 (8.719) *** | 0.106 (7.522) *** |
FKSH | 0.042 (0.101) | 0.001 (0.002) | −0.034 (−0.079) | −0.086 (−0.195) |
FEXPINT | 1.065 (5.127) *** | 0.985 (4.432) *** | 1.103 (5.069) *** | 1.021 (4.402) *** |
TROPEN | 3.781 (1.742) * | 4.960 (2.210) ** | 4.076 (1.796) * | 5.280 (2.254) ** |
ENVINVSH | −18.038 (−1.538) | −11.865 (−0.894) | −20.044 (−1.633) | −14.772 (−1.067) |
W*COALRATE | −2.872 (−2.951) *** | −3.513 (−3.497) *** | −2.974 (−2.938) *** | −3.619 (−3.465) *** |
W*HEAVY | 0.986 (1.160) | 0.618 (0.698) | 1.060 (1.202) | 0.655 (0.711) |
W*TERT | −3.273 (−1.669) * | −4.311 (−1.609) | −2.825 (−1.393) | −4.059 (−1.458) |
W*GDPC | 0.105 (0.573) | 0.724 (1.936) * | 0.165 (0.857) | 0.783 (2.017) ** |
W*GDPC2 | −0.024 (−0.956) | −0.059 (−1.723) * | −0.033 (−1.282) | −0.068 (−1.922) * |
W*FKSH | 1.198 (1.250) | 1.016 (1.019) | 1.207 (1.204) | 0.950 (0.911) |
W*EXPINT | 0.410 (0.870) | 0.434 (0.839) | 0.394 (0.807) | 0.436 (0.815) |
W*TROPEN | −16.176 (−3.237) *** | −12.511 (−2.227) ** | −17.300 (−3.337) *** | −13.657 (−2.334) ** |
W*ENVINVSH | −42.795 (−1.305) | −23.725 (−0.611) | −45.812 (−1.343) | −29.744 (−0.735) |
0.381 (5.784) *** | 0.375 (5.670) *** | 0.348 (5.141) *** | 0.336 (4.930) *** | |
Log-Likelihood | −440.046 | −435.0247 | −455.068 | −449.8664 |
No. Observations | 300 | 300 | 300 | 300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repkine, A.; Min, D. Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions. Sustainability 2020, 12, 5048. https://doi.org/10.3390/su12125048
Repkine A, Min D. Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions. Sustainability. 2020; 12(12):5048. https://doi.org/10.3390/su12125048
Chicago/Turabian StyleRepkine, Alexandre, and Dongki Min. 2020. "Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions" Sustainability 12, no. 12: 5048. https://doi.org/10.3390/su12125048
APA StyleRepkine, A., & Min, D. (2020). Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions. Sustainability, 12(12), 5048. https://doi.org/10.3390/su12125048