Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin
Abstract
:1. Introduction
1.1. Sea and Maritime Overview
- Lack of comparable local information systems;
- Extensive and inaccurate forecasting systems;
- Lack of integrated governance between the land and sea systems;
- Multilevel governance organization;
- Inertia of public administrations in the adoption of medium- to long-term knowledge systems;
- Absence of guiding regulations.
1.2. Coastal Territories and Climate Change Impacts
1.3. Framing the Problem
1.4. Research Questions
- RQ1. How can climate change adaptation trigger and support a successful convergence between “Land and Urban” and “Sea and Maritime” planning approaches in an LSI context?
- RQ2. How can terrestrial vulnerability assessments, marine and maritime knowledge frameworks converge to define a multisystemic vision of the territorial priorities?
- RQ 3. Does the result between the integration between MSP and CAP in an LSI context favour and generate trans-sectoral strategic action?
- RQ 4. Can the ongoing urban and regional planning processes be effectively enriched by the integration of the cognitive frameworks of CAP and MSP?
2. Research Methodology
2.1. Research Design
2.2. Planning Approach
- (1)
- Heatwaves and flood impact analysis (land-based).
- (2)
- Analysis of SST and multilevel evaluation of environmental components, uses, conflicts and synergies in the maritime space.
2.2.1. The Development of the Integrated Approach
- Normalized Difference Vegetation Index (NDVI).
- Normalized Difference Moisture Index (NDMI).
- Land Surface Temperature (LST).
- Surface runoff (φ).
- Environmental data;
- Socio-economic information.
- (1)
- The construction of a theoretical–operational frame through which to interpret and assess the land–sea context.
- (2)
- The identification of criteria and analysis models relevant to the integrated management between coastal and terrestrial planning.
2.2.2. Vulnerability Approach Definition
- Sensitivity: “in the IPCC approach, determines the degree to which a system is adversely affected by a given exposure”.
- Adaptive capacity: the ability of a natural or a built system to adapt to climate change.
- V = vulnerability;
- S = sensitivity;
- AC = adaptive capacity;
- n = number of used indicators.
2.2.3. Data Sources
2.2.4. Integrated Geodatabase Preparation
- (1)
- The construction of the information system structure to support climate adaptation actions.
- (2)
- The processing of satellite images to provide NDVI, NDMI, LST and SST spatial distribution values.
- (3)
- The modelling of surface water outflows (φ).
- (4)
- The selection of variables to calculate and spatially identify the effects of climate change on natural and built systems.
- (5)
- The synthesis of comparable data values.
- (6)
- The normalization of the sensitivity, adaptive capacity, and vulnerability indicators.
- (7)
- Overlapping Sea and Maritime spatial knowledge frameworks.
2.3. Assessment Techniques
2.3.1. Land and Urban Approach
- (1)
- Urban Heat Island phenomenon effects.
- (2)
- Urban Flooding effects (surface runoff).
Urban Heat Island Assessment
- Lλ = Spectral radiance on the top of atmosphere (TOA): (Watts/ (m2 × sr × μm));
- ML = band-specific multiplicative rescaling factor from the metadata (0.0003342);
- AL = band-specific additive rescaling factor from the metadata (0.1);
- Qcal = quantized and calibrated standard product pixel values (DN).
- BT = top of atmosphere brightness temperature (K);
- Lλ = TOA spectral radiance (Watts/(m2 × srad × μm));
- K1 = band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_774.8853);
- K2 = band-specific thermal conversion constant from the metadata (K2_CONSTANT_BAND_1321.0789).
- BT = brightness temperature;
- W = 10.895;
- p = (h × c / σ) = 1.438 × 10 − 2 mK;
- LSE = spectral emissivity.
- Spatial statistics development and neighbourhood-scale analysis techniques implementation.
- Design of complex computational calculations.
- Assessment of precise spatial relationships.
- Clear and concise graphical data representation.
Surface Runoff Assessment
- DTM with 25-m pitch with Geotif extension;
- Land uses (CLC 2018, Copernicus Program);
- Administrative boundaries in shapefiles of water management consortia.
- P = runoff coefficient associated with impermeable areas,
- P = runoff coefficient associated with permeable areas,
- F = flow accumulation calculated on DTM,
- FU = accumulation of flow related to land cover,
- U = land use in i.
2.3.2. Sea and Maritime Approach: Conflicts and Synergies
- (1)
- The SST estimation.
- (2)
- The Maritime uses/activities and environmental components maps.
Sea Surface Temperature Estimation
Uses and Environmental Components
2.4. Empirical Research
2.4.1. Case Study
- (1)
- Areas with high urban density, where artificial surface (1.1; 1.2; 1.3; 1.4) values are higher than 25%;
- (2)
- Areas with medium urban density, with values between 15–25%;
- (3)
- Mainly natural areas with a low urban density, with values between 0–14%.
2.4.2. Climate Change Impacts and Maritime Pressures
2.4.3. Assessment Results
Land-Based Assessment Results
Sea-Based Assessment Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meiner, A. Integrated maritime policy for the European Union—consolidating coastal and marine information to support maritime spatial planning. J. Coast. Conserv. 2010, 14, 1–11. [Google Scholar] [CrossRef]
- Borja, A.; Elliott, M.; Andersen, J.H.; Cardoso, A.C.; Carstensen, J.; Ferreira, J.G.; Heiskanen, A.S.; Marques, J.C.; Neto, J.M.; Teixeira, H.; et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Mar. Pollut. Bull. 2013, 76, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Development Programme. 2030 Agenda for Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdg14 (accessed on 30 April 2020).
- Rojas, R.; Feyen, L.; Watkiss, P. Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Glob. Environ. Chang. 2013, 23, 1737–1751. [Google Scholar] [CrossRef]
- Fiorini, M.; Capata, A.; Bloisi, D.D. AIS Data Visualization for Maritime Spatial Planning (MSP). Int. J. e-Navi. Marit. Econ. 2016, 5, 45–60. [Google Scholar] [CrossRef]
- Pedersen, S.; Gangås, K.E.; Chetri, M.; Andreassen, H.P. Economic Gain vs. Ecological Pain—Environmental Sustainability in Economies Based on Renewable Biological Resources. Sustainability 2020, 12, 3557. [Google Scholar] [CrossRef]
- Suárez de Vivero, J.L.; Rodríguez Mateos, J.C. The Spanish approach to marine spatial planning. Marine Strategy Framework Directive vs. EU Integrated Maritime Policy. Mar. Policy 2012, 36, 18–27. [Google Scholar] [CrossRef]
- Qiu, W.; Jones, P.J.S. The emerging policy landscape for marine spatial planning in Europe. Mar. Policy 2013, 39, 182–190. [Google Scholar] [CrossRef]
- Schlüter, A.; Van Assche, K.; Hornidge, A.K.; Văidianu, N. Land-sea interactions and coastal development: An evolutionary governance perspective. Mar. Policy 2020, 112, 103801. [Google Scholar] [CrossRef]
- Stancheva, M.; Stanchev, H.; Palazov, A.; Krastev, A. Natural and human land-sea interactions: Burgas Case Study. In Proceedings of the 19th EGU General Assembly, Vienna, Austria, 23–28 April 2017; p. 6896. [Google Scholar]
- Álvarez-Romero, J.G.; Pressey, R.L.; Ban, N.C.; Vance-Borland, K.; Willer, C.; Klein, C.J.; Gaines, S.D. Integrated Land-Sea Conservation Planning: The Missing Links. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 381–409. [Google Scholar] [CrossRef] [Green Version]
- Stoms, D.M.; Davis, F.W.; Andelman, S.J.; Carr, M.H.; Gaines, S.D.; Halpern, B.S.; Hoenicke, R.; Leibowitz, S.G.; Leydecker, A.; Madin, E.M.P.; et al. Integrated Coastal Reserve Planning: Making the Land-Sea Connection. Front. Ecol. Environ. 2005, 3, 429. [Google Scholar]
- Blečić, A. Cecchini. Antifragile planning. Plan. Theory 2019. [Google Scholar] [CrossRef]
- European Commission. Blue Growth Study—Scenarios and drivers for Sustainable Growth from the Oceans, Seas and Coasts. Available online: https://webgate.ec.europa.eu/maritimeforum/content/2946 (accessed on 30 April 2020).
- European Comission. The European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, An Integrated Maritime Policy. 2007. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2007:0575:FIN:EN:PDF (accessed on 30 April 2020).
- European Parliament and European Council. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0056 (accessed on 30 April 2020).
- European Union. Directive 2014/89/EU of the European Parliment and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0135.01.ENG%20 (accessed on 30 April 2020).
- Ban, N.C.; Klein, C.J. Spatial socioeconomic data as a cost in systematic marine conservation planning. Conserv. Lett. 2009, 2, 206–215. [Google Scholar] [CrossRef]
- Barbanti, A.; Campostrini, P.; Musco, F.; Sarretta, A.; Gissi, E. Developing a Maritime Spatial Plan for the Adriatic Ionian Region. Available online: https://zenodo.org/record/48231#.Xvm5F74zbIU (accessed on 29 June 2020).
- Johnson, D.; Barrio Froján, C.; Bax, N.; Dunstan, P.; Woolley, S.; Halpin, P.; Dunn, D.; Hazin, C.; Dias, M.; Davies, T.; et al. The Global Ocean Biodiversity Initiative: Promoting scientific support for global ocean governance. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Jay, S.; Alves, F.L.; O’Mahony, C.; Gomez, M.; Rooney, A.; Almodovar, M.; Gee, K.; de Vivero, J.L.S.; Gonçalves, J.M.S.; da Luz Fernandes, M.; et al. Transboundary dimensions of marine spatial planning: Fostering inter-jurisdictional relations and governance. Mar. Policy 2016, 65, 85–96. [Google Scholar] [CrossRef]
- Menegon, S.; Depellegrin, D.; Farella, G.; Gissi, E.; Ghezzo, M.; Sarretta, A.; Venier, C.; Barbanti, A. A modelling framework for MSP-oriented cumulative effects assessment. Ecol. Indic. 2018, 91, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Italian Government. Decreto Legislativo 17 ottobre 2016, n. 201. Attuazione della direttiva 2014/89/UE che istituisce un quadro per la pianificazione dello spazio marittimo. 2016. Available online: https://www.gazzettaufficiale.it/eli/id/2016/11/07/16G00215/sg (accessed on 30 April 2020).
- Presidente del Consiglio dei Ministri, Decreto del Presidente del Consiglio dei Ministri 1° dicembre 2017. Approvazione delle linee guida contenenti gli indirizzi e i criteri per la predisposizione dei piani di gestione dello spazio marittimo. 2018. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2018-01-24&atto.codiceRedazionale=18A00392 (accessed on 30 April 2020).
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a “beyond 4 °C world” in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. R. Soc. 2011, 161–181. [Google Scholar] [CrossRef] [Green Version]
- European Comission. COMMISSION STAFF WORKING DOCUMENT accompanying the WHITE PAPER Adapting to climate change: Towards a European framework for action Climate Change and Water, Coasts and Marine Issues.\nEuropean Commission. 2009. Available online: http://ec.europa.eu/environment/climat/adaptation/pdf/sec_2009_386.pdf (accessed on 1 May 2020).
- IPCC. Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- European Environment Agency. The European Environment—State and Outlook 2020: Knowledge for Transition to A Sustainable Europe; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Preston, B.; Dow, K.; Berkhout, F. The Climate Adaptation Frontier. Sustainability 2013, 5, 1011–1035. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, X.; Jiang, M.; Lu, X. Vegetation Change and Its Response to Climate Change between 2000 and 2016 in Marshes of the Songnen Plain, Northeast China. Sustainability 2020, 12, 3569. [Google Scholar] [CrossRef]
- Wilson, G.T.; Bhamra, T. Design for Sustainability: The Need for a New Agenda. Sustainability 2020, 12, 3615. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment. Sustain. Sci. 2008, 3, 89–102. [Google Scholar] [CrossRef]
- IPCC. Strategies for Adaptation to Sea Level Rise. 1990. Available online: http://papers.risingsea.net/IPCC-1990-Strategies-for-Adaption-to-Sea-Level-Rise.html (accessed on 1 May 2020).
- Wei, Y.M.; Han, R.; Wang, C.; Yu, B.; Liang, Q.M.; Yuan, X.C.; Chang, J.; Zhao, Q.; Liao, H.; Tang, B.; et al. Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era. Nat. Commun. 2020, 11, 1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietzenbacher, E.; Cazcarro, I.; Arto, I. Towards a more effective climate policy on international trade. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Environmental Protection Agency. Draft Guidelines on the information to be contained in Environmental Impact Assessment Reports (EIAR). 2017. Available online: https://www.epa.ie/pubs/advice/ea/EPA%20EIAR%20Guidelines.pdf (accessed on 29 June 2020).
- Musco, F. Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer Nature: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Frazão Santos, C.; Agardy, T.; Andrade, F.; Calado, H.; Crowder, L.B.; Ehler, C.N.; García-Morales, S.; Gissi, E.; Halpern, B.S.; Orbach, M.K. Integrating climate change in ocean planning. Nat. Sustain. 2020, 1–12. [Google Scholar] [CrossRef]
- Menegon, S.; Sarretta, A.; Barbanti, A.; Gissi, E.; Venier, C. Open source tools to support Integrated Coastal Management and Maritime Spatial Planning. PeerJ Preprints 2016, 4, 2245. [Google Scholar] [CrossRef]
- Abramic, A.; Bigagli, E.; Barale, V.; Assouline, M.; Lorenzo-Alonso, A.; Norton, C. Maritime spatial planning supported by infrastructure for spatial information in Europe (INSPIRE). Ocean Coast. Manag. 2018, 152, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C. Transcending land–sea dichotomies through strategic spatial planning. Reg. Stud. 2020, 1–13. [Google Scholar] [CrossRef]
- Maragno, D. Ict. Resilienza e Pianificazione Urbanistica. per Adattare Le Città Al Clima; Franco Angeli Edizioni: Milan, Italy, 2018. [Google Scholar]
- Maragno, D.; Fontana, M.D.; Musco, F. Mapping heat stress vulnerability and risk assessment at the neighborhood scale to drive Urban adaptation planning. Sustainability 2020, 12, 1056. [Google Scholar] [CrossRef] [Green Version]
- Pistocchi, A. La valutazione idrologica dei piani urbanistici–Un metodo semplificato per l’invarianza idraulica dei piani regolatori generali. Ing. Ambient 2001, 3, 407–413. [Google Scholar]
- Pozzer, G. Consumo di suolo e gestione del rischio idraulico: test per linvarianza idraulica nella pianificazione territoriale. In Recuper. Terreno Anal. e Prospett. per La Gest. Sostenibile Della Risorsa Suolo; Franco Angeli Edizioni: Milan, Italy, 2015; pp. 165–177. [Google Scholar]
- Maragno, D.; Dall’Omo, C.F.; Ruzzante, F.; Musco, F. Toward a trans-regional vulnerability assessment for Alps. A methodological approach to land cover changes over alpine landscapes, supporting urban adaptation. Urban Clim. 2020, 32, 100622. [Google Scholar]
- Adriplan. Welcome To Adriplan. 2015. Available online: http://adriplan.eu/ (accessed on 27 April 2020).
- Gardi, C. Urban Expansion, Land Cover and Soil Ecosystem Services; Taylor and Francis: Oxfordshire, UK, 2017. [Google Scholar]
- Walsh, C.J.; Fletcher, T.D.; Burns, M.J. Urban Stormwater Runoff: A New Class of Environmental Flow Problem. PLoS ONE 2012, 7, 45814. [Google Scholar] [CrossRef] [Green Version]
- Ungaro, F.; Calzolari, C.; Pistocchi, A.; Malucelli, F. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: A hydropedological approach. J. Hydrol. Hydromech. 2014, 62, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Pistocchi, A.; Calzolari, C.; Malucelli, F.; Ungaro, F. Soil sealing and flood risks in the plains of Emilia-Romagna. Italy J. Hydrol. Reg. Stud 2015, 4, 398–409. [Google Scholar] [CrossRef]
- Sofia, G.; Tarolli, P. Hydrological response to ~30 years of agricultural surface water management. Land 2017, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Pistocchi, A. Hydrological impact of soil sealing and urban land take. In Urban Expansion, Land Cover and Soil Ecosystem Services; Routledge: London, UK, 2018; pp. 157–168. [Google Scholar]
- Ndossi, M.I.; Avdan, U. Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat: A PyQGIS plugin. Remote Sens. 2016, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Syariz, M.A.; Jaelani, L.M.; Subehi, L.; Pamungkas, A.; Koenhardono, E.S.; Sulisetyono, A. Retrieval of sea surface temperature over Poteran Island water of Indonesia with Landsat 8 TIRS image: A preliminary algorithm. Available online: https://doi.org/10.5194/isprsarchives-XL-2-W4-87-2015 (accessed on 29 June 2020).
- Cahyono, A.B.; Saptarini, D.; Pribadi, C.B.; Armono, H.D. Estimation of Sea Surface Temperature (SST) Using Split Window Methods for Monitoring Industrial Activity in Coastal Area. Appl. Mech. Mater. 2017, 862, 90–95. [Google Scholar] [CrossRef]
- Xing, X.; Liu, Y.; Dong, W.; Wang, Z.; Zhang, L.; . Sun, Z.; Huang, M. An algorithm to inverse sea surface temperatures at offshore water by employing Landsat 8/TIRS data. In Proceedings of the 36th Asian Conference on Remote Sensing 2015 (ACRS 2015): Foster. Resilient Growth in Asia, Quezon, Philippines, 24–28 October 2015. [Google Scholar]
- Fu, J.; Chen, C.; Ren, H.; Zhang, Y.; Chu, Y. Sea surface temperature retrieval from landsat8 thermal infrared remote sensing data in coastal waters. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Basel, Switzerland, 22 March 2020; p. 32067. [Google Scholar] [CrossRef]
- Saptarini, D.; Cahyono, A.B.; Pribadi, C.B.; Mukhtasor, H.D. Armono. Landsat 8 Imagery Data Utilization for Mapping the Dynamics of Cooling Water Distribution Based on Changes in SST in the Coastal Waters. Appl. Mech. Mater. 2017, 862, 78–82. [Google Scholar] [CrossRef]
- Jang, J.C.; Park, K.A. High-resolution sea surface temperature retrieval from Landsat 8 OLI/TIRS data at coastal regions. Remote Sens. 2019, 11, 2687. [Google Scholar] [CrossRef] [Green Version]
- Menegon, S.; Depellegrin, D.; Farella, G.; Sarretta, A.; Venier, C.; Barbanti, A. Addressing cumulative effects, maritime conflicts and ecosystem services threats through MSP-oriented geospatial webtools. Ocean Coast. Manag 2018, 163, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Morino, M. Trieste. Porto.di. maxi hub ferroviario tra Europa e Far East, Sole 24 Ore. 2019, 5. Available online: https://www.ilsole24ore.com/art/porto-trieste-maxi-hub-ferroviario-europa-e-far-east-ACufI34 (accessed on 28 April 2020).
- Picciulin, M.; Codarin, A.; Malavasi, S.; Fiorin, R.; Colla, S.; Rako-Gospic, N. The noisy coastal areas of the transboundary Northern Adriatic Sea. In Proceedings of the 5th International Conference on the Effects of Noise on Aquatic Life, Den Haag, The Netherlands, 7–12 July 2019; p. 070002. [Google Scholar]
- Buzan, E.; Pallavicini, A.; Glasnović, P.; Tout, P. Biodiversity and Conservation of Karst Ecosystems; Padova University Press: Padova, Italy, 2014. [Google Scholar]
- Sánchez-Arcilla, A.; Lin-Ye, J.; García-León, M.; Gràcia, V.; Pallarès, E. The land-sea coastal border: A quantitative definition by considering the wind and wave conditions in a wave-dominated, micro-Tidal environment. Ocean Sci. 2019, 15, 113–126. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, A.M.; Paterson, S.; Le Tissier, M. Addressing the tangled web of governance mechanisms for land-sea interactions: Assessing implementation challenges across scales. Mar. Policy 2020, 112, 103715. [Google Scholar] [CrossRef]
- Zaucha, J.; Gee, K. Maritime Spatial Planning: Past, Present, Future; Springer International Publishing: Berlin, Germany, 2019. [Google Scholar]
- ARPAFVG. Studio conoscitivo dei cambiamenti climatici e di alcuni loro impatti in Friuli Venezia Giulia. 2018. Available online: http://www.arpa.fvg.it/cms/tema/osmer/approfondimenti/cambiamenti-climatici.html (accessed on 9 May 2020).
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- ARPA, FVG, RAPPORTO SULLO STATO DELL’AMBIENTE IN FRIULI VENEZIA GIULIA. 2018. Available online: https://pixabay.com/ (accessed on 18 June 2020).
- Salerno, F.; Gaetano, V.; Gianni, T. Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces. Water Res. 2018, 144, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Seto, K.C.; Emerson, R.; Gorelick, S.M. The impact of urbanization on water vulnerability: A coupled human–environment system approach for Chennai, India. Glob. Environ. Chang. 2013, 23, 229–239. [Google Scholar] [CrossRef]
- Depellegrin, D.; Menegon, S.; Farella, G.; Ghezzo, M.; Gissi, E.; Sarretta, A.; Venier, C.; Barbanti, A. Multi-objective spatial tools to inform maritime spatial planning in the Adriatic Sea. Sci. Total Environ. 2017, 609, 1627–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calado, H.; Ng, K.; Johnson, D.; Sousa, L.; Phillips, M.; Alves, F. Marine spatial planning: Lessons learned from the Portuguese debate. Mar. Policy 2010, 34, 1341–1349. [Google Scholar] [CrossRef]
- Wilson, K.; Cabeza, M.; Klein, K.J. Fundamental concepts of spatial conservation prioritisation. In Spatial Conservation Prioritisation: Quantitative Method and Computational Tools; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Nhancale, B.A.; Smith, R.J. The influence of planning unit characteristics on the efficiency and spatial pattern of systematic conservation planning assessments. Biodivers. Conserv. 2011, 20, 1821–1835. [Google Scholar] [CrossRef]
- SUPREME Supporting Maritime Spatial Planning in the Eastern Mediterranean CASE STUDY FRAMEWORK Addressing MSP Implementation in Case Study Areas (C.1.3.8.) Co-funded. 2017. Available online: http://www.msp-supreme.eu/files/c-1-3-8-north-adriatic.pdf (accessed on 30 April 2020).
Approach | Category | Description | Typology and Resolution | Source |
---|---|---|---|---|
Land and urban approach | Basic Map | Digital Terrain Model | Raster 25 × 25m | Copernicus Program |
Basic Map | Primary watercourses | Vector | CCM2 | |
Thematic Map | Corine Land-Cover 2018 Photo-interpreted satellite survey of European land cover. | Vector/Raster The production of CLC data returns digital cartography at a scale of 1: 100,000. | Copernicus Program | |
Remote sensing | Multispectral Satellite Image: LC08_L1TP_191028_20170706 | Raster-Geotif-16 bits, 30m | Landsat 8 (United States Geological Survey – USGS) | |
Morphological parameters and indices | LST; NDVI; NDMI | Raster-Geotif-16 bits, 30m | Data derived from Landsat 8 image (USGS) | |
Sea and maritime approach | Basic Map | Adriatic-Ionian Macro-region | Vector | Adriplan project |
Maritime transport and tourism | Ports and harbours | Vector | Shape Adriatic Atlas | |
Basic Map | Artificial reef (Veneto-Friuli-Venezia Giulia) | Vector | ISMAR (Venezia) | |
Coastal defence and sand extraction | Offshore sand deposits | Vector | CNR-ISMAR (Venezia) | |
Coastal defence and sand extraction | Artificial coastline | Vector | Adriplan project | |
Maritime transport and tourism | Ferry routes | Vector | Shape Adriatic Atlas | |
Maritime transport and tourism | Marine traffic corridor | Vector | Shape Adriatic Atlas | |
Environment and ecosystems | Natura 2000 | Vector | EEA (European Environment Agency) | |
Environment and ecosystems | Coralligenous communities (model) | Vector | MEDISEH-MAREA project | |
Environment and ecosystems | Coralligenous outcrops | Vector | MEDISEH-MAREA project | |
Environment and ecosystems | Posidonia oceanica distribution | Vector | MEDISEH-MAREA project | |
Environment and ecosystems | Marine mammals’ sightings | Vector | European Marine Observation and Data Network (EMODne) |
Impact | Statistical Unit | Data, Indicators, Indexes | Vulnerability | Process | |
---|---|---|---|---|---|
Sensitivity | Adaptive Capacity | ||||
Urban Heat Islands | Hexagonal Cell | LST | LST (average value) | NDVI (average value) | Sensitivity (–) Adaptive Capacity |
NDVI | NDMI (average value) | ||||
NDMI | |||||
Urban Flooding | Pixel | Digital Terrain Model (DTM) | 0.9 no permeable areas | 0.1 permeable areas | Sensitivity and adaptive capacity relationship illustrated using a GIS spatial association algorithm |
Land Cover | |||||
Surface Outflow Index |
Statistical Unit | LST | NDVI | NDMI |
---|---|---|---|
Hexagonal cell | Average value | Average value | Average value |
LST | NDVI | NDMI |
---|---|---|
Sensitivity | Adaptive capacity | Adaptive capacity |
Statistical Unit | DTM | Land Use | Runoff Coefficient | |
---|---|---|---|---|
0.9 Impermeable Areas (Worse Condition) | 0.1 Permeable Areas (Best Condition) | |||
Pixel | Sensitivity | Sensitivity | Adaptive capacity | Adaptive capacity |
1.1 | 1.2 | 1.3 | 1.4 | 2 | 3 | 4.2 | 5 | ||
---|---|---|---|---|---|---|---|---|---|
Municipality | Buffer * Area for Municipal Partition (sq Km) | Urban Fabric % | Industrial, Commercial and Transport Units % | Mine, Dump and Construction Sites% | Artificial, Non-Agricultural Vegetated Areas % | Agricultural Areas (2.1; 2.2; 2.4) % | Forest and Semi Natural Areas (3.1; 3.2; 3.3) % | Maritime Wetlands % | Water Bodies (5.1; 5.2) % |
Grado (GO) ** | 45.67 | 5.96 | 0 | 0 | 1.84 | 64.39 | 3.37 | 13.73 | 10.71 |
San Canzian d’Isonzo (GO) | 7.44 | 0 | 0 | 0 | 0 | 81.91 | 8.85 | 0 | 9.24 |
Aquileia (UD) | 12.04 | 0 | 0 | 0 | 0 | 92.76 | 4.5 | 2.2 | 0.55 |
Fiumicello (UD) | 3.12 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
Staranzano (GO) | 15.56 | 7.8 | 1.63 | 0 | 0 | 54.93 | 21.73 | 10.13 | 3.78 |
Monfalcone (GO) | 20.31 | 27.02 | 27.77 | 0 | 0 | 4.87 | 32.76 | 7.42 | 0.16 |
Ronchi dei Legionari (GO) | 1.74 | 0 | 0 | 0 | 0 | 11.01 | 88.99 | 0 | 0 |
Doberdò del Lago (GO) | 3.95 | 0 | 0 | 0 | 0 | 0.66 | 99.34 | 0 | 0 |
Duino-Aurisina (TS) | 38.02 | 10.19 | 2.74 | 1.06 | 0 | 12.75 | 73 | 0.13 | 0.14 |
Sgonico (TS) | 14.6 | 4.33 | 1.33 | 0 | 0 | 21.25 | 73.09 | 0 | 0 |
Trieste | 52.74 | 50.29 | 13.97 | 0 | 0.59 | 5.67 | 28.99 | 0 | 0.48 |
San Dorligo della Valle (TS) | 9.28 | 10.31 | 25.88 | 0 | 0 | 37.51 | 26.31 | 0 | 0 |
Muggia (TS) | 13.51 | 19.33 | 23.42 | 0 | 0 | 30.99 | 25.8 | 0 | 0.46 |
Koper | 41.52 | 9.83 | 14.88 | 0.03 | 0.76 | 57.23 | 13.99 | 0.93 | 2.35 |
Ankaran | 7.96 | 6.78 | 17.11 | 5.12 | 0 | 52.77 | 14.28 | 0 | 3.94 |
Izola | 25.25 | 9.62 | 4.04 | 0 | 0 | 58.84 | 26.78 | 0 | 0.71 |
Piran | 29.52 | 11.83 | 2.63 | 0 | 0 | 49.44 | 12.85 | 21.79 | 1.45 |
Overall profile | 342.25 | 15.94 | 8.59 | 0.24 | 0.43 | 39.61 | 27.87 | 4.82 | 2.49 |
Corine Landcover 2018—I and II Level Classification | ||||||
---|---|---|---|---|---|---|
Municipality | 1.1 | 1.2 | 1.3 | 1.4 | Urban Heat Island (UHI) | Urban Runoff |
Urban Fabric % | Industria, Commercial and Transport Units % | Mine, Dump and Construction Sites% | Artificial, Non-Agricultural Vegetated Areas% | Average Value Range from −0.16 (Low Vulnerability) to 0, 0, (High Vulnerability) | Value Range from 0.55 (Low Impact) to 0.70 (High Impact) | |
Grado (GO) | 5.96 | 0 | 0 | 1.84 | 0.12 | 0.55 |
Staranzano (GO) | 7.8 | 1.63 | 0 | 0 | 0.13 | 0.64 |
Monfalcone (GO) | 27.02 | 27.77 | 0 | 0 | 0.30 | 0.70 |
Duino-Aurisina (TS) | 10.19 | 2.74 | 1.06 | 0 | −0.04 | 0.59 |
Sgonico (TS) | 4.33 | 1.33 | 0 | 0 | −0.16 | 0.58 |
Trieste | 50.29 | 13.97 | 0 | 0.59 | 0.23 | 0.66 |
San Dorligo della Valle (TS) | 10.31 | 25.88 | 0 | 0 | 0.13 | 0.70 |
Muggia (TS) | 19.33 | 23.42 | 0 | 0 | 0.13 | 0.66 |
Koper | 9.83 | 14.88 | 0.03 | 0.76 | 0.26 | 0.70 |
Ankaran | 6.78 | 17.11 | 5.12 | 0 | 0.30 | 0.68 |
Izola | 9.62 | 4.04 | 0 | 0 | 0.15 | 0.66 |
Piran | 11.83 | 2.63 | 0 | 0 | 0.13 | 0.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragno, D.; dall’Omo, C.F.; Pozzer, G.; Bassan, N.; Musco, F. Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin. Sustainability 2020, 12, 5319. https://doi.org/10.3390/su12135319
Maragno D, dall’Omo CF, Pozzer G, Bassan N, Musco F. Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin. Sustainability. 2020; 12(13):5319. https://doi.org/10.3390/su12135319
Chicago/Turabian StyleMaragno, Denis, Carlo Federico dall’Omo, Gianfranco Pozzer, Niccolò Bassan, and Francesco Musco. 2020. "Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin" Sustainability 12, no. 13: 5319. https://doi.org/10.3390/su12135319
APA StyleMaragno, D., dall’Omo, C. F., Pozzer, G., Bassan, N., & Musco, F. (2020). Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin. Sustainability, 12(13), 5319. https://doi.org/10.3390/su12135319