Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts
Abstract
:1. Introduction
1.1. Complete Straw Removal and the Paddy Flatbed Dryer (PFBD)
1.2. Life Cycle Assessment in Rice Production
1.3. Rationale of the Study
2. Materials and Methods
2.1. Research Study Area and System Boundaries
2.2. Data Collection
2.2.1. Assessment of the Structures
2.2.2. Rice Straw Preparation
2.3. RBHG Experiments
2.4. Methodology and Software Used for Calculation and Simulation
= GHG emissions (kg CO2-eq Mg−1) − GHG avoided (kg CO2-eq Mg−1)
2.5. RBHG Cost Calculations
3. Results
3.1. Results of the RBHG Experiments
3.2. Energy Flow and GHG Emissions
3.3. Cost Calculations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Rice Market Monitor. 2017. Available online: http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/ (accessed on 19 December 2018).
- Mendoza, T.C.; Samson, R.O.G.E.R. Strategies to Avoid Crop Residue Burning in the Philippine Context. 1999. Available online: https://www.reap-canada.com/online_library/IntDev/id_eco_sugarcane/9 (accessed on 12 December 2018).
- Van Hung, N.; Quilloy, R.; Gummert, M. Improving energy efficiency and developing an air-cooled grate for the downdraft rice husk furnace. Renew. Energy 2018, 115, 969–977. [Google Scholar] [CrossRef]
- Kadam, K.L.; Forrest, L.H.; Jacobson, W.A. Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects. Biomass Bioenergy 2000, 18, 369–389. [Google Scholar] [CrossRef]
- Logeswaran, J.; Shamsuddin, A.H.; Silitonga, A.S.; Mahlia, T.M.I. Prospect of using rice straw for power generation: A review. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Basak, P. Economic and environmental evaluation of rice straw processing technologies for energy generation: A case study of Punjab, India. J. Clean. Prod. 2019, 212, 343–352. [Google Scholar] [CrossRef]
- Romasanta, R.R.; Sander, B.O.; Gaihre, Y.K.; Alberto, M.C.; Gummert, M.; Quilty, J.; Nguyen, V.H.; Castalone, A.G.; Balingbing, C.; Sandro, J.; et al. How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric. Ecosyst. Environ. 2017, 239, 143–153. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Topno, S.; Balingbing, C.; Nguyen, V.C.N.; Röder, M.; Quilty, J.; Jamieson, C.; Thornley, P.; Gummert, M. Generating a positive energy balance from using rice straw for anaerobic digestion. Energy Rep. 2016, 2, 117–122. [Google Scholar] [CrossRef]
- Said, N.; Alblawi, A.; Hendy, I.; Daiem, M.A. Analysis of Energy and Greenhouse Gas Emissions of Rice Straw to Energy Chain in Egypt. Bioresources 2020, 15, 1510–1520. [Google Scholar] [CrossRef]
- He, L.; Huang, H.; Zhang, Z.; Lei, Z.; Lin, B. Le Energy Recovery from Rice Straw through Hydrothermal Pretreatment and Subsequent Biomethane Production. Energy Fuels 2017, 31, 10850–10857. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand. Bioresour. Technol. 2013, 150, 412–419. [Google Scholar] [CrossRef]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef]
- Soam, S.; Borjesson, P.; Sharma, P.K.; Gupta, R.P.; Tuli, D.K.; Kumar, R. Life cycle assessment of rice straw utilization practices in India. Bioresour. Technol. 2017, 228, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Dobermann, A.; Fairhurst, T.H. Rice straw management. Better Crop. Int. 2002, 16, 7–11. [Google Scholar]
- Knoblauch, R.; Ernani, P.R.; Deschamps, F.C.; Gatiboni, L.C.; Walker, T.W.; Lourenço, K.S.; Martins, A.A.; Pegoraro, A. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen. Rev. Bras. Ciência Solo 2014, 38, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Philrice. Maligaya Flatbed Dryer. Pinoy Rice Knowledge Bank Handout Series. 2010. Available online: http://www.pinoyrice.com/wp-content/uploads/maligaya-flatbed-dryer.pdf (accessed on 3 September 2018).
- Migo-Sumagang, M.V.P.; Van Hung, N.; Detras, M.C.M.; Alfafara, C.G.; Borines, M.G.; Capunitan, J.A.; Gummert, M. Optimization of a downdraft furnace for rice straw-based heat generation. Renew. Energy 2020, 148, 953–963. [Google Scholar] [CrossRef]
- Singh, A. Life Cycle Assessment of Renewable Energy Sources; Springer: London, UK, 2016. [Google Scholar] [CrossRef]
- Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I. Life cycle assessment of rice straw-based power generation in Malaysia. Energy 2014, 70, 401–410. [Google Scholar] [CrossRef]
- Kazemi, H.; Kamkar, B.; Lakzaei, S.; Badsar, M.; Shahbyki, M. Energy flow analysis for rice production in different geographical regions of Iran. Energy 2015, 84, 390–396. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S. Input-output energy analysis of rice production in different crop management practices in central China. Energy 2017, 141, 1124–1132. [Google Scholar] [CrossRef]
- Bautista, E.G.; Minowa, T. Analysis of the energy for different rice production systems in the Philippines. Philipp. Agric. Sci. 2010, 93, 346–357. [Google Scholar]
- Quilty, J.R.; McKinley, J.; Pede, V.O.; Buresh, R.J.; Correa, T.Q.; Sandro, J.M. Energy efficiency of rice production in farmers’ fields and intensively cropped research fields in the Philippines. Field Crop. Res. 2014, 168, 8–18. [Google Scholar] [CrossRef]
- Blonk Consultants. Agri-Footprint 2.0 Part 1: Methodology and Basic Principles. 2015. Available online: https://simapro.com/wp-content/uploads/2018/02/Agri-Footprint-4.0-Part-1-Methodology-and-basic-principles.pdf (accessed on 12 December 2018).
- PRé Consultants. SimaPro Tutorial. 2016. Available online: https://www.pre-sustainability.com/download/SimaPro8Tutorial.pdf (accessed on 12 December 2018).
- Philippine Statistics Authority (PSA). Updates on Palay, Rice and Corn Prices. 2018. Available online: https://psa.gov.ph/sites/default/files/CerPrSitAprWeek32017.pdf (accessed on 28 April 2018).
- XE Corporation. XE Currency Converter. 2019. Available online: https://www.xe.com/ (accessed on 4 April 2019).
- SimaPro, Version 8.0.5.13; LCA Software: Amersfoot, The Netherlands, 2017.
- Ecoinvent. Implementation of Ecoinvent 3. 2017. Available online: http://www.ecoinvent.org/partners/resellers/implementation-of-ecoinvent-3/implementation-of-ecoinvent-3.html (accessed on 3 December 2017).
- Bowers, W. Agricultural Field equipment. In Energy in Farm Production; Fluck, R.C., Ed.; Energy in World Agriculture: New York, NY, USA, 1992. [Google Scholar]
- Richard, C.F. Energy Analysis for Agricultural Systems. In Energy in Farm Production; Fluck, R.C., Ed.; Energy in World Agriculture: New York, NY, USA, 1992. [Google Scholar]
- IPCC. Emissions Factor Database. 2013. Available online: http://www.ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database (accessed on 3 December 2017).
- Dalgaard, T.; Halberg, N.; Porter, J.R. A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agric. Ecosyst. Environ. 2001, 87, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Industry Data 2.0. Industry Data LCA Library. 2017. Available online: https://simapro.com/databases/industry-data-lca-library/ (accessed on 17 September 2018).
- American Time Use Survey. Summary MET Values for Occupation. 2018. Available online: https://epi.grants.cancer.gov/physical/MET/atusmet.php?major[]=05&keywords=&metval_min=&metval_max= (accessed on 17 September 2018).
- Engineering ToolBox. Combustion of Fuels—Carbon Dioxide Emission. 2009. Available online: https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html (accessed on 12 December 2018).
- Quaschning, V. Specific Carbon Dioxide Emissions of Various Fuels. 2015. Available online: https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php (accessed on 20 December 2018).
- Milne, G. Embodied Energy. 2013. Available online: http://www.yourhome.gov.au/materials/embodied-energy (accessed on 12 December 2018).
- Department of Labor and Employment (DOLE). Summary of Current Regional Daily Minimum Wage Rates Non-Agriculture, Agriculture (As of April 2018). Available online: http://nwpc.dole.gov.ph/pages/statistics/stat_current_regional.html (accessed on 28 May 2018).
- Hayashi, K.; Ono, K.; Kajiura, M.; Sudo, S.; Yonemura, S.; Fushimi, A.; Saitoh, K.; Fujitani, Y.; Tanabe, K. Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmos. Environ. 2014, 95, 36–44. [Google Scholar] [CrossRef]
- Arai, H.; Hosen, Y.; Pham Hong, V.N.; Thi, N.T.; Huu, C.N.; Inubushi, K. Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. Soil Sci. Plant Nutr. 2015, 61, 719–735. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC, methane and nitrous oxide emission factors. In IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Kadam, M.P.; Patil, Y.D. The Effect of sieved Coal Bottom Ash as a Sand Substitute on the Properties of Concrete with Percentage Variation in Cement. Am. J. Civ. Eng. Archit. 2014, 2, 160–166. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, R.G. Replacement of Fine Aggregate with Bottom Ash in Concrete and Investigation on Compressive Strength. Int. J. Eng. Res. 2017, 6, 172–176. [Google Scholar] [CrossRef]
- Detwiler, R.J. Substitution of Fly Ash for Cement or Aggregate in Concrete: Strength Development and Suppression of ASR, RD127; Portland Cement Association: Skokie, IL, USA, 2002. [Google Scholar] [CrossRef] [Green Version]
- Pavlík, Z.; Keppert, M.; Pavlíková, M.; Volfová, P.; Černý, R. Application of MSWI bottom ash as alternative aggregate in cement mortar. WIT Trans. Ecol. Environ. 2011, 148, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Topno, S.E. Environmental Performance and Energy Recoverable from Stored Rice Straw Bales in Humid Climate. Ph.D. Thesis, University of the Philippines Los Baños, Laguna, Philippines, 2015. [Google Scholar]
- Pishgar-Komleh, S.H.; Sefeedpari, P.; Rafiee, S. Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy 2011, 36, 5824–5831. [Google Scholar] [CrossRef]
- Meralco. Rates Archives, 2018. Available online: https://meralcomain.s3.ap-southeast-1.amazonaws.com/2018-05/052018_summaryschedule.pdf?null (accessed on 20 May 2018).
- Department of Energy (DOE). Energy Supply and Demand Outlook. Available online: https://www.doe.gov.ph/energy-supply-and-demand-outlook (accessed on 11 April 2017).
- Kargbo, F.; Xing, J.; Zhang, Y. Property Analysis and Pretreatment of Rice Straw for Energy Use in Grain Drying: A Review. Agric. Biol. J. North Am. 2010, 1, 195–200. [Google Scholar] [CrossRef]
- van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2012. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H.; Sheng, C. Self-Heating of Agricultural Residues during Storage and Its Impact on Fuel Properties. Energy Fuels 2018, 32, 4227–4236. [Google Scholar] [CrossRef]
- Han, M.Y.; Chen, G.Q.; Shao, L.; Li, J.S.; Alsaedi, A.; Ahmad, B.; Guo, S.; Jiang, M.M.; Ji, X. Embodied energy consumption of building construction engineering: Case study in E-town, Beijing. Energy Build. 2013, 64, 62–72. [Google Scholar] [CrossRef]
- Koezjakov, A.; Urge-Vorsatz, D.; Crijns-Graus, W.; van den Broek, M. The relationship between operational energy demand and embodied energy in Dutch residential buildings. Energy Build. 2018, 165, 233–245. [Google Scholar] [CrossRef]
- Suzuki, M.; Oka, T.; Okada, K. The estimation of energy consumption and CO2 emission due to housing construction in Japan. Energy Build. 1995, 22, 165–169. [Google Scholar] [CrossRef]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Aghaalikhani, M.; Kazemi-Poshtmasari, H.; Habibzadeh, F. Energy use pattern in rice production: A case study from Mazandaran province, Iran. Energy Convers. Manag. 2013, 69, 157–162. [Google Scholar] [CrossRef]
- Delivand, M.K.; Barz, M.; Gheewala, S.H.; Sajjakulnukit, B. Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand. Appl. Energy 2011, 88, 3651–3658. [Google Scholar] [CrossRef]
- Martinez, R.C.; Flores, E.D.; Asuncion, N.T.; Daquila, R.E.; Viloria, W.Z.; Manalabe, R.E. Development of Philmech rice hull-fed furnace system for heating mechanical dryers. PhilMech J. Post Harvest. Eng. 2010, 1, 1–20. [Google Scholar]
- IRRI Knowledge Bank. Economic Aspects of Drying. 1994. Available online: http://www.knowledgebank.irri.org/step-by-step-production/postharvest/drying/economic-aspects-of-drying (accessed on 7 November 2019).
- Matsumura, Y.; Minowa, T.; Yamamoto, H. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass Bioenergy 2005, 29, 347–354. [Google Scholar] [CrossRef]
- Ishii, K.; Furuichi, T.; Fujiyama, A.; Watanabe, S. Logistics cost analysis of rice straw pellets for feasible production capacity and spatial scale in heat utilization systems: A case study in Nanporo town, Hokkaido, Japan. Biomass Bioenergy 2016, 94, 155–166. [Google Scholar] [CrossRef]
Parameter | Unit | Quantity |
---|---|---|
Storage center structure | ||
Alkyd paint | kg | 42 |
Cement cast plaster | kg | 1082 |
Cement, Portland | kg | 18,636 |
Concrete block | kg | 42,000 |
Gravel | kg | 44,016 |
Plywood | m3 | 0.12 |
Polyvinyl Chloride (PVC) pipe | kg | 6 |
Reinforcing steel | kg | 1681 |
Sand | kg | 39,954 |
Steel sheet | kg | 1616 |
Steel, low-alloyed, hot-rolled | Kg | 6 |
Welding, arc, steel | m | 640 |
Electricity | kWh | 1000 |
Manual labor construction | MJ | 4576 |
Downdraft furnace (dRF) structure | ||
Cement, Portland | kg | 250 |
Clay brick | kg | 385 |
Electric motor | kg | 73 |
Reinforcing steel | kg | 324.03 |
Steel sheet | kg | 155.05 |
Steel, low-alloyed, hot-rolled | kg | 1 |
Synthetic rubber | kg | 1 |
Welding, arc, steel | m | 319.99 |
Electricity | kWh | 78.8 |
Manual labor | MJ | 192 |
Parameter | Range | Average | Sources |
---|---|---|---|
Rice production | |||
Seeds (kg ha−1) | 20–100 | 50 | [7,22,23] |
Fertilizer (kg ha−1) | |||
N | 58–195 | 125 | [7,22,23] |
P2O5 | 15–50 | 25 | [7,22,23] |
K2O | 8.4–30 | 21 | [7,22,23] |
Herbicide (kg ha−1) | 0.75–1.98 | 1.24 | [22,23] |
Insecticide (kg ha−1) | 0.50–2.87 | 1.45 | [22,23] |
Total diesel consumption of machineries (L ha−1) | 32–145 | 82 | [22,23] |
Total manual labor (MJ ha−1) | 423–820 | 618 | [22,23] |
Rice straw collection and transportation | |||
Total diesel consumption of machineries (L Mg−1) | 4.79–14.10 | 8.30 | [8] |
Total manual labor (MJ Mg−1) | 0.97–2.43 | 1.19 | [8] |
Parameter | Energy | GHG Emissions |
---|---|---|
MJ Mg−1 | kg CO2-eq Mg−1 | |
INPUTS | ||
Rice production | ||
Mechanized operations | 867–2583 | 80–238 |
Labor | 190–242 | |
Rice seeds | 241–794 | 15.3–50.4 |
Fertilizer | 1714–3973 | 159–352 |
Herbicide | 101–176 | 5.7–9.9 |
Insecticide | 53–199 | 2.9–10.9 |
Subtotal, rice production | 3166–7967 | 263–661 |
Rice straw collection and transportation | ||
Mechanized operations | 130–251 | 12–23 |
Labor | 0.97–2.43 | |
Subtotal, rice straw collection and transportation | 131–254 | 12–23 |
Direct soil emissions from partial or complete straw removal | 174–477 |
Parameter | Unit | Energy Equivalent (MJ unit−1) | GHG Emission Factor (kg CO2-eq unit−1) | Sources |
---|---|---|---|---|
INPUTS/GHG EMISSIONS | ||||
Rice production | ||||
Diesel consumption | L | 44.8 | 4.13 | [29,30,31,32] |
Machine manufacture | L | 15.6 | 1.44 | [30,31,32,33] |
Labor | h | 0.89 | [23] | |
Seeds | kg | 26.91 | 1.71 | [29,32] |
Nitrogen | kg | 60 | 5.75 | [29,32] |
P2O5 | kg | 17.81 | 1.12 | [29,32] |
K2O | kg | 8.94 | 0.53 | [29,32] |
Herbicide | kg | 300.63 | 16.87 | [29,32] |
Insecticide | kg | 301.55 | 12.84 | [29,32] |
Structure materials and energy | ||||
Alkyd paint | kg | 99.52 | 6.74 | [29,32] |
Cement, Portland | kg | 4.28 | 0.94 | [29,32] |
Concrete block | kg | 0.86 | 0.09 | [29,32] |
Clay brick | kg | 3.84 | 0.32 | [29,32] |
Sand | kg | 0.19 | 0.01 | [29,32] |
Gravel | kg | 0.19 | 0.012 | [29,32] |
Cement cast plaster | kg | 1.37 | 0.21 | [29,32] |
Plywood | m3 | 43,613 | 660.93 | [29,32] |
PVC Pipe | kg | 68 | 3.4 | [32,34] |
Reinforcing steel | kg | 23.63 | 2.04 | [29,32] |
Steel sheet | kg | 33.27 | 2.9 | [32,34] |
Steel, low-alloyed, hot-rolled | kg | 24 | 2.2 | [29,32] |
Welding arc, steel | m | 2.63 | 0.21 | [29,32] |
Electric motor | unit | 6850 | 537 | [29,32] |
Synthetic rubber | kg | 87.7 | 2.88 | [29,32] |
Electricity | MJ | 3.11 | 0.21 | [29,32] |
Labor | h | 1.0 | [35] | |
Rice Straw Combustion | ||||
CH4 | kg | 30.5 | [29] | |
N2O | kg | 265 | [29] | |
OUTPUTS/GHG AVOIDED | ||||
dRF heat output | MJ | 1 | ||
Kerosene substitute | GJ | 71 | [36,37] | |
Ash as concrete aggregate substitute | kg | 0.19 | 0.012 | [29,32] |
Parameter | Baler | Storage Center | dRF |
---|---|---|---|
Investment cost (USD) | 28,800 | 23,000 | 1515 |
Workshop for parking and maintenance (USD) | 2000 | ||
Life span (years) | 5 | 10 | 5 |
Working time (hours day−1) | 8 | 24 | 16 |
Maintenance and repair cost (%) | 50 | 20 | 50 |
Working days each year (days) | 60–90 | 300 | 60 |
Capacity (Mg yr−1) | 960 | 80–320 | 19–29 |
Tractor rental price (USD h−1) | 4.8 | ||
Baler service management (USD man−1 day−1) | 4.8 [39] |
Scenario | Blower Electricity Consumption (kW) | ASH (kg h−1) | Stage | Labor Energy (MJ Mg−1) |
---|---|---|---|---|
Scenario 1 | Storage | |||
Range | 16.30–19.92 | 6–6.11 | 4.68–6.24 | |
Average | 18.38 | 6.03 | 5.42 | |
STDEV | 1.87 | 0.07 | 0.78 | |
Scenario 2 | dRF Operation | |||
Range | 11.17–11.81 | 4–4.28 | 5.52–6.87 | |
Average | 11.48 | 4.17 | 6.03 | |
STDEV | 0.32 | 0.17 | 0.73 |
Parameter | Energy | GHG |
---|---|---|
MJ Mg−1 | kg CO2-eq Mg−1 | |
INPUT | EMISSIONS | |
Rice straw production (rice production with allocation) *,1 | 118–392 | 9–33 |
Rice straw collection and transportation * | 131–253 | 12–23 |
Direct soil emissions from partial or complete straw removal * | 174–477 | |
Rice straw storage | ||
Labor | 4.7–6.2 | |
Storage center energy depreciation/GHG emissions | 79–318 | 10–41 |
Subtotal rice straw storage | 84–324 | 10–41 |
Rice-straw-based heat generation | ||
Labor | 5.7–6.9 | |
Blower electricity consumption | 6218–7334 | 496–794 |
dRF energy depreciation/GHG emissions | 152–232 | 14.5–22 |
Rice straw combustion emissions (CH4 and N2O) | 26–316 | |
Subtotal RBHG | 6376–7573 | 537–1132 |
Total Energy Input/GHG Emissions | 6709–8542 | 742–1706 |
OUTPUT | AVOIDED | |
dRF heat output | 11,198–11,849 | |
Kerosene combustion avoided | 801–847 | |
Ash as concrete aggregate | 38–41 | 2.4–2.6 |
Total Energy Output/GHG Avoided | 11,236–11,890 | 803–850 |
Net Total Energy Output/GHG Emissions | 3348–4527 | (-)61–856 |
Energy Ratio | 1.4–1.7 | |
% Net Energy | 39–67 |
Inputs | Cost | Percentage of Average Value | |
---|---|---|---|
USD Mg−1 Rice Straw | USD kWh−1 Heat Output | % | |
Rice straw | 33 | 0.0106 | 11.04 |
Transportation | 1.86 | 0.0006 | 0.62 |
Storage center maintenance and depreciation | 18.2–69 | 0.0059–0.0222 | 14.58 |
Labor for dRF operation | 59.9–81.2 | 0.0193–0.0261 | 23.59 |
Blower electricity consumption | 111–131 | 0.0357–0.0421 | 40.47 |
dRF maintenance and depreciation | 23.6–34.4 | 0.0076–0.0111 | 9.70 |
Total cost | 248–350 | 0.0796–0.1127 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migo-Sumagang, M.V.P.; Maguyon-Detras, M.C.; Gummert, M.; Alfafara, C.G.; Borines, M.G.; Capunitan, J.A.; Van Hung, N. Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts. Sustainability 2020, 12, 5327. https://doi.org/10.3390/su12135327
Migo-Sumagang MVP, Maguyon-Detras MC, Gummert M, Alfafara CG, Borines MG, Capunitan JA, Van Hung N. Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts. Sustainability. 2020; 12(13):5327. https://doi.org/10.3390/su12135327
Chicago/Turabian StyleMigo-Sumagang, Maria Victoria P., Monet Concepcion Maguyon-Detras, Martin Gummert, Catalino G. Alfafara, Myra G. Borines, Jewel A. Capunitan, and Nguyen Van Hung. 2020. "Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts" Sustainability 12, no. 13: 5327. https://doi.org/10.3390/su12135327
APA StyleMigo-Sumagang, M. V. P., Maguyon-Detras, M. C., Gummert, M., Alfafara, C. G., Borines, M. G., Capunitan, J. A., & Van Hung, N. (2020). Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts. Sustainability, 12(13), 5327. https://doi.org/10.3390/su12135327