Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
- Multicriteria decision-support methods have been applied in many fields, including sustainable development.
- Critical analysis of publications allowed us to identify various methods of foundation underpinning and uniform criteria for the assessment of decision options.
- The PROMETHEE II method enabled us to create a ranking of foundation-underpinning methods. The jet-grouting and root-pile methods were the highest scorers in this ranking, and the methods that fulfilled the identified criteria to the greatest extent. They were followed by Franki Miga piles and megapiles.
- This method is not suitable for demonstrating the relationship between a criterion and a decision option. Analysis was limited to a hierarchy of only the selected foundation-underpinning methods. In future research, it is of interest to extend this proposal to analysis of all available foundation-underpinning methods, and to apply more criteria, which could be grouped. It is also of interest to carry out analysis using other multicriteria methods, and compare the obtained results using several methods. In the second of these analyses, it is worthwhile to apply a separate criteria-weighting method because the current one is insufficient. The method could be based on expert analysis. Another aspect worth analyzing is specific objects and conditions.
Author Contributions
Funding
Conflicts of Interest
References
- Wilkinson, S.; Hajibandeh, M.; Remoy, H. Sustainable Development. In ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes; Noguchi, M., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Uğural, M.N.; Giritli, H.; Urbański, M. Determinants of the turnover intention of construction professionals: A mediation analysis. Sustainability 2020, 12, 954. [Google Scholar] [CrossRef] [Green Version]
- Chodkowska-Miszczuk, J.; Szymańska, D. Modernisation of public buildings in polish towns and the concept of sustainable building. Quaest. Geogr. 2014, 33, 89–99. [Google Scholar] [CrossRef] [Green Version]
- De Berardinis, P.; Rotilio, M.; Capannolo, L. Energy and sustainable strategies in the renovation of existing buildings: An Italian Case Study. Sustainability 2017, 9, 1472. [Google Scholar] [CrossRef] [Green Version]
- Shan, H.F.; Xia, T.D.; Yu, F.; Tao, H.B.; He, S.H. Influence of Underpinning Pile Drilling Construction on the Bearing Behavior of Existing Loaded Foundation Piles: Case Study. Adv. Civ. Eng. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Jensen, J.O.; Gram-Hanssen, K. Ecological modernization of sustainable buildings: A Danish perspective. Build. Res. Inf. 2008, 36, 146–158. [Google Scholar] [CrossRef]
- Gandhi, S.; Mangla, S.K.; Kumar, P.; Kumar, D. Evaluating factors in implementation of successful green supply chain management using DEMATEL: A case study. Int. Strateg. Manag. Rev. 2015, 3, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Conte, E. The era of sustainability: Promises, pitfalls and prospects for sustainable buildings and the built environment. Sustainability 2018, 10, 2092. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Guo, L. Study on Civil Engineering Sustainable Development Strategy. In Proceedings of the 3rd International Conference on Management, Eductaion, Information and Control, Shenyang, China, 29–31 May 2015; pp. 405–412. [Google Scholar] [CrossRef] [Green Version]
- Bołoz, Ł.; Midor, K. The procedure of choosing an optimal offer for a conical pick as an element of realizing the sustainable development concept in mining enterprises. Acta Montan. Slovaca 2019, 24, 140–150. [Google Scholar]
- Kordahi, R.Z. Underpinning strategies for buildings with deep foundations. Master’s Thesis, The massachusetts Institute of Technology, Cambridge, MA, USA, 7 June 2004. [Google Scholar]
- Dahiru, D.; Salau, S.; Usman, J. A Study of Underpinning Methods Used in the Construction Industry in Nigeria. Int. J. Eng. Sci. (IJES) 2014, 3, 5–13. [Google Scholar]
- Long, P.D. Underpinning Buildings Damaged by Foundation Causes; Swedish Geotechnical Institute: Linkoping, Sweden, 1982. [Google Scholar]
- Makarchian, M. Review of underpinning methods. In Proceedings of the Engineering geology and the environment, Athens, Greece, 23–27 June 1997; pp. 3203–3212. [Google Scholar]
- Essler, R.; Yoshida, H. Chapter 5: Jet grouting. Ground Improvement, 2nd ed.; Michael, P., Moseley, M.P., Kirsch, K., Eds.; Taylor & Francis: New York, NY, USA, 2004; pp. 160–196. [Google Scholar] [CrossRef]
- Chepurnova, A. Assessing the influence of jet-grouting underpinning on the nearby buildings. J. Rock Mech. Geotech. Eng. 2014, 6, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Liew, S.S.; Fong, C.C. Design & Construction of Micropiles. Geotech. Course Pile Found. Des. Constr. Ipoh 2003, 1–49. [Google Scholar] [CrossRef]
- Makarchian, M.; Poulos, H.G. Simplified method for design of underpinning piles. J. Geotech. Eng. 1996, 122, 745–751. [Google Scholar] [CrossRef]
- Cadden, A.; Gómez, J.; Bruce, D.; Armour, T. Micropiles: Recent advances and future trends. In Current Practices and Future Trends in Deep Foundations; ASCE: Los Angeles, MA, USA, 2004; pp. 140–165. [Google Scholar]
- Yan, L.; Wang, G.; Chen, M.; Yue, K.; Li, Q. Experimental and Application Study on Underpinning Engineering of Bridge Pile Foundation. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Ding, H.; Su, L.; Lai, J.; Zhang, Y. Development and Prospect of Root Piles in Tunnel Foundation Reinforcement. Stavební Obz.-Civ. Eng. J. 2017, 26, 250–266. [Google Scholar] [CrossRef]
- Neves, M. Underpinning and Foundation Refurbishment Techniques Procedures, Design and Safety Requirements October 2010. Available online: https://fenix.tecnico.ulisboa.pt/downloadFile/395142103005/Extende (accessed on 2 July 2020).
- Elkateb, T.; Law, D.; Tweedie, R. Underpinning of Franki Pile Foundations of A Mall in Spruce Grove, Alberta A Case Study. In Proceedings of the 56th Canadian Geotechnical Conference; 4th Joint Iah-Cnc/Cgs Conference, Winnipeg, MB, Canada, 29 September–1 October 2003. [Google Scholar]
- Ziemba, P. Towards strong sustainability management-a generalized PROSA method. Sustainability 2019, 11, 1555. [Google Scholar] [CrossRef] [Green Version]
- Ziemba, P. Inter-criteria dependencies-based decision support in the sustainable wind energy management. Energies 2019, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Santoyo-Castelazo, E.; Azapagic, A. Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. J. Clean. Prod. 2014, 80, 119–138. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Cavallaro, F.; Khalifah, Z. Sustainable and renewable Energy: An overview of the application of multiple criteria decision making techniques and approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Measuring systems sustainability with multi-criteria methods: A critical review. Eur. J. Oper. Res. 2017, 258, 607–616. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, H.; Wu, X.; Zavadskas, E.K.; Al-Barakati, A. Internet financial investment product selection with pythagorean fuzzy DNMA method. Eng. Econ. 2020, 31, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Ulutas, A. Supplier selection by using a fuzzy integrated model for a textile company. Eng. Econ. 2019, 30, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Hannan Amoozad, M.; Moein, B.; Seyed Hossein, R.H.; Turskis, Z. A Hybrid Fuzzy Regression—SSA Approach for Electricity Consumption Optimisation. Eng. Econ. 2019, 30, 151–162. [Google Scholar] [CrossRef]
- Tsolaki-Fiaka, S.; Bathrellos, G.D.; Skilodimou, H.D. Multi-criteria decision analysis for an abandoned quarry in the Evros Region (NE Greece). Land 2018, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nermend, K. Metody Analizy Wielokryterialnej i Wielowymiarowej We Wspomaganiu Decyzji; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2017. [Google Scholar]
- Trzaskalik, T. Multi-objective, multi-period planning for a manufacturing plant. Eng. Costs Prod. Econ. 1990, 20, 113–120. [Google Scholar] [CrossRef]
- Trzaskalik, T. Wielokryterialne wspomaganie decyzji. Przegląd metod i zastosowań. Zeszyty Naukowe Politechniki Śląskiej. Seria: Organizacja i Zarządzanie 2014, 74, 239–263. [Google Scholar]
- Osieczko, K.; Gazda, A.; Malindžák, D. Factors determining the construction and location of underground gas storage facilities. Acta Montan. Slovaca 2019, 24, 234–244. [Google Scholar]
- Zolfani, S.H.; Saparauskas, J. New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System. Eng. Econ. 2014, 24, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Podvezko, V. The comparative analysis of MCDA methods SAW and COPRAS. Eng. Econ. 2011, 22, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Brans, J.P.; De Smet, Y. PROMETHEE methods. Multiple Criteria Decision Analysis 2016, 187–219. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B. PROMETHEE methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Springer: New York, NY, USA, 2005; pp. 163–186. [Google Scholar] [CrossRef]
- Brans, J.P. L’ingenierie de la decision Elaboration d’instruments d’aide a la decision. La methode PROMETHEE. In L’aide a la decision: Nature, Instruments et Perspectives d’Avenir; Nadeau, R., Landry, M., Eds.; Presses de l’Universite Laval: Quebec City, QC, Canada, 1982; pp. 183–213. [Google Scholar]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method. Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Vetschera, R.; De Almeida, A.T. A PROMETHEE-based approach to portfolio selection problems. Comput. Oper. Res. 2012, 39, 1010–1020. [Google Scholar] [CrossRef] [Green Version]
- Al-Kloub, B.; Abu-Taleb, M.F. Application of multicriteria decision aid to rank the jordan-yarmouk basin co-riparians according to the helsinki and ilc rules. Water Int. 1998, 23, 164–173. [Google Scholar] [CrossRef]
- Morais, D.C.; de Almeida, A.T. Group decision-making for leakage management strategy of water network. Resour. Conserv. Recycl. 2007, 52, 441–459. [Google Scholar] [CrossRef]
- Rehman, A.U.; Abidi, M.H.; Umer, U. Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations. Sustainability 2019, 11, 6112. [Google Scholar] [CrossRef] [Green Version]
- Segura, M.; Maroto, C.; Segura, B. Quantifying the sustainability of products and suppliers in food distribution companies. Sustainability 2019, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ogrodnik, K. the Application of the Promethee Method in Evaluation of Sustainable Development of the Selected Cities in Poland. Ekon. I Srodowisko-Econ. Environ. 2017, 3, 19–36. [Google Scholar]
- Vivas, R.; Sant’anna, Â.; Esquerre, K.; Freires, F. Measuring sustainability performance with multi criteria model: A case study. Sustainability 2019, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cerreta, M.; di Girasole, E.G.; Poli, G.; Regalbuto, S. Operationalizing the circular city model for naples’ city-port: A hybrid development strategy. Sustainability 2020, 12. [Google Scholar] [CrossRef]
- Hermoso-Orzáez, M.J.; Lozano-Miralles, J.A.; Lopez-Garcia, R.; Brito, P. Environmental criteria for assessing the competitiveness of public tenders with the replacement of large-scale LEDs in the outdoor lighting of cities as a key element for sustainable development: Case study applied with PROMETHEE methodology. Sustainability 2019, 11, 5982. [Google Scholar] [CrossRef] [Green Version]
- Navarro Martínez, I.; Martí Albiñana, J.V.; Yepes Piqueras, V. Multi-Criteria Decision Making Techniques in Civil Engineering Education for Sustainability. ICERI2018 Proc. 2018, 1, 9798–9807. [Google Scholar] [CrossRef] [Green Version]
- Montajabiha, M. An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning. Group Decis. Negot. 2016, 25, 221–244. [Google Scholar] [CrossRef]
- Samani, P.; Mendes, A.; Leal, V.; Miranda Guedes, J.; Correia, N. A sustainability assessment of advanced materials for novel housing solutions. Build. Environ. 2015, 92, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Vujić, S.; Hudej, M.; Miljanović, I. Results of the promethee method application in selecting the technological system at the majdan III open pit mine. Arch. Min. Sci. 2013, 58, 1229–1240. [Google Scholar] [CrossRef] [Green Version]
- Palczewski, K.; Sałabun, W. Influence of various normalization methods in PROMETHEE II: An empirical study on the selection of the airport location. Procedia Comput. Sci. 2019, 159, 2051–2060. [Google Scholar] [CrossRef]
Decision Options (ai, j) | Jet Grouting | Franki Miga System | Root Piles | Megapiles | Weight | |
---|---|---|---|---|---|---|
Criteria () | Price | 3 | 5 | 3 | 5 | 0.05 |
Bearing capacity | 1000 | 700 | 800 | 400 | 0.25 | |
Noise and vibrations | 5 | 5 | 5 | 5 | 0.05 | |
Necessary equipment | 4 | 4 | 5 | 3 | 0.15 | |
Necessary excavations under final structure | 5 | 3 | 5 | 2 | 0.30 | |
Failure rate | 4 | 3 | 4 | 4 | 0.10 | |
Necessary foundation shoring | 5 | 3 | 5 | 2 | 0.10 | |
Total | 1.00 |
π(ai, aj) | Jet-Grouting | Franki Miga System | Root Piles | Megapiles |
---|---|---|---|---|
Jet grouting | 0 | 0.750 | 0.250 | 0.8 |
Franki Miga system | 0.05 | 0 | 0.05 | 0.85 |
Root piles | 0.15 | 0.900 | 0 | 0.8 |
Megapiles | 0.050 | 0.100 | 0.000 | 0 |
π(ai, aj) | φ+ | φ- | φ | Ranking Position |
---|---|---|---|---|
Jet grouting | 0.450 | 0.063 | 0.388 | I |
Franki Miga system | 0.238 | 0.438 | −0.200 | II |
Root piles | 0.463 | 0.075 | 0.388 | I |
Megapiles | 0.038 | 0.613 | −0.575 | III |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dachowski, R.; Gałek, K. Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method. Sustainability 2020, 12, 5373. https://doi.org/10.3390/su12135373
Dachowski R, Gałek K. Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method. Sustainability. 2020; 12(13):5373. https://doi.org/10.3390/su12135373
Chicago/Turabian StyleDachowski, Ryszard, and Katarzyna Gałek. 2020. "Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method" Sustainability 12, no. 13: 5373. https://doi.org/10.3390/su12135373
APA StyleDachowski, R., & Gałek, K. (2020). Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method. Sustainability, 12(13), 5373. https://doi.org/10.3390/su12135373