Construction and Demolition Waste (CDW) Recycling—As Both Binder and Aggregates—In Alkali-Activated Materials: A Novel Re-Use Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction and Demolition Wastes (CDW)
2.2. Characterization of Raw Materials
2.3. Design of Mixture and Production of Alkali-Activated Materials
2.3.1. Binder Optimization
2.3.2. Characterization of the Recycled Aggregates
2.3.3. Concretes and Blocks: Production and Characterization
3. Results and Discussion
3.1. Characterization of the CDW-Based Hybrid Cement (Binder)
3.2. Characterization of CDW-Based Hybrid Concrete (AAHC) (As Both Precursor and Aggregates)
3.3. Production and Characterization of a Building Element (Solid Block Type) from the AAHC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission, Construction and Demolition Waste (CDW). 2016. Available online: http://ec.europa.eu/environment/waste/construction_demolition.htm (accessed on 13 March 2018).
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Naciones Unidas CEPAL, Agenda 2030 y los Objetivos de Desarrollo Sostenible. Una oportunidad Para America Latina y el Caribe. Available online: http://www.sela.org/media/2262361/agenda-2030-y-los-objetivos-de-desarrollo-sostenible.pdf (accessed on 18 January 2018).
- Akcil, A.; Agcasulu, I.; Swain, B. Valorization of waste LCD and recovery of critical raw material for circular economy: A review. Resour. Conserv. Recycl. 2019, 149, 622–637. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Vieira, C.S.; Pereira, P.M. Use of recycled construction and demolition materials in geotechnical applications: A review. Resour. Conserv. Recycl. 2015, 103, 192–204. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, B.; Bai, T.; Wang, H.; Du, F.; Zhang, Y.; Cai, L.; Jiang, C.; Wang, W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 2019, 224, 930–949. [Google Scholar] [CrossRef]
- RILEM Technical Committee 247-DTA, 247-DTA: Durability Testing of Alkali-Activated Materials. Available online: https://www.rilem.net/groupe/247-dta-durability-testing-of-alkali-activated-materials-290 (accessed on 18 January 2018).
- Lampris, C.; Lupo, R.; Cheeseman, C. Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Manag. 2009, 29, 368–373. [Google Scholar] [CrossRef]
- Reig, L.; Tashima, M.; Borrachero, M.; Monzó, J.; Cheeseman, C.; Payá, J. Properties and microstructure of alkali-activated red clay brick waste. Constr. Build. Mater. 2013, 43, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M. Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 2015, 26, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Robayo, R.A.; Mulford, A.; Munera, J.; De Gutiérrez, R.M. Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater. 2016, 128, 163–169. [Google Scholar] [CrossRef]
- Vásquez, A.; Cárdenas, V.; Robayo, R.A.; De Gutiérrez, R.M. Geopolymer based on concrete demolition waste. Adv. Powder Technol. 2016, 27, 1173–1179. [Google Scholar] [CrossRef]
- Zaharaki, D.; Galetakis, M.; Komnitsas, K. Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Constr. Build. Mater. 2016, 121, 686–693. [Google Scholar] [CrossRef]
- Sassoni, E.; Pahlavan, P.; Franzoni, E.; Bignozzi, M.C. Valorization of brick waste by alkali-activation: A study on the possible use for masonry repointing. Ceram. Int. 2016, 42, 14685–14694. [Google Scholar] [CrossRef]
- Murillo, L.M.; Delvasto, S.; Suárez, M.G. A study of a hybrid binder based on alkali-activated ceramic tile wastes and portland cement. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 291–311. [Google Scholar]
- Reig, L.; Sanz, M.; Borrachero, M.; Monzó, J.; Soriano, L.; Payá, J. Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram. Int. 2017, 43, 13622–13634. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Rivera, J.F.; De Gutiérrez, R.M. Alkali-activated building materials made with recycled construction and demolition wastes. Constr. Build. Mater. 2017, 149, 130–138. [Google Scholar] [CrossRef]
- Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K. Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos. Part B Eng. 2018, 135, 242–252. [Google Scholar] [CrossRef]
- Fort, J.; Vejmelková, E.; Koňáková, D.; Alblová, N.; Čáchová, M.; Keppert, M.; Rovnaníková, P.; Černý, R. Application of waste brick powder in alkali activated aluminosilicates: Functional and environmental aspects. J. Clean. Prod. 2018, 194, 714–725. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yehualaw, M.D.; Vo, D.-H.; Huynh, T.-P. Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr. Build. Mater. 2019, 218, 519–529. [Google Scholar] [CrossRef]
- Olivia, M.; Nikraz, H. Properties of fly ash geopolymer concrete designed by Taguchi method. Mater. Des. 2012, 36, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Reig, L.; Soriano, L.; Borrachero, M.; Monzó, J.; Payá, J. Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Constr. Build. Mater. 2014, 63, 214–222. [Google Scholar] [CrossRef]
- Puertas, F.; Barba, A.; Gazulla, M.F.; Gómez, M.P.; Palacios, M.; Martinez-Ramirez, S. Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland: Caracterización y activación alcalina. Mater. Constr. 2006, 56, 73–84. [Google Scholar] [CrossRef] [Green Version]
- De Gutiérrez, R.M.; Mejía, J.M.; Puertas, F. Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Mater. Constr. 2013, 63, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. Alkali-activated fly ash/slag cements. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Phoo-Ngernkham, T.; Chindaprasirt, P.; Sata, V.; Pangdaeng, S.; Sinsiri, T. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. Int. J. Miner. Met. Mater. 2013, 20, 214–220. [Google Scholar] [CrossRef]
- Rivera, J.F.; Mejia, J.M.; De Gutiérrez, R.M.; Suárez, M.G. Hybrid cement based on the alkali activation of by-products of coal. Rev. Constr. 2014, 13, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cem. Concr. Res. 2013, 52, 112–122. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodriguez, E.D.; De Gutiérrez, R.M.; Provis, J.L.; Delvasto, S. Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste Biomass Valoriz. 2011, 3, 99–108. [Google Scholar] [CrossRef]
- Mejia, J.; Rodriguez, E.D.; De Gutiérrez, R.M. Utilización potencial de una ceniza volante de baja calidad como fuente de aluminosilicatos en la producción de geopolímeros. Ing. Univ. 2014, 18, 309. [Google Scholar] [CrossRef] [Green Version]
- De Gutiérrez, R.M.; Robayo, R.A.; Gordillo, M. Natural pozzolan—And granulated blast furnace slag-based binary geopolymers. Mater. Constr. 2016, 66. [Google Scholar] [CrossRef] [Green Version]
- Robayo-Salazar, R.; De Gutiérrez, R.M.; Puertas, F. Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Constr. Build. Mater. 2017, 157, 151–160. [Google Scholar] [CrossRef]
- Lodeiro, I.G.; Fernandez-Jiménez, A.; Palomo, A. Hydration kinetics in hybrid binders: Early reaction stages. Cem. Concr. Compos. 2013, 39, 82–92. [Google Scholar] [CrossRef]
- Gruyaert, E.; Robeyst, N.; De Belie, N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 2010, 102, 941–951. [Google Scholar] [CrossRef]
- Xu, H.; Gong, W.; Syltebo, L.; Lutze, W.; Pegg, I.L. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution. J. Hazard. Mater. 2014, 278, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Hu, J.; Ruiz, J.M.; Wang, K.; Ge, Z. Isothermal calorimetry tests and modeling of cement hydration parameters. Thermochim. Acta 2010, 499, 91–99. [Google Scholar] [CrossRef]
- López, A.; Guzmán, G.A.; Di Sarli, A.R. Color stability in mortars and concretes. Part 2: Study on architectural concretes. Constr. Build. Mater. 2016, 123, 248–253. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Berdahl, P.; Wood, K.; Skilton, W.; Petersheim, J. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products. Sol. Energy Mater. Sol. Cells 2010, 94, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Ortega, E.A.; Cheeseman, C.; Knight, J.; Loizidou, M. Properties of alkali-activated clinoptilolite. Cem. Concr. Res. 2000, 30, 1641–1646. [Google Scholar] [CrossRef]
- Lodeiro, I.G.; Macphee, D.; Palomo, A.; Fernandez-Jiménez, A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. Temperature and activator effect on early—Age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 2016, 113, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.J.S.; Fernandez-Jiménez, A.; Palomo, A. Alkaline Hydration of C2S and C3S. J. Am. Ceram. Soc. 2015, 99, 604–611. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Tchakouté, H.K.; Ranjbar, N.; Elimbi, A.; Tchadjié, L.N.; Njopwouo, D. Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. J. Am. Ceram. Soc. 2016, 99, 3159–3166. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; De Gutiérrez, R.M.; Puertas, F. Alkali-activated binary concrete based on a natural pozzolan: Physical, mechanical and microstructural characterization. Mater. Constr. 2019, 69, 191. [Google Scholar] [CrossRef]
Waste | Addition | Optimal Synthesis Conditions | Application | Ref. | Year | Country | ||
---|---|---|---|---|---|---|---|---|
Activator | Cured | C.S. | ||||||
Concrete | 20% MK | NaOH + Na2SiO3 | 60 °C (3d) | 33 MPa | Paste | [9] | 2009 | UK |
Masonry | --- | NaOH + Na2SiO3 | 60 °C (7d) | 50 MPa | PasteMortar | [10] | 2013 | Spain |
Concrete | --- | NaOH + Na2SiO3 | 90 °C (7d) | 13 MPa | Paste | [11] | 2015 | Greece |
Masonry | 58 MPa | |||||||
Tile | 50 MPa | |||||||
Masonry | 0% | NaOH + Na2SiO3 | 25 °C | 54 MPa | Paste | [12] | 2016 | Colombia |
20% OPC | 103 MPa | |||||||
Concrete | 0% | NaOH + Na2SiO3 | 25 °C | 26 MPa | Paste | [13] | 2016 | Colombia |
30% OPC | 34 MPa | |||||||
10% MK | 46 MPa | |||||||
Concrete | --- | NaOH + Na2SiO3 | 80 °C (1d) | 8 MPa | Paste | [14] | 2016 | Greece |
Masonry | 39 MPa | |||||||
Tile | 58 MPa | |||||||
Masonry | --- | NaOH + Na2SiO3 | 50 °C (1d) | --- | Coating | [15] | 2016 | Italy |
Ceramic | 15% OPC | NaOH + Na2SiO3 | 25 °C | 58 MPa | Paste | [16] | 2017 | Colombia |
25 MPa | Mortar | |||||||
Ceramic | 5% Ca(OH)2 | NaOH + Na2SiO3 | 65 °C (3d) | 43 MPa | Mortar | [17] | 2017 | Spain |
Masonry | 0% | NaOH | 25 °C | 7 MPa | Paste | [18] | 2017 | Colombia |
10% OPC | 41 MPa | |||||||
0% | NaOH + Na2SiO3 | 54 MPa | ||||||
20% OPC | 103 MPa | |||||||
Concrete | 0% | NaOH | 7 MPa | |||||
30% OPC | 10 MPa | |||||||
0% | NaOH + Na2SiO3 | 26 MPa | ||||||
30% OPC | 34 MPa | |||||||
Masonry | --- | NaOH + Na2SiO3 | 90 °C (5d) | 36 MPa | Mortar | [19] | 2018 | Turkey |
Masonry | --- | NaOH + Na2SiO3 | 25 °C | 42 MPa | Paste | [20] | 2018 | R. Czech |
Masonry | 30% GBFS + 10% FA | NaOH + Na2SiO3 | 25 °C | 70 MPa | Paste | [21] | 2019 | Taiwan |
Ceramic | 30% GBFS + 10% FA | NaOH + Na2SiO3 | 25 °C | 60 MPa |
Material | SiO2 | Al2O3 | CaO | Fe2O3 | Na2O | K2O | MgO | Others | LOI |
---|---|---|---|---|---|---|---|---|---|
CDW precursor | 47.6 | 11.2 | 21.2 | 5.9 | 0.6 | 1.1 | 1.1 | 2.3 | 9.1 |
OPC | 17.9 | 3.9 | 62.3 | 4.8 | 0.2 | 0.3 | 1.8 | 4.7 | 4.1 |
Characteristics | Fine Recycled Aggregate (FRA) | Coarse Recycled Aggregate (CRA) | ||
---|---|---|---|---|
Standard | Result | Standard | Result | |
Bulk density (kg/m3) | ASTM C128 | 2029 | ASTM C127 | 2326 |
Absorption (%) | ASTM C128 | 12.12 | ASTM C127 | 9.17 |
Unit weight (kg/m3) | ASTM C29 | 1240 | ASTM C29 | 1211 |
Maximum size (mm) | N/A | ASTM C136 | 25.4 | |
Fineness modulus | ASTM C136 | 3.04 | N/A | |
Organic impurities | ASTM C40 | Organic plate No. 1 | N/A | |
Resistance to degradation (%) | N/A | ASTM C131 | 33.65 |
Material | Dry Weight (kg) | Density (kg/m3) | Volume (m3) |
---|---|---|---|
CDW precursor | 450 | 2690 | 0.167 |
OPC | 50 | 3100 | 0.016 |
Alkaline activator solution * | 326 | 1259 | 0.259 |
Coarse recycled aggregate (CRA) | 605 | 2326 | 0.260 |
Fine recycled aggregate (FRA) | 605 | 2029 | 0.298 |
Total | 2036 | N/A | 1 |
CDW Concrete Block | Properties and Characteristics | Result |
---|---|---|
| Dimensions (length × width × height) | 200 × 100 × 80 mm |
Curing temperature | 25 °C | |
Compressive strength (28 days) | 26.1 MPa | |
Rupture modulus (28 days) | 3.6 MPa | |
Density | 1926 kg/m3 | |
Water absorption | 14.4% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robayo-Salazar, R.A.; Valencia-Saavedra, W.; Mejía de Gutiérrez, R. Construction and Demolition Waste (CDW) Recycling—As Both Binder and Aggregates—In Alkali-Activated Materials: A Novel Re-Use Concept. Sustainability 2020, 12, 5775. https://doi.org/10.3390/su12145775
Robayo-Salazar RA, Valencia-Saavedra W, Mejía de Gutiérrez R. Construction and Demolition Waste (CDW) Recycling—As Both Binder and Aggregates—In Alkali-Activated Materials: A Novel Re-Use Concept. Sustainability. 2020; 12(14):5775. https://doi.org/10.3390/su12145775
Chicago/Turabian StyleRobayo-Salazar, Rafael A., William Valencia-Saavedra, and Ruby Mejía de Gutiérrez. 2020. "Construction and Demolition Waste (CDW) Recycling—As Both Binder and Aggregates—In Alkali-Activated Materials: A Novel Re-Use Concept" Sustainability 12, no. 14: 5775. https://doi.org/10.3390/su12145775
APA StyleRobayo-Salazar, R. A., Valencia-Saavedra, W., & Mejía de Gutiérrez, R. (2020). Construction and Demolition Waste (CDW) Recycling—As Both Binder and Aggregates—In Alkali-Activated Materials: A Novel Re-Use Concept. Sustainability, 12(14), 5775. https://doi.org/10.3390/su12145775