Comparison of Carbon Dioxide (CO2) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar
Abstract
:1. Introduction
2. Material and Methods
3. Flux Calculation
4. Statistical Analysis
5. Results
5.1. Ambient Air Temperature, Relative Humidity and Soil Temperature
5.2. Patterns of CO2 Fluxes under Different Soil Management Practices
5.3. Effects of Different Agricultural Tillage Practices on Plant and Soil Characteristics
6. Discussion
Annual CO2 Flux from Various Rice Paddy Fields in Asian Countries
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014.
- Cheng, W.; Sakai, H.; Hartley, A.; Yagi, K.; Hasegawa, T. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Glob. Chang. Biol. 2008, 14, 644–656. [Google Scholar] [CrossRef]
- Marland, G.; West, T.O.; Schlamadinger, B.; Canella, L. Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions. Tellus Ser. B Chem. Phys. Meteorol. 2003, 55, 613–621. [Google Scholar] [CrossRef]
- Nishimura, S.; Yonemura, S.; Minamikawa, K.; Yagi, K. Seasonal and diurnal variations in net CO2 flux throughout the year from soil in paddy field. J. Geophys. Res. Biogeosciences Res. 2015, 120, 661–675. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Neogi, S.; Roy, K.S.; Dash, P.K.; Nayak, A.K.; Mohapatra, T. Tropical low land rice ecosystem is a net carbon sink. Agric. Ecosyst. Environ. 2014, 189, 127–135. [Google Scholar] [CrossRef]
- Iqbal, J.; Ronggui, H.; Lin, S.; Hatano, R.; Feng, M.; Lu, L.; Ahamadou, B.; Du, L. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agric. Ecosyst. Environ. 2009, 131, 292–302. [Google Scholar] [CrossRef]
- AR4. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Averyt, K.B., Miller, H.L., Eds.; IPCC: Geneva, Switzerland, 2007; Volume 59.
- Lee, M.; Nakane, K.; Nakatsubo, T.; Mo, W.H.; Koizumi, H. Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecol. Res 2002, 17, 401–409. [Google Scholar] [CrossRef]
- Ohkubo, S.; Kosugi, Y.; Takanashi, S.; Mitani, T.; Tani, M. Comparison of the eddy covariance and automated closed chamber methods for evaluating nocturnal CO2 exchange in a Japanese cypress forest. Agric. For. Meteorol. 2007, 142, 50–65. [Google Scholar] [CrossRef]
- Balogh, J.; Balogh, J.; Pintér, K.; Fóti, S.; Cserhalmi, D.; Papp, M.; Nagy, Z. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol. Biochem. 2011, 43, 1006–1013. [Google Scholar] [CrossRef]
- Caquet, B.; De Grandcourt, A.; M’bou, A.T.; Epron, D.; Kinana, A.; Saint André, L.; Nouvellon, Y. Soil carbon balance in a tropical grassland: Estimation of soil respiration and its partitioning using a semi-empirical model. Agric. For. Meteorol. 2012, 159, 71–79. [Google Scholar] [CrossRef]
- Ball, B.C.; Scott, A.; Parker, J.P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 1999, 53, 29–39. [Google Scholar] [CrossRef]
- Buyanosvky, G.A.; Wagner, G.H.; Gantzer, C.J. Soil respiration in a winter wheat ecosystem. Soil Sci. Soc. Am. J. 1986, 50, 338–344. [Google Scholar]
- Oorts, K.; Merckx, R.; Gréhan, E.; Labreuche, J.; Nicolardot, B. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res. 2007, 95, 133–148. [Google Scholar] [CrossRef]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [Green Version]
- FAO, Food and Agriculture Organization of the United Nations. Production/Yield quantities of Rice, paddyin World+(Total).[StatisticalDatabase]. Available online: http://www.fao.org/faostat/en/#data/(2018) (accessed on 15 June 2020).
- FAO. FAO Rice Market Monitor. Food Agric. Organ. USA 2018, 21, 1–38. [Google Scholar]
- OECD-FAO. Agricultural Outlook 2009-2018 HIGHLIGHTS. Stat. Tables 2009, 10, 95. [Google Scholar]
- IRRI. World Rice Production Statistics; International Rice Research Institute: Los Baños, Philippines, 2018. [Google Scholar]
- Department of Planning (MoALI). Myanmar Agriculture in Brief, Ministry of Agriculture; Livestock and Irrigation: Naypyidaw, Myanmar; The Government of the Republic of the Union of Myanmar: Naypyidaw, Myanmar, 2016.
- Denning, G.; Baroang, K.; Sandar, T.M. Background Paper No. 2 Rice Productivity Improvement in Myanmar; Michigan State University: East Lansing, MI, USA, 2013; Volume 33, pp. 14–20. [Google Scholar]
- Ren, X.; Wang, Q.; Tong, C.; Wu, J.; Wang, K.; Zhu, Y.; Lin, Z.; Watanabe, M.; Tang, G. Estimation of soil respiration in a paddy ecosystem in the subtropical region of China. Chinese Sci. Bull. 2007, 52, 2722–2730. [Google Scholar] [CrossRef]
- FAO. Global Greenhouse Gas Emission from Agriculture, FAO Stat Data, 2005–2014. Food Agric. Organ. 2016, 66, 37–39. [Google Scholar]
- Kuzyakov, Y.; Cheng, W. Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant Soil 2004, 263, 85–99. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Zheng, X. Diel pattern of soil respiration in N-amended soil under maize cultivation. Atmos. Environ. 2006, 40, 3294–3305. [Google Scholar] [CrossRef]
- Dawson, J.J.C.; Smith, P. Carbon losses from soil and its consequences for land-use management. Sci. Total Environ. 2007, 382, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; et al. Soil Degradation in India: Challenges and Potential Solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef] [Green Version]
- Dutta, J.; Gokhale, S. Field investigation of carbon dioxide (CO2) fluxes and organic carbon from a conserved paddy field of North–East India. Int. Soil Water Conserv. Res. 2017, 5, 325–334. [Google Scholar] [CrossRef]
- Paustian, K.; Collins, H.P.; Paul, E.A. Management controls on soil carbon BT—Soil organic matter in temperate agroecosystems: Long-term experiments in North America. Soil Org. Matter Temp. Agroecosyst. Long-Term Exp. N. Am. 1997, 1, 15–49. [Google Scholar]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Lal, R. Agricultural activities and the global carbon cycle. Nutr. Cycl. Agroecosyst. 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Smith, K.A.; Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 2010, 20, 255–263. [Google Scholar] [CrossRef]
- Aslam, T.; Choudhary, M.A.; Saggar, S. Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agric. Ecosyst. Environ. 2000, 77, 257–262. [Google Scholar] [CrossRef]
- Elder, J.W.; Lal, R. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Tillage Res. 2008, 98, 45–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Lin, J.; Liu, J.; Liu, B.; Wang, J.; Huang, A.; Li, H.; Zhao, T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE 2017, 12, e0180825. [Google Scholar] [CrossRef] [Green Version]
- Alberto, M.C.R.; Hirano, T.; Miyata, A.; Wassmann, R.; Kumar, A.; Padre, A.; Amante, M. Influence of climate variability on seasonal and interannual variations of ecosystem CO2 exchange in flooded and non-flooded rice fields in the Philippines. Field Crop. Res. 2012, 134, 80–94. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Kumar, A.; Padre, A.; Amante, M. CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agric. For. Meteorol. 2009, 149, 1737–1750. [Google Scholar] [CrossRef]
- Campbell, C.S.; Heilman, J.L.; McInnes, K.J.; Wilson, L.T.; Medley, J.C.; Wu, G.; Cobos, D.R. Diel and seasonal variation in CO2 flux of irrigated rice. Agric. For. Meteorol. 2001, 108, 15–27. [Google Scholar] [CrossRef]
- Miyata, A.; Leuning, R.; Denmead, O.T.; Kim, J.; Harazono, Y. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric. For. Meteorol. 2000, 102, 287–303. [Google Scholar] [CrossRef]
- Saito, M.; Miyata, A.; Nagai, H.; Yamada, T. Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agric. For. Meteorol. 2005, 135, 93–109. [Google Scholar] [CrossRef]
- Komiya, S.; Noborio, K.; Katano, K.; Pakoktom, T.; Siangliw, M.; Toojinda, T. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field. Int. Sch. Res. Not. 2015, 2015, 623901. [Google Scholar] [CrossRef]
- Patel, N.R.; Dadhwal, V.K.; Saha, S.K. Measurement and Scaling of Carbon Dioxide (CO2) Exchanges in Wheat Using Flux-Tower and Remote Sensing. J. Indian Soc. Remote Sens. 2011, 39, 383–391. [Google Scholar] [CrossRef]
- Oo, A.Z.; Win, K.T.; Bellingrath-Kimura, S.D. Within field spatial variation in methane emissions from lowland rice in Myanmar. Springerplus 2015, 4, 145. [Google Scholar] [CrossRef] [Green Version]
- Bastviken, D.; Sundgren, I.; Natchimuthu, S.; Reyier, H.; Gälfalk, M. Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences 2015, 12, 3849–3859. [Google Scholar] [CrossRef] [Green Version]
- Takai, T.; Kondo, M.; Yano, M.; Yamamoto, T. A Quantitative Trait Locus for Chlorophyll Content and its Association with Leaf Photosynthesis in Rice. Rice 2010, 3, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Yezin Agricultural University (YAU). Available online: http://www.yau.edu.mm (accessed on 7 June 2020).
- Juliano, B.O.; Villareal, C.P. Grain quality evaluation of world rices. Int. Rice Res. Inst. 1993, 1–99. [Google Scholar]
- Liu, X.; Liu, H.; Zhao, P.; Sun, G.; Lin, Y.; Rao, X.; Wang, Y. Characteristics of CO2, CH4 and N2O emissions from winter-fallowed paddy fields in hilly areas of South China. Front. Agric. China 2007, 1, 418–423. [Google Scholar] [CrossRef]
- Baker, J.T.; Allen, L.H.; Boote, K.J. Temperature effects on rice at elevated CO2 concentration. J. Exp. Bot. 1992, 43, 959–964. [Google Scholar] [CrossRef]
- Baten, M.; Hossen, M.; Islam, M.; Miyata, A.; Mano, M. Diurnal Variation of Carbon Dioxide Flux Over Rice Paddy. J. Environ. Sci. Nat. Resour. 2017, 9, 127–130. [Google Scholar]
- Manalo, P.A.; Ingran, K.T.; Pamplona, R.R.; Egeh, A.O. Atmospheric CO2 and temperature effects on development and growth of rice. Ecosyst. Environ. 1994, 51, 339–347. [Google Scholar] [CrossRef]
- Vu, J.C.V.; Allen, L.H., Jr.; Bowes, G. Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Environ. 1997, 20, 68–76. [Google Scholar] [CrossRef]
- Ohashi, K.; Makino, A.; Mae, T. Gas Exchange Characteristics in Rice Leaves Grown under the Conditions of Physiologically Low Temperature and Irradiance. Plant Cell Physiol. 1998, 39, 1384–1387. [Google Scholar] [CrossRef] [Green Version]
- Egeh, A.O.; Ingram, K.T.; Zamora, O.B. High temperature effects of leaf gas exchange of four rice cultivars. Philipp. J. Crop Sci. 1992, 17, 21–26. [Google Scholar]
- Oh-e, I.; Saitoh, K.; Kuroda, T. Effects of High Temperature on Growth, Yield and Dry-Matter Production of Rice Grown in the Paddy Field. Plant Prod. Sci. 2007, 10, 412–422. [Google Scholar] [CrossRef]
- Khatun, R. Diural variation of CO2 flux at various growth stages of rice. Bangladesh J. Environ. Sci. 2007, 13, 2. [Google Scholar]
- Liang, W.; Shi, Y.; Zhang, H.; Yue, J.; Huang, G.H. Greenhouse Gas Emissions from Northeast China Rice Fields in Fallow Season. Pedosphere 2007, 17, 630–638. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Ciais, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences 2016, 13, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Al–Kaisi, M.M.; Yin, X. Tillage and Crop Residue Effects on Soil Carbon and Carbon Dioxide Emission in Corn–Soybean Rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.J.; Frederick, J.R.; Novak, J.M.; Hunt, P.G. Soil CO2 flux from a norfolk loamy sand after 25 years of conventional and conservation tillage. Soil Tillage Res. 2006, 90, 205–211. [Google Scholar] [CrossRef]
- Curtin, D.; Wang, H.; Selles, F.; Mcconkey, B.G.; Campbell, C.A. Tillage Effects on Carbon Fluxes in Continuous Wheat and Fallow–Wheat Rotations. Soil Sci. Soc. Am. J. 2000, 64, 2080–2086. [Google Scholar] [CrossRef]
- Jabro, J.D.; Sainju, U.; Stevens, W.B.; Evans, R.G. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J. Environ. Manag. 2008, 88, 1478–1484. [Google Scholar] [CrossRef]
- Maraseni, T.N.; Mushtaq, S.; Maroulis, J. Greenhouse gas emissions from rice farming inputs: A cross-country assessment. J. Agric. Sci. 2009, 147, 117–126. [Google Scholar] [CrossRef]
- Törő, Á.; Ragán, P.; Rátonyi, T.; Kith, K.; Harsányi, E. Daily soil carbon dioxide flux under different tillage conditions. Acta Agrar. Debreceniensis 2019, 141–144. [Google Scholar] [CrossRef]
- Kader, M.A.; Yeasmin, S.; Solaiman, Z.M.; De Neve, S.; Sleutel, S. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils. Eur. J. Soil Biol. 2017, 80, 27–34. [Google Scholar] [CrossRef]
- Kara, O.; Bolat, I.; CaKıroglu, K.; Senturk, M. Litter decomposition and microbial biomass in temperate forests in northwestern Turkey. J. Soil Sci. Plant Nutr 2014, 14, 31–41. [Google Scholar]
- Raich, J.W.; Potter, C.S. Global patterns of carbon-dioxide emissions from soils. Glob. Biogeochem. Cy 1995, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Hütsch, B.W. Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biol. Fertil. Soils 1998, 27, 284–292. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Dugas, W.A.; Torbert, H.A. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Res. 1997, 41, 105–118. [Google Scholar] [CrossRef]
- Li, C.F.; Kou, Z.K.; Yang, J.H.; Cai, M.L.; Wang, J.P.; Cao, C.G. Soil CO2 fluxes from direct seeding rice fields under two tillage practices in central China. Atmos. Environ. 2010, 44, 2696–2704. [Google Scholar] [CrossRef]
- Guo, L.J.; Zhang, R.D.; Zhang, Z.S.; Cao, C.G.; Li, C.F. Effects of different no-tillage modes on soil CO2 fluxes from paddy fields in central China. J. Soil Sci. Plant Nutr. 2015, 15, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.E.A.M.; Ahmed, F.E.; ElDessougi, H.I. Assessments of the Relationship between Effective leaf area, Yield Components and Protein Content in Wheat (Triticum aestivum L.) under Water Stress Conditions at Eastern Sudan. Sch. J. Agric. Vet. Sci. 2016, 3, 155–159. [Google Scholar]
- Tilly, N.; Hoffmeister, D.; Cao, Q.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Guo, X.S.; Zhang, X.M.; Wang, Y.Q. Effects of no-tillage on supply characteristics of soil inorganic nitrogen and rice yield. Sci. Agric. Sin. 2013, 46, 1172–1181. [Google Scholar]
- Chauhan, B.S. Effect of tillage systems, seeding rates, and herbicides on weed growth and grain yield in dry-seeded rice systems in the Philippines. Crop Prot. 2013, 54, 244–250. [Google Scholar] [CrossRef]
- Liebig, M.A.; Tanaka, D.L.; Wienhold, B.J. Tillage and cropping effects on soil quality indicators in the northern Great Plains. Soil Tillage Res. 2004, 78, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.J.; Xie, D.T. Combining Ridge with No-Tillage in Lowland Rice-Based Cropping System: Long-Term Effect on Soil and Rice Yield. Pedosphere 2009, 19, 515–522. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Q.; Fu, H.; Lu, X.M.; Liu, H.Z.; Li, K.H. Physiological mechanism of high and stable yield of no-tillage cast-trans-planted rice. Agric. Sci. China 2002, 1, 404–409. [Google Scholar]
- FAO Data Stat. Greenhouse Gas Emission from Agriculture, Myanmar (Food and Agriculture Organization). Glob. Emiss. 2017, 1–14. [Google Scholar]
- Chen, H.W.; Yen, J.H.; Chung, R.S.; Lai, C.M.; Yang, S.S.; Wang, Y.S. Carbon dioxide flux density in cultivated rice paddy field. Proc. Natl. Sci. Counc. Repub. China B 2001, 25, 239–247. [Google Scholar] [PubMed]
- Naser, H.M.; Nagata, O.; Sultana, S.; Hatano, R. Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan Habib. Agriculture 2019, 359, 6. [Google Scholar] [CrossRef] [Green Version]
- Gandahi, R.; Yusop, M.K.; Gandahi, A.W. Field validation of DNDC model for simulating greenhouse gas emissions from rice soils of Kedah, Malaysia through DNDC Model. Int. J. Biosci. 2015, 7, 42–56. [Google Scholar]
- Pathak, H.; Li, C.; Wassmann, R. Greenhouse gas emissions from Indian rice fields: Calibration and upscaling using the DNDC model. Biogeosciences 2005, 2, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Epule, E.T.; Peng, C.; Mafany, N.M. Methane Emissions from Paddy Rice Fields: Strategies towards Achieving a Win-Win Sustainability Scenario between Rice Production and Methane Emission Reduction. J. Sustain. Dev. 2011, 4, 188. [Google Scholar] [CrossRef]
- Hussain, S.; Peng, S.; Fahad, S.; Khaliq, A.; Huang, J.; Cui, K.; Nie, L. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 3342–3360. [Google Scholar] [CrossRef]
- Zschornack, T.; da Rosa, C.M.; Pedroso, G.M.; Marcolin, E.; da Silva PR, F.; Bayer, C. Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems. Nutr. Cycl. Agroecosyst. 2016, 105, 61–73. [Google Scholar] [CrossRef]
Growth Stages | Abbreviation | Description | Duration | No. of Days |
---|---|---|---|---|
Seedling | - | Includes seedlings in the nursery and transplanting. | January 10–February 14 | 35 |
Tillering Stage | T | Two weeks after transplanting, plants grow quickly, increasing number of tillers as well as plant height. | February 15–March 26 | 40 |
Panicle Initiation/Heading | PI/H | In addition, also called the booting stage. Tip of developing panicle emerges from stem and continues to grow until panicle fully visible. | March 31–April 19 | 20 |
Flowering | FL | Flowering can occur one day after heading, followed by pollination. | April 20–April 31 | 10 |
Grain Filling | GF | Begins within 1–5 days after heading and grain filling is complete within 3 weeks. | May 1–May 15 | 15 |
Mature | M | Starts after flowering and ends at harvesting, usually lasting 30–65 days depending on the variety. | May 16–June 1 | 17 |
Periods (Day/Night) | Treatments (Practices) | Total CO2 Fluxes (mgCO2 m−2 h−1) | Soil Respiration (mgCO2 m−2 h−1) | Fallow (mgCO2 m−2 h−1) |
---|---|---|---|---|
Day | Conventional | −262.5 ± 98.5 | 151.6 ± 15.4 | 318.8 ± 71.6 |
Conservation | −257.2 ± 73.2 | 95.7 ± 11.7 | 170 ± 38.0 | |
ns | ** | ns | ||
Night | Conventional | 846.5 ± 31.3 | 266.2 ± 16.1 | 592.1 ± 39.8 |
Conservation | 749.9 ± 34.2 | 219.5 ± 19.2 | 450.8 ± 32.3 | |
** | * | * |
Practices | Yield (t ha−1) | Plant Height at Harvest (cm) | Number of Tillers hill−1 | Effective Tillers/Hill (g hill−1) | Number of Spikelet/Panicle | Filled Grain (%) | 1000 Grain Weight (g) | Fresh Weight (g hill−1) (at Harvest) | Dry Weight (g hill−1) (at Harvest) | Leaf Area (cm2 hill−1) (43 DAT) | Leaf Area (cm2 hill−1) (88 DAT) |
---|---|---|---|---|---|---|---|---|---|---|---|
Conventional | 5.52 | 95.7 | 11.40 | 10.47 | 114.9 | 92.17 | 20.10 | 103.7 | 68.9 | 672 | 1402 |
Conservation | 2.63 | 82.1 | 7.67 | 6.73 | 82.9 | 93.57 | 18.70 | 68.8 | 35.0 | 368 | 539 |
Pr value | 0.018 | 0.086 | 0.013 | 0.019 | 0.181 | 0.472 | 0.205 | 0.052 | 0.046 | 0.01 | 0.006 |
CV% | 40.3 | 9.4 | 23.5 | 24.9 | 24.1 | 2.8 | 7.3 | 23.7 | 37.6 | 5.7 | 13.3 |
LSD 0.05 | 1.693 | 18.44 | 1.881 | 2.240 | 68.34 | 6.823 | 3.248 | 36.72 | 32.44 | 139.8 | 281.7 |
Practices | Amylose (%) | Protein (%) | Gel Consistency (mm) | Head Rice Rate (%) | Chalky Rice Rate (%) |
---|---|---|---|---|---|
Conventional | 22.33 | 7.10 | 32.50 | 33.5 | 6.33 |
Conservation | 23.26 | 7.77 | 28.67 | 49.4 | 5.33 |
Pr value | 0.475 | 0.149 | 0.063 | 0.112 | 0.580 |
CV% | 4.5 | 9.9 | 8.5 | 28.8 | 27.5 |
LSD0.05 | 4.616 | 1.250 | 4.362 | 25.04 | 6.572 |
Type of Rice Field | Management Practices | CO2 Emissions (g CO2 m−2 yr−1) | Authors | |
---|---|---|---|---|
Soil Respiration | With Rice Plants | |||
Flooded rice field | Conventional tillage | 381–572 | 1362–3816 | [82] (Taiwan) |
Irrigated rice field | Non-tillage Conventional tillage | 770–831 (2008) 466–519 (2009) 772–793 (2008) 371–383 (2009) | [72] (China) | |
Irrigated rice field | Ridge non-tillage Flat non-tillage | 1042–1489 724–1016 | [73] (China) | |
Flooded rice field | Conventional tillage | 1563–1922 | [83] (Japan) | |
Flooded rice field | Conventional tillage | 1731 | [84] (DNDC model, Malaysia) | |
Tropical lowland rice field | Conventional tillage | 1693 | [85] (DNDC model, India) | |
Summer Irrigated rice fields | Conservation tillage Conventional tillage | 1383 1830 | 2137 2558 | This study (2018) (Myanmar) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, S.; Rulík, M. Comparison of Carbon Dioxide (CO2) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar. Sustainability 2020, 12, 5798. https://doi.org/10.3390/su12145798
Min S, Rulík M. Comparison of Carbon Dioxide (CO2) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar. Sustainability. 2020; 12(14):5798. https://doi.org/10.3390/su12145798
Chicago/Turabian StyleMin, Saw, and Martin Rulík. 2020. "Comparison of Carbon Dioxide (CO2) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar" Sustainability 12, no. 14: 5798. https://doi.org/10.3390/su12145798
APA StyleMin, S., & Rulík, M. (2020). Comparison of Carbon Dioxide (CO2) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar. Sustainability, 12(14), 5798. https://doi.org/10.3390/su12145798