An In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics Modeling
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Assessment Process Combing Hydrological Variation Analysis and System Dynamics Modeling
3.2. Hydrological Variation Analysis Based on the Budyko Theory
3.3. SD Model for Water Resource Response to Eco-Migration Policy
3.3.1. System Boundaries
3.3.2. Water Quantity Module
3.3.3. Water Quality Module
3.3.4. STELLA Model
3.3.5. Calibration and Verification
4. Results and Discussion
4.1. Accessibility to Sustainable Development Goal of Internal Management
4.2. Simulation of Water Resource Response to Integrated Management Policies
4.2.1. Current Eco-Migration Policy
4.2.2. The Establishment and Development of the Xiong’an New Area
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Li, S.; He, G.; Li, R.; Wang, X. Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. J. Clean. Prod. 2018, 202, 1097–1106. [Google Scholar] [CrossRef]
- Huang, D.; Li, G.; Sun, C.; Liu, Q. Exploring interactions in the local water-energy-food nexus (WEF-Nexus) using a simultaneous equations model. Sci. Total Environ. 2020, 703, 135034. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Ren, W.; Tao, B.; He, L.; Ren, Q.F.; Li, S.Q.; Yu, Q. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China. Sci. Total Environ. 2018, 642, 1–11. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. On the need to integrate uncertainty into US water resource planning. Sci. Total Environ. 2019, 691, 1262–1270. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Boa, A.; Yuan, Y.; Zheng, G.; Guo, H.; Yu, T.; De Maeyer, P. The effects of water stress on croplands in the Aral Sea basin. J. Clean. Prod. 2020, 254, 120114. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Florke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present and future. Earths Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Xie, P.; Zhuo, L.; Yang, X.; Huang, H.; Gao, X.; Wu, P. Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a large river basin: A case for the Yellow River basin. J. Hydrol. 2020, 590, 125222. [Google Scholar] [CrossRef]
- Mehta, L. Whose scarcity? Whose property? The case of water in western India. Land Use Policy 2007, 24, 654–663. [Google Scholar] [CrossRef]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Edwards, G. Shifting constructions of scarcity and the neoliberalization of Australian water governance. Environ. Plan. A 2013, 45, 1873–1890. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, J.; Tian, Y.; Zheng, C.; Liu, J. Alleviating water scarcity and poverty in drylands through telecouplings: Vegetable trade and tourism in northwest China. Sci. Total Environ. 2020, 741, 140387. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.; Menga, F.; Greco, F. Monitoring Transboundary Water Cooperation in SDG 6.5.2: How a Critical Hydropolitics Approach Can Spot Inequitable Outcomes. Sustainability 2018, 10, 3640. [Google Scholar] [CrossRef] [Green Version]
- Finger, M.; Tamiotti, L.; Allouche, J. The Multi—Governance of Water: Four Case Studies; State University of New York Press: New York, NY, USA, 2006. [Google Scholar]
- Wang, K.; Davies, E.G.R.; Liu, J. Integrated water resources management and modeling: A case study of Bow river basin, Canada. J. Clean. Prod. 2019, 240, 118242. [Google Scholar] [CrossRef]
- Chang, I.S.; Zhao, M.; Chen, Y.; Guo, X.; Zhu, Y.; Wu, J.; Yuan, T. Evaluation on the integrated water resources management in China’s major cities—Based on City Blueprint® Approach. J. Clean. Prod. 2020, 262, 121410. [Google Scholar] [CrossRef]
- Nikolic, V.V.; Simonovic, S.P.; Milicevic, D.B. Analytical Support for Integrated Water Resources Management: A New Method for Addressing Spatial and Temporal Variability. Water Resour. Manag. 2012, 27, 401–417. [Google Scholar] [CrossRef]
- Liu, D.; Guo, S.; Shao, Q.; Liu, P.; Xiong, L.; Wang, L.; Hong, X.; Xu, Y.; Wang, Z. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions. J. Hydrol. 2018, 556, 759–774. [Google Scholar] [CrossRef]
- Holling, C.S.; Meffe, G.K. Command and Control and the Pathology of Natural Resource Management. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Anwar Sadat, M.; Guan, Y.; Zhang, D.; Shao, G.; Cheng, X.; Yang, Y. The associations between river health and water resources management lead to the assessment of river state. Ecol. Indic. 2020, 109, 105814. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Q.; Si, J.; Xi, H.; Zhao, Y.; Deo, R.C. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. J. Hydrol. 2019, 579, 124212. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S.; Papadopoulou, A.; Cencur Curk, B.; Karleusa, B. Water resources vulnerability assessment in the Adriatic Sea region: The case of Corfu Island. Environ. Sci. Pollut. Res. 2017, 24, 20173–20186. [Google Scholar] [CrossRef]
- de Wet, C.; Odume, O.N. Developing a systemic-relational approach to environmental ethics in water resource management. Environ. Sci. Policy 2019, 93, 139–145. [Google Scholar] [CrossRef]
- McGinnis, M.D.; Ostrom, E. Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Mirchi, A.; Madani, K.; Watkins, D.; Ahmad, S. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Kotir, J.H.; Smith, C.; Brown, G.; Marshall, N.; Johnstone, R. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Sci. Total Environ. 2016, 573, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Stave, K.A. A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. J. Environ. Manag. 2003, 67, 303–313. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Xu, C.-Y.; Liu, D.; Chen, L.; Ye, Y. Integrated optimal allocation model for complex adaptive system of water resources management (I): Methodologies. J. Hydrol. 2015, 531, 964–976. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Xing, W.; Sun, F.; Luo, Y. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Wang, J.; Feng, Y.; Shao, Q. Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs. Sci. Total Environ. 2020, 716, 137072. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Wang, H.; Zhao, Y.; Liu, H.; He, G.; Li, J. Streamflow into Beijing and Its Response to Climate Change and Human Activities over the Period 1956–2016. Water 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Zhang, K.; Ruben, G.B.; Li, X.; Li, Z.; Yu, Z.; Xia, J.; Dong, Z. A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin. Environ. Model. Softw. 2020, 128, 104704. [Google Scholar] [CrossRef]
- Hebei Provincial Government. Ecology and Environment Protection and Improvement Plan for Baiyangdian Basin (2018–2035); Hebei Provincial Government: Shijiazhuang, China, 2019. (In Chinese)
- China Meteorological Data Service Center. Available online: http://data.cma.cn/ (accessed on 27 November 2016). (In Chinese).
- Environmental Protection Bureau of Baoding. Baoding Municipal State of the Environment; Environmental Protection Bureau of Baoding: Baoding, China, 2006. (In Chinese)
- Hebei Province Department of Water Resources. Hebei Provincial Water Resources Bulletin; Hebei Province Department of Water Resources: Shijiazhuang, China, 2006. (In Chinese)
- Heibei General Hydrometric Station. Hydrologic Data Yearbook of People’s Republic of China, 4th ed.; Haihe River Basin; Heibei General Hydrometric Station: Shijiazhuang, China, 2006; Volume 3. (In Chinese)
- Heibei Provincial Government. Heibei Provincial Economic Yearbook; China Statistics Press: Beijing, China, 2006. (In Chinese)
- Baoding Municipal Statistical Bureau. Economic Statistical Yearbook of Baoding; China Statistics Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Hebei Provincial Bureau of Statistics. National Economic and Social Development Statistics Bulletin of Hebei Province; Hebei Provincial Bureau of Statistics: Shijiazhuang, China, 2006. (In Chinese)
- Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn/ (accessed on 27 November 2016). (In Chinese).
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Fu, B. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. (In Chinese) [Google Scholar]
- Deng, R.Q. Analysis and Assessment of Water Resources-Ecology-Socioeconomic System of Baiyangdian Wetland; Hebei Agricultural University: Baoding, China, 2011. [Google Scholar]
- Zhao, X.; Cui, B.; Yang, Z. A study of the lowest ecological water level of Baiyangdian Lake. Acta Ecol. Sin. 2005, 25, 1033–1040. (In Chinese) [Google Scholar]
- Han, Q.; Tong, R.; Sun, W.; Zhao, Y.; Yu, J.; Wang, G.; Shrestha, S.; Jin, Y. Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade. Sci. Total Environ. 2020, 701, 134929. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, X.; Yang, Z. Environmental flow management strategies based on the integration of water quantity and quality, a case study of the Baiyangdian Wetland, China. Ecol. Eng. 2016, 96, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, S. Assessment of water environment quality of Baiyang Lake. South—North Water Transf. Water Sci. Technol. 2015, 13, 457–462. (In Chinese) [Google Scholar]
- Hebei Provincial Environmental Scientific Research. Ecological Environment Assessment Report of Baiyangdian Lake; Hebei Provincial Environmental Scientific Research: Shijiazhuang, China, 2006. (In Chinese) [Google Scholar]
- Hu, S.; Liu, C.; Zheng, H.; Wang, Z.; Yu, J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J. Geogr. Sci. 2012, 22, 895–905. [Google Scholar] [CrossRef]
- Yuan, Y.; Yan, D.; Wang, H.; Wang, Q. Attributive analysis on evolution of inflow to Baiyangdian Wetland. Water Resour. Hydropower Eng. 2013, 44, 1–4, 23. (In Chinese) [Google Scholar]
- Mohammad, A.H.; Jung, H.C.; Odeh, T.; Bhuiyan, C.; Hussein, H. Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arab. J. Geosci. 2018, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Ecology and Environment of the People’s Republic of China. Environmental Quality Standards for Surface Water (GB3838-2002); China Environmental Press: Beijing, China, 2002. (In Chinese)
- Odeh, T.; Mohammad, A.H.; Hussein, H.; Ismail, M.; Almomani, T. Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environ. Earth Sci. 2019, 78, 40. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhou, W.; Yuan, T. Environmental impact assessment of ecological migration in China: A survey of immigrant resettlement regions. J. Zhejiang Univ. Sci. A 2018, 19, 240–254. [Google Scholar] [CrossRef]
- United Nations. Transforming our World; The 2030 Agenda for Sustainable Development (A/RES/70/1) United Nations: New York, NY, USA, 2015. [Google Scholar]
Parameters | Values | Parameters | Values |
---|---|---|---|
Annual net population growth rate in exterior | 8.0% | Annual net population growth rate in interior | 8.5% |
Leakage parameter | 0.100 | Annual irrigation water demand per square meter of rice | 0.847 m3/a |
Annual irrigation water demand per square meter of corn | 0.545 m3/a | Annual irrigation water demand per square meter of wheat | 0.604 m3/a |
Annual irrigation water demand per square meter of cotton | 0.450 m3/a | Discharge rate of agricultural wastewater | 4.0% |
Water demand of per 10,000 yuan industrial GDP | 121.69 m3 | Discharge rate of industrial wastewater | 44.3% |
Reuse rate of industrial wastewater | 4.0% | Annual per capita domestic water demand in exterior | 438 m3/a |
Discharge rate of domestic wastewater in exterior | 17.6% | Reuse rate of domestic wastewater in exterior | 4.0% |
Annual per capita domestic water demand in interior | 110 m3/a | Entry rate of domestic wastewater in interior | 90.0% |
Per capita farmland area in interior | 6723.964 m2 | Number of ducks per capita in interior | 3.500 |
Number of fish per capita in interior | 5.800 | Annual CODMn concentration of per unit domestic wastewater | 1.640 × 108 g/a |
Annual CODMn concentration in inflow of per unit duck | 217.783 g/a | Annual TN concentration in inflow of per unit duck | 43.800 g/a |
Annual TP concentration in inflow of per unit duck | 0.081 g/a | Annual average removal rate of TN | 85.0% |
Annual average removal rate of TP | 90.0% | Annual average removal rate of CODMn | 50.0% |
Year | Simulated Water Quantity (× 108 m3) | Predicted Water Level (m) | Measured Water Level (m) | Error (%) |
---|---|---|---|---|
2005 | 1.16 | 7.34 | 7.24 | 1.37 |
2006 | 0.57 | 6.69 | 6.80 | −1.61 |
2007 | 0.66 | 6.81 | 6.74 | 1.03 |
2008 | 0.64 | 6.79 | 7.06 | −3.79 |
2009 | 0.69 | 6.84 | 7.14 | −4.27 |
2010 | 1.23 | 7.37 | 7.06 | 4.40 |
2011 | 1.82 | 7.74 | 7.06 | 9.65 |
2012 | 1.95 | 7.82 | 7.58 | 3.10 |
2013 | 2.49 | 8.10 | 8.44 | −4.07 |
2014 | 1.87 | 7.77 | 8.39 | −7.38 |
Year | CODMn (mg/L) | TN (mg/L) | TP (mg/L) | Water Level (m) |
---|---|---|---|---|
2005 | 11.05 | 3.67 | 0.67 | 7.34 |
2006 | 25.24 | 3.46 | 0.20 | 6.69 |
2007 | 22.91 | 2.58 | 0.10 | 6.81 |
2008 | 22.45 | 2.33 | 0.08 | 6.79 |
2009 | 20.89 | 2.20 | 0.08 | 6.84 |
2010 | 11.26 | 1.17 | 0.04 | 7.37 |
2011 | 8.83 | 1.00 | 0.04 | 7.74 |
2012 | 9.71 | 1.11 | 0.04 | 7.82 |
2013 | 9.01 | 1.03 | 0.04 | 8.10 |
2014 | 9.04 | 0.75 | 0.02 | 7.77 |
E (mm) | P (mm) | Q (mm) | Qr (mm) | ω | s1 | s2 | |
---|---|---|---|---|---|---|---|
Before variation time | 488.68 | 551.46 | 46.57 | 73.39 | 2.64 | 0.29 | −0.087 |
After variation time | 453.15 | 502.39 | 9.74 | 56.95 | 2.65 | 0.26 | −0.072 |
Year | Population of the Full-Water Village | Population of Eco-Migration | Water Level (m) | CODMn (mg/L) | TN (mg/L) | TP (mg/L) | Transferred Water Volume (× 108 m3) |
---|---|---|---|---|---|---|---|
2015 | 108,822 | 0 | 6.48 | 34.1 | 2.68 | 0.10 | 1.00 |
2016 | 109,746 | 0 | 7.40 | 8.89 | 0.75 | 0.03 | 1.00 |
2017 | 110,678 | 23,519 | 7.43 | 7.85 | 0.74 | 0.03 | 1.00 |
2018 | 64,579 | 13,723 | 7.42 | 7.62 | 0.76 | 0.03 | 1.00 |
2019 | 37,681 | 8,007 | 7.64 | 6.01 | 0.60 | 0.03 | 1.00 |
2020 | 21,987 | 4,672 | 7.75 | 5.46 | 0.55 | 0.02 | 1.00 |
Pollutants | Standards (mg/L) | Assessment | |||||
---|---|---|---|---|---|---|---|
Class I | Class II | Class III | Class IV | Class V | Pollutant Concentration in 2020 (mg/L) | Water Quality Class | |
TP | 0.01 | 0.025 | 0.05 | 0.10 | 0.20 | 0.02 | I |
TN | 0.20 | 0.50 | 1.00 | 1.50 | 2.00 | 0.55 | III |
CODMn | 15 | 15 | 20 | 30 | 40 | 5.46 | I |
Year | Water Level (m) | Water Demands (×108 m3) | CODMn (mg/L) | TN (mg/L) | TP (mg/L) | Class of Water Quality |
---|---|---|---|---|---|---|
2029 | 7.3 | 13.625 | 58.81 | 9.38 | 0.50 | Inferior V |
2030 | 7.3 | 13.985 | 50.03 | 6.25 | 0.30 | Inferior V |
2031 | 7.3 | 14.355 | 42.27 | 4.74 | 0.20 | Inferior V |
2032 | 7.3 | 14.725 | 36.31 | 3.83 | 0.20 | Inferior V |
2033 | 7.3 | 13.625 | 58.81 | 9.38 | 0.50 | Inferior V |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.-m.; Li, Y.-y.; Xiong, W.-s.; Wang, X.; Liu, D.; Zhang, Y.-l.; Li, C.-h. An In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics Modeling. Sustainability 2020, 12, 5814. https://doi.org/10.3390/su12145814
Liao Z-m, Li Y-y, Xiong W-s, Wang X, Liu D, Zhang Y-l, Li C-h. An In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics Modeling. Sustainability. 2020; 12(14):5814. https://doi.org/10.3390/su12145814
Chicago/Turabian StyleLiao, Zhen-mei, Yang-yang Li, Wen-shu Xiong, Xuan Wang, Dan Liu, Yun-long Zhang, and Chun-hui Li. 2020. "An In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics Modeling" Sustainability 12, no. 14: 5814. https://doi.org/10.3390/su12145814
APA StyleLiao, Z. -m., Li, Y. -y., Xiong, W. -s., Wang, X., Liu, D., Zhang, Y. -l., & Li, C. -h. (2020). An In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics Modeling. Sustainability, 12(14), 5814. https://doi.org/10.3390/su12145814