Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies
Abstract
:1. Introduction
Literature Review
- (i).
- To investigate the process and actors involved in the coffee supply chain.
- (ii).
- To explore the expectations, current situation, and actions to be implement in the coffee supply chain.
- (iii).
- To identify the appropriate emerging technology aligned with the actions to be implemented in the coffee supply chain.
- (iv).
- To propose sustainable practices that can improve the coffee supply chain, based on detected emerging technologies.
2. Materials and Methods
2.1. Information Gathering
- To investigate the process and actors involved in the coffee supply chain, the first stage was implemented following the supply chain definition in [21] as a “set of three or more entities (organizations or individuals) directly involved in the upstream and downstream flows of products, services, finances and/or information from a source to a customer”, considering the producer-to-customer flow, and the organizations or individuals directly involved, to investigate the process and actors involved in the coffee supply chain. In this sense, the flow of the producer-to-customer process was explored through face-to-face questions and validated through field visits, while the actors were involved through face-to-face questions. The questions asked to producers about knowing process and actors, were formalized as follows:
- To investigate the flow of the process and technologies, it was asked: What are the process and technologies of the coffee supply chain, from the producer until sale to the customer?
- To learn about the actors involved, it was asked: Which actors are involved in the process of the coffee supply chain, from the producer until sale to the customer?
- 2.
- To explore the expectations, current situation, and actions to be implemented, the second stage was developed following the structure of the technology roadmap technique of [39], to know where we want to go, to identify where are we now, and to explore how we can get there, in the producer context, in order to extract coffee producers’ tacit knowledge and make it explicit. The questions asked to producers were formalized as follows:
- To know where we want to go (expectation), it was asked: From your perspective, what are your expectations about the coffee supply chain?
- To identify where we are now (current situation), it was asked: From your perspective, what is the current situation of the coffee supply chain?
- To explore how we can get there (actions to be implemented), it was asked: From your perspective, which actions can be implemented in the coffee supply chain, to reach the expectations from the current situation?
- 3.
- To identify the appropriate emerging technology and linking with the actions to be implemented, in the third stage, having the roadmap results, a statistical test was developed for learning what could be the most adequate actions to be implemented, evaluating the normality of their distribution and through the frequency of the socio-productive variables and actions to be implemented considering a non-parametric test, assessing the correlation between family members, age, additional crops, gender, price production level and cultivated area (socio-productive variables) with actions to be implemented for linking the most suitable emerging technology following the value driver of digital compass [85], based on the producer’s perceptions (Figure 1). This was considered for ensuring the suitability of technologies on the coffee supply chain process [9,10,86]. This point was further formalized according the next question:
- To identify appropriate emerging technology that links with the actions to be implemented in the coffee supply chain process, the next question was formulated: What is the most appropriate emerging technology that connects suitably with the actions to be implemented in the coffee supply chain process?
- 4.
- In the fourth stage, to propose sustainable practices that can be adopted in the coffee supply chain, a theoretical analysis was made based on roadmap results and the statistical correlation between the actions that can be implemented and the influence of socio-productive variables. In this sense, the theoretical revision was formalized following the next set of questions:
- How can the detected emerging technologies improve sustainable practices in the coffee supply chain?
- What are the sustainable practices that can be improved in the coffee supply chain, based on detected emerging technologies?
- Sustainable practices can improve the coffee supply chain, identifying the suitable emerging technology, considering the statistical relationship between the actions to be implemented and the socio-productive context.
2.2. Information Analysis and Validity
3. Results and Discussion
3.1. Context, Socio-Productive Information, Process, Actors and Technologies Included on Coffee Supply Chain
3.2. Expectations, Current Status and Actions for Coffee Supply Chain
3.3. Statistical Analysis
3.4. Improving Sustainability in the Coffee Supply Chain
- Digital quality management can take an important role for producers having digital information to get more quality in coffee beans and renovation in plants, as they can manage the acquisition of the variety of coffee plant (resistant to pest and diseases) until the practices of pest management are improved, as well as the collection of maturation coffee beans, advising on when to plant the coffee plants, planting procedure, soil analysis and the control of weeds and water.
- Statistical process control can be integrated along the coffee value chain to record and analyse data for improving economic and environmental sustainability. The statistical control can begin recording the number of plants received, variety, time and location of coffee plants; coffee process variables such as pest incidence, time for plantation, soil characteristics, presence of weeds, the use of water, humidity, temperature or luminosity of the wet process and fermentation time, taking advantage of remote-sensing technology. Statistical control can be used to control the incidence of pest and diseases in coffee plants for reducing process variation along organization activities. The results can be shared using interactive tools such as WhatsApp, Skype or Hangouts to meet virtually and check the statistical control with academics and experts and make the right decisions in “real time” (see Figure 11).
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 3 November 2018).
- Mundial, B. Pobreza. Available online: http://www.bancomundial.org/es/topic/poverty/overview (accessed on 5 March 2019).
- Organisation for Economic Co-Operation and Development. Technology and Digital in Agriculture. Available online: https://www.oecd.org/agriculture/topics/technology-and-digital-agriculture/ (accessed on 5 November 2018).
- Sachon, M. Los pilares de la industria 4.0. Rev. Negocios IEEM 2018, 1, 46–54. [Google Scholar]
- FAO. El Uso de la Tecnología de la Información en la Agricultura de las Economías del Foro de Cooperación Económica Asia-Pacífico (APEC) y Más Allá. Available online: http://www.fao.org/3/b-i6817s.pdf (accessed on 8 November 2018).
- FAO. Agricultura Orgánica: Una Herramienta para el Desarrollo Rural Sostenible y la Reducción de la Pobreza., Memoria del Taller. Available online: http://www.fao.org/3/a-at738s.pdf (accessed on 12 May 2019).
- Comisión Económica para América Latina y el Caribe (CEPAL). Encadenamientos Productivos y Circuitos Cortos: Innovaciones en Esquemas de Producción y Comercialización para la Agricultura Familiar. Available online: https://repositorio.cepal.org/bitstream/handle/11362/40688/1/S1600739_es.pdf (accessed on 11 December 2018).
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The effect of cooperative membership on agricultural technology adoption in Sichuan, China. China Econ. Rev. 2019, 101334. [Google Scholar] [CrossRef]
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government Summit, Dubai, UAE, 11–13 February 2018; pp. 11–13. [Google Scholar]
- Braun, A.-T.; Colangelo, E.; Steckel, T. Farming in the Era of Industrie 4.0. Procedia CIRP 2018, 72, 979–984. [Google Scholar] [CrossRef]
- Colezea, M.; Musat, G.; Pop, F.; Negru, C.; Dumitrascu, A.; Mocanu, M. CLUeFARM: Integrated web-service platform for smart farms. Comput. Electron. Agric. 2018, 154, 134–154. [Google Scholar] [CrossRef]
- International Labour Organization. Agriculture; Plantations; Other Rural Sectors. Available online: http://www.ilo.org/global/industries-and-sectors/agriculture-plantations-other-rural-sectors/lang--en/index.htmKhatri-Chhetri (accessed on 24 July 2019).
- Pendergrast, M. Uncommon Grounds: The History of Coffee and How It Transformed Our World; Basic Books: New York, NY, USA, 2010. [Google Scholar]
- FAO. FAO and the SDGs indicators: Measuring up to the 2030 Agenda for Sustainable Development. Available online: http://www.fao.org/3/a-i6919e.pdf (accessed on 12 December 2019).
- Servicio de Información. Agroalimentaria y Pesquera Anuario Estadístico de la Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 14 January 2019).
- ICO. Total Production by all Exporting Countries 2016. Available online: http://www.ico.org/prices/po-production.pdf (accessed on 2 May 2019).
- SAGARPA. México, Onceavo Productor Mundial de Café. Available online: https://www.gob.mx/agricultura/es/articulos/mexico-onceavo-productor-mundial-de-cafe?idiom=es (accessed on 4 May 2019).
- Bartra Vergés, A.; Paredes, P. La Hora del Cafédos Siglos a Muchas Voces; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2011.
- USDA. Mexico Coffee Annual Coffee Production to Increase. Available online: https://gain.fas.usda.gov/Recent GAIN Publications/Coffee Annual_Mexico City_Mexico_5-25-2017.pdf (accessed on 9 January 2019).
- Padron, B.R.; Burger, K. The structural changes in the Mexican coffee sector: Effects on the transaction costs. Custos Agronegocio 2015, 11, 30–69. [Google Scholar]
- Mentzer, J.T.; DeWitt, W.; Keebler, J.S.; Min, S.; Nix, N.W.; Smith, C.D.; Zacharia, Z.G. Defining supply chain management. J. Bus. Logist. 2001, 22, 1–25. [Google Scholar] [CrossRef]
- ICO. Identifying Coffee Sector Challengues in Selected Central American Countries and Mexico. Available online: http://www.ico.org/documents/cy2017-18/pj-120e-challenges-central-america-mexico.pdf (accessed on 15 December 2018).
- CONEVAL. Medición de la Pobreza. Available online: https://www.coneval.org.mx/Medicion/MP/Paginas/AE_pobreza_2016.aspx (accessed on 12 January 2019).
- Hernández, A.O.; Valverde, B.R.; Andrade, M.L. Crisis cafetalera y migración interna entre campesinos indígenas, en Huehuetla México. Papeles Geogr. 2013, 57, 197–208. [Google Scholar]
- Rathinavelu, R.; Graziosi, G. Posibles usos alternativos de los residuos y subproductos del café. Organ. Int. Café 2005, 1–4. [Google Scholar] [CrossRef]
- Gobierno del Estado de Chiapas. Programa Regional de Desarrollo. Available online: http://www.ped.chiapas.gob.mx/ped/wp-content/uploads/ProgReg/2013-2018/2013_PRD_6_Frailesca.pdf (accessed on 19 October 2019).
- Villafuerte-Solís, D. Crisis rural, pobreza y hambre en Chiapas. LiminaR 2015, 13, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Sánchez Juárez, G.K. Los Pequeños Cafeticultores de Chiapas. Organización y Resistencia Frente al Mercado; Universidad de Ciencias y Artes de Chiapas: Tuxtla Gutiérrez, Mexico; Centro de Estudios Superiores de México y Centroamérica: San Cristóbal de Las Casas, Mexico, 2015. [Google Scholar]
- Haleem, A.; Mannan, B.; Luthra, S.; Kumar, S.; Khurana, S. Technology forecasting (TF) and technology assessment (TA) methodologies: A conceptual review. Benchmark. Int. J. 2019. [Google Scholar] [CrossRef]
- Cruz, C.; Cisternas, L.A.; Kraslawski, A. Scaling problems and control technologies in industrial operations: Technology Assessment. Sep. Purif. Technol. 2018, 207, 20–27. [Google Scholar] [CrossRef]
- Tello-Leal, E.; Villarreal, P.D.; Chiotti, O.; Rios-Alvarado, A.B.; Lopez-Arevalo, I. A Technological Solution to Provide Integrated and Process-Oriented Care Services in Healthcare Organizations. IEEE Trans. Ind. Inform. 2016, 12, 1508–1518. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Rasul, M.G.; Hassan, N.M.S.; Mofijur, M. Waste coffee oil: A promising source for biodiesel production. Energy Procedia 2019, 160, 677–682. [Google Scholar] [CrossRef]
- Leonard, E.C. Precision Agriculture. In Reference Module in Food Science; Smithers, G.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-08-100596-5. [Google Scholar]
- Kamtsiou, V.; Naeve, A.; Stergioulas, L.K.; Koskinen, T. Roadmapping as a knowledge creation process: The PROLEARN roadmap. J. Univers. Knowl. Manag. 2006, 1, 163–173. [Google Scholar]
- Shapiro-Garza, E.; King, D.; Rivera-Aguirre, A.; Wang, S.; Finley-Lezcano, J. A participatory framework for feasibility assessments of climate change resilience strategies for smallholders: Lessons from coffee cooperatives in Latin America. Int. J. Agric. Sustain. 2020, 18, 21–34. [Google Scholar] [CrossRef]
- Bro, A.S.; Clay, D.C.; Ortega, D.L.; Lopez, M.C. Determinants of adoption of sustainable production practices among smallholder coffee producers in Nicaragua. Environ. Dev. Sustain. 2019, 21, 895–915. [Google Scholar] [CrossRef]
- Porteous, O. Trade and agricultural technology adoption: Evidence from Africa. J. Dev. Econ. 2020, 144, 102440. [Google Scholar] [CrossRef]
- Phaal, R.; Farrukh, C.J.P.; Probert, D.R. Technology roadmapping—A planning framework for evolution and revolution. Technol. Forecast. Soc. Chang. 2004, 71, 5–26. [Google Scholar] [CrossRef]
- Phaal, R.; Muller, G. An architectural framework for roadmapping: Towards visual strategy. Technol. Forecast. Soc. Chang. 2009, 76, 39–49. [Google Scholar] [CrossRef]
- Chávez, M.M.M.; Sarache, W.; Costa, Y. Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transp. Res. Part E Logist. Transp. Rev. 2018, 116, 136–162. [Google Scholar] [CrossRef]
- Debastiani, R.; Dos Santos, C.E.I.; Ramos, M.M.; Souza, V.S.; Amaral, L.; Yoneama, M.L.; Dias, J.F. Elemental analysis of Brazilian coffee with ion beam techniques: From ground coffee to the final beverage. Food Res. Int. 2019, 119, 297–304. [Google Scholar] [CrossRef]
- Liu, C.; Yang, N.; Yang, Q.; Ayed, C.; Linforth, R.; Fisk, I.D. Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chem. 2019, 281, 8–17. [Google Scholar] [CrossRef] [PubMed]
- De Melo Pereira, G.V.; De Carvalho Neto, D.P.; Júnior, A.I.M.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Fadai, N.T.; Please, C.P.; Van Gorder, R.A. Modelling structural deformations in a roasting coffee bean. Int. J. Non Linear Mech. 2019, 110, 123–130. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. The role of microbes in coffee fermentation and their impact on coffee quality. J. Food Qual. 2019, 2019. [Google Scholar] [CrossRef]
- Puga, H.; Alves, R.C.; Costa, A.S.; Vinha, A.F.; Oliveira, M.B.P.P. Multi-frequency multimode modulated technology as a clean, fast, and sustainable process to recover antioxidants from a coffee by-product. J. Clean. Prod. 2017, 168, 14–21. [Google Scholar] [CrossRef]
- Borda-Rodriguez, A.; Vicari, S. Coffee co-operatives in Malawi: Building resilience through innovation. Ann. Public Coop. Econ. 2015, 86, 317–338. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Spence, C. Cup colour influences consumers’ expectations and experience on tasting specialty coffee. Food Qual. Prefer. 2019, 75, 157–169. [Google Scholar] [CrossRef]
- Abe, S.K.; Saito, E.; Sawada, N.; Tsugane, S.; Ito, H.; Lin, Y.; Tamakoshi, A.; Sado, J.; Kitamura, Y.; Sugawara, Y.; et al. Coffee consumption and mortality in Japanese men and women: A pooled analysis of eight population-based cohort studies in Japan (Japan Cohort Consortium). Prev. Med. (Baltimore) 2019, 123, 270–277. [Google Scholar] [CrossRef]
- Verburg, R.; Rahn, E.; Verweij, P.; Van Kuijk, M.; Ghazoul, J. An innovation perspective to climate change adaptation in coffee systems. Environ. Sci. Policy 2019, 97, 16–24. [Google Scholar] [CrossRef]
- Vinson, J.A.; Chen, X.; Garver, D.D. Determination of Total Chlorogenic Acids in Commercial Green Coffee Extracts. J. Med. Food 2019, 22, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Chain-Guadarrama, A.; Martínez-Rodríguez, M.R.; Cárdenas, J.M.; Vílchez-Mendoza, S.; Harvey, C.A. Uso de prácticas de Adaptación basada en Ecosistemas por pequeños cafetaleros en Centroamérica. Agron. Mesoam. 2019, 30, 1–18. [Google Scholar] [CrossRef]
- Moreno-Ceballos, M.; Arroyave, J.C.; Cortes-Mancera, F.M.; Röthlisberger, S. Chemopreventive effect of coffee against colorectal cancer and hepatocellular carcinoma. Int. J. Food Prop. 2019, 22, 536–555. [Google Scholar] [CrossRef]
- Donovan, N.K.; Foster, K.A.; Salinas, C.A.P. Analysis of green coffee quality using hermetic bag storage. J. Stored Prod. Res. 2019, 80, 1–9. [Google Scholar] [CrossRef]
- Mendoza Martinez, C.L.; Alves Rocha, E.P.; Carneiro, A.D.C.O.; Borges Gomes, F.J.; Ribas Batalha, L.A.; Vakkilainen, E.; Cardoso, M. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 2019, 120, 68–76. [Google Scholar] [CrossRef]
- Hicks, A.L.; Halvorsen, H. Environmental impact of evolving coffee technologies. Int. J. Life Cycle Assess. 2019, 24, 1396–1408. [Google Scholar] [CrossRef]
- Kim, B.; Kim, D. A Longitudinal Study of Habit and Its Antecedents in Coffee Chain Patronage. Soc. Behav. Personal. Int. J. 2019, 47, 1–11. [Google Scholar] [CrossRef]
- Brundtland, G.H. Report of the world commission on environment and development “our common future”. J. Int. Dev. 1989. [Google Scholar] [CrossRef]
- Dania, W.A.P.; Xing, K.; Amer, Y. Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review. J. Clean. Prod. 2018, 186, 851–864. [Google Scholar] [CrossRef]
- Kim, M.J.; Hergeth, H.H. Technology roadmap for flushable nonwoven wipes. J. Text. Inst. 2012, 103, 200–209. [Google Scholar] [CrossRef]
- Ma, T.; Liu, S.; Nakamori, Y. Roadmapping as a way of knowledge management for supporting scientific research in academia. Syst. Res. Behav. Sci. Off. J. Int. Fed. Syst. Res. 2006, 23, 743–755. [Google Scholar] [CrossRef]
- Petrick, I.J.; Echols, A.E. Technology roadmapping in review: A tool for making sustainable new product development decisions. Technol. Forecast. Soc. Change 2004, 71, 81–100. [Google Scholar] [CrossRef]
- Aldabaldetreku, R.; Lautiainen, J.; Minkova, A. The role of Knowledge Management in Strategic Sustainable Development: Comparing Theory and Practice in Companies Applying the FSSD. Master’s Thesis, School of Engineering, Blekinge Institute of Technology, Karlskrona, Sweden, 2016. [Google Scholar]
- FAO. FAO Knowledge Strategy. Available online: http://www.fao.org/fileadmin/user_upload/capacity_building/KM_Strategy.pdf (accessed on 14 January 2019).
- Luo, T.; Tan, Y.; Langston, C.; Xue, X. Mapping the knowledge roadmap of low carbon building: A scientometric analysis. Energy Build. 2019, 194, 163–176. [Google Scholar] [CrossRef]
- Nguyen, V.M.; Young, N.; Cooke, S.J. A roadmap for knowledge exchange and mobilization research in conservation and natural resource management. Conserv. Biol. 2017, 31, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Medina, D.I.; Sánchez Osorio, E.; Olvera Vargas, L.A.; Romero Romero, Y. Technology roadmapping architecture based on knowledge management: Case study for improved indigenous coffee production from Guerrero, Mexico. J. Sens. 2019, 2019. [Google Scholar] [CrossRef]
- Mottaleb, K.A. Perception and adoption of a new agricultural technology: Evidence from a developing country. Technol. Soc. 2018, 55, 126–135. [Google Scholar] [CrossRef]
- Mwangi, M.; Kariuki, S. Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. J. Econ. Sustain. Dev. 2015, 6, 208–216. [Google Scholar]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; Van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Maffioli, A.; Ubfal, D.; Vazquez-Bare, G.; Cerdan-Infantes, P. Improving technology adoption in agriculture through extension services: Evidence from Uruguay. J. Dev. Eff. 2013, 5, 64–81. [Google Scholar] [CrossRef]
- Yigezu, Y.A.; Mugera, A.; El-Shater, T.; Aw-Hassan, A.; Piggin, C.; Haddad, A.; Khalil, Y.; Loss, S. Enhancing adoption of agricultural technologies requiring high initial investment among smallholders. Technol. Forecast. Soc. Chang. 2018, 134, 199–206. [Google Scholar] [CrossRef]
- Jensen, M.C. The modern industrial revolution, exit, and the failure of internal control systems. J. Financ. 1993, 48, 831–880. [Google Scholar] [CrossRef]
- Adner, R. The Wide Lens: A New Strategy for Innovation; Penguin: London, UK, 2012; ISBN 0241961629. [Google Scholar]
- Ren, M. Why technology adoption succeeds or fails: An exploration from the perspective of intra-organizational legitimacy. J. Chin. Sociol. 2019, 6, 21. [Google Scholar] [CrossRef]
- Morse, J.M. Principles of mixed methods and multimethod research design. Handb. Mix. Methods Soc. Behav. Res. 2003, 1, 189–208. [Google Scholar]
- Schoonenboom, J.; Johnson, R.B. How to Construct a Mixed Methods Research Design. KZFSS Kölner Z. Soziologie Sozialpsychologie 2017, 69, 107–131. [Google Scholar] [CrossRef]
- Ly, L.S. A Multi-Method Exploration on Coffee Shop Atmospherics. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2011. [Google Scholar]
- Shibin, K.T.; Dubey, R.; Gunasekaran, A.; Luo, Z.; Papadopoulos, T.; Roubaud, D. Frugal innovation for supply chain sustainability in SMEs: Multi-method research design. Prod. Plan. Control. 2018, 29, 908–927. [Google Scholar] [CrossRef]
- Gaitán-Cremaschi, D.; Van Evert, F.K.; Jansen, D.M.; Meuwissen, M.P.M.; Oude Lansink, A.G.J.M. Assessing the sustainability performance of coffee farms in Vietnam: A social profit inefficiency approach. Sustainability 2018, 10, 4227. [Google Scholar] [CrossRef] [Green Version]
- Vicol, M.; Neilson, J.; Hartatri, D.F.S.; Cooper, P. Upgrading for whom? Relationship coffee, value chain interventions and rural development in Indonesia. World Dev. 2018, 110, 26–37. [Google Scholar] [CrossRef]
- Wairegi, L.W.I.; Bennett, M.; Nziguheba, G.; Mawanda, A.; De los Rios, C.; Ampaire, E.; Jassogne, L.; Pali, P.; Mukasa, D.; Van Asten, P.J.A. Sustainably improving Kenya’s coffee production needs more participation of younger farmers with diversified income. J. Rural Stud. 2018, 63, 190–199. [Google Scholar] [CrossRef]
- IICA. Desarrollo de los Agronegocios en América Latina y el Caribe. Conceptos, Instrumentos, Proyectos de Cooperación Técnica; Rodriguez, D., Ed.; IICA: San José, Costa Rica, 2010; ISBN 978-92-9248-193-3.
- Nonaka, I.; Toyama, R.; Konno, N. SECI, Ba and Leadership: A Unified Model of Dynamic Knowledge Creation. Long Range Plann. 2000, 33, 5–34. [Google Scholar] [CrossRef]
- Wee, D.; Kelly, R.; Cattel, J.; Breunig, M. Industry 4.0—How to Navigate Digitization of the Manufacturing Sector; McKinsey Co: New York, NY, USA, 2015; Volume 58. [Google Scholar] [CrossRef]
- Bonneau, V.; Copigneaux, B.; Probst, L.; Pedersen, B. Industry 4.0 in Agriculture: Focus on IoT Aspects; Directorate-General Internal Market, Industry, Entrepreneurship and SMEs: Brussels, Belgium, 2017. [Google Scholar]
- Vaisrub, N. Biostatistics: The Bare Essentials. JAMA 2009, 302, 2260–2264. [Google Scholar] [CrossRef]
- Mutengezanwa, M.; Mauchi, F.N. Socio-demographic factors influencing adoption of internet banking in Zimbabwe. J. Sustain. Dev. Afr. 2013, 15, 145–154. [Google Scholar]
- INEGI El Instituto Nacional de Estadística, Geografía e Informática. Población. Available online: https://www.inegi.org.mx/temas/estructura/default.html#Informacion_general (accessed on 15 May 2019).
- INEGI. XIII Censo de Población y Vivienda 2010. México. Inst. Nac. Estadística Geogr. Available online: https://www.inegi.org.mx/programas/ccpv/2010/ (accessed on 14 April 2019).
- INEGI. Mapas. Available online: https://www.inegi.org.mx/app/mapas/ (accessed on 20 May 2019).
- Vichi, F. La producción de café en México: Ventana de oportunidad para el sector agrícola en Chiapas. Espac. I + D Innov. Desarro. 2015, 4. [Google Scholar] [CrossRef]
- Valverde, B.R.; Méndez, C.A.; Tlamani, H.J. La comercialización de café en una comunidad indígena: Estudio en Huehuetla, Puebla. Ra Ximhai Rev. Sci. Soc. Cult. Desarro. Sosten. 2006, 2, 293–318. [Google Scholar]
- Benítez-García, É.; Jaramillo-Villanueva, J.L.; Escobedo-Garrido, S.; Mora-Flores, S. Caracterización de la producción y del comercio de café en el Municipio de Cuetzalan, Puebla. Agric. Soc. Desarro. 2015, 12, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, Á.R.; Ulloa, K.H.; Marques, R.A. El impacto de la producción de café sobre la biodiversidad, la transformación del paisaje y las especies exóticas invasoras. Ambient. Desarro. 2012, 16, 93–104. [Google Scholar]
- AMECAFE. Precios del Café. Available online: http://www.revistas.unam.mx/index.php/rxm/article/view/6876 (accessed on 10 May 2019).
- Government, M. Café: Datos Preliminares a 2017 Indican una Producción Nacional de 839 Mil Toneladas. Available online: https://www.gob.mx/siap/articulos/cafe-datos-preliminares-a-2017-indican-una-produccion-nacional-de-839-mil-toneladas (accessed on 30 April 2019).
- López Pacheco, E. Pioneros en la Exportación de Café Organico Bajo un Modelo de Comercio Justo. Unión de Comunidades Indígenas de la Región del Istmo (UCIRI). Available online: 99. https://www.redinnovagro.in/casosexito/2017/Caf%C3%A9_UCIRI.pdf (accessed on 20 May 2019).
- ICO. National Quality Standards. Available online: http://www.ico.org/documents/cy2017-18/icc-122-12e-national-quality-standards.pdf (accessed on 28 March 2020).
- SADER. Programa de Apoyos a Pequeños Productores, Componente PROCAFE e Impulso Productivo al Café. Available online: https://www.gob.mx/agricultura/acciones-y-programas/programa-de-fomento-a-la-agricultura-procafe-e-impulso-productivo-al-cafe (accessed on 15 April 2019).
- Sengere, R.W.; Curry, G.N.; Koczberski, G. Forging alliances: Coffee grower and chain leader partnerships to improve productivity and coffee quality in Papua New Guinea. Asia Pac. Viewp. 2019, 60, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Teetor, P. R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics; O’Reilly Media, Inc: Champaign, IL, USA, 2011. [Google Scholar]
- Lee, C.F.; Lee, J.C.; Lee, A.C. Statistics for Business and Financial Economics; Springer: Berlin, Germany, 2000; Volume 1, ISBN 9810234856. [Google Scholar]
- Perdoná, M.J.; Soratto, R.P. Arabica coffee–macadamia intercropping: Yield and profitability with mechanized coffee harvesting. Agron. J. 2020, 112, 429–440. [Google Scholar] [CrossRef]
- Hung Anh, N.; Bokelmann, W.; Do Nga, T.; Van Minh, N. Toward sustainability or efficiency: The case of smallholder coffee farmers in Vietnam. Economies 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- FAO. Arabica Coffee Manual for Lao-PDR. Available online: http://www.fao.org/3/ae939e/ae939e00.htm#Contents (accessed on 12 October 2019).
- ICO. Improving Quality. Available online: http://www.ico.org/improving_quality.asp (accessed on 2 December 2019).
- FAO. Digital Technologies in Agriculture and Rural Areas. Available online: http://www.fao.org/3/ca4985en/ca4985en.pdf (accessed on 15 January 2020).
- Cecafé. Digital Coffee Farmer. Available online: https://www.cecafe.com.br/en/social-responsibility/digital-coffee-farmer/ (accessed on 20 July 2020).
- GFRAS, Global Forum for Rural Advisory Services. GFRAS–Global Forum for Rural Advisory Services. Available online: https://www.g-fras.org/en/ (accessed on 2 December 2019).
- Mishra, M.K.; Slater, A. Recent Advances in the Genetic Transformation of Coffee. Biotechnol. Res. Int. 2012, 2012, 580857. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, D.; Sánchez, A.; Sarmiento, S.; Toro, M.; Maiza, M.; Sierra, B. A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: Case study of the Caturra variety in Colombia. Appl. Sci. 2020, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Basu, M. Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Prog. Nat. Sci. 2009, 19, 659–666. [Google Scholar] [CrossRef]
- Bolaños, P.; Céspedes, S.; Cuéllar, J.C. Prototype of a Wireless Sensor Network for Monitoring the Coffee Drying Process. In Proceedings of the IV School on Systems and Networks SSN 2018, Valdivia, Chile, 29–31 October 2018; pp. 61–63. [Google Scholar]
- FAO. The International Symposium on Agricultural Innovation for Family Farmers. 20 Success Stories of Agricultural Innovation from the Innovation Fair. Available online: http://www.fao.org/3/CA2588EN/ca2588en.pdf (accessed on 20 December 2019).
- Folch, A.; Planas, J. Cooperation, Fair Trade, and the Development of Organic Coffee Growing in Chiapas (1980–2015). Sustainability 2019, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.F.; Massey, J.G.; McKinney, C. A knowledge-based approach to statistical process control. Comput. Electron. Agric. 1992, 7, 13–22. [Google Scholar] [CrossRef]
- Ziegel, E.R. Statistical Process Control in Manufacturing. Technometrics 1992, 34, 370–371. [Google Scholar] [CrossRef]
- Awuor, F.; Kimeli, K.; Rabah, K.; Rambim, D. ICT Solution Architecture for Agriculture. In Proceedings of the 2013 IST-Africa Conference & Exhibition, Nairobi, Kenya, 28–31 May 2013; IEEE: Nairobi, Kenya; pp. 1–7. [Google Scholar]
- United States Department of Agriculture USDA. National Agricultural Statistics Service. Available online: https://www.nass.usda.gov/Statistics_by_Subject/Environmental/index.php (accessed on 9 December 2019).
- Sekabira, H.; Qaim, M. Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. Food Policy 2017, 73, 95–103. [Google Scholar] [CrossRef]
- Nsabimana, A.; Amuakwa-Mensah, F. Does mobile phone technology reduce agricultural price distortions? Evidence from cocoa and coffee industries. Agric. Food Econ. 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Birkenberg, A.; Birner, R. The world’s first carbon neutral coffee: Lessons on certification and innovation from a pioneer case in Costa Rica. J. Clean. Prod. 2018, 189, 485–501. [Google Scholar] [CrossRef]
- Ziska, L.H.; Bradley, B.A.; Wallace, R.D.; Bargeron, C.T.; LaForest, J.H.; Choudhury, R.A.; Garrett, K.A.; Vega, F.E. Climate change, carbon dioxide, and pest biology, managing the future: Coffee as a case study. Agronomy 2018, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, R.; Newton, P.; Adshead, D.; Bogaerts, M.; Maguire-Rajpaul, V.A.; Pinto, L.F.G.; McDermott, C.L.; Milder, J.C.; Wollenberg, E.; Agrawal, A. Scaling up sustainability in commodity agriculture: Transferability of governance mechanisms across the coffee and cattle sectors in Brazil. J. Clean. Prod. 2019, 206, 124–132. [Google Scholar] [CrossRef]
- Mitiku, F.; Nyssen, J.; Maertens, M. Certification of Semi-forest Coffee as a Land-sharing Strategy in Ethiopia. Ecol. Econ. 2018, 145, 194–204. [Google Scholar] [CrossRef]
- Ranjan Jena, P.; Grote, U. Fairtrade certification and livelihood impacts on small-scale coffee producers in a tribal community of India. Appl. Econ. Perspect. Policy 2017, 39, 87–110. [Google Scholar] [CrossRef]
- Vakalis, S.; Moustakas, K.; Benedetti, V.; Cordioli, E.; Patuzzi, F.; Loizidou, M.; Baratieri, M. The “COFFEE BIN” concept: Centralized collection and torrefaction of spent coffee grounds. Environ. Sci. Pollut. Res. 2019, 26, 35473–35481. [Google Scholar] [CrossRef] [PubMed]
Reference | Topic | Issues |
---|---|---|
[40] | Sustainability | Model for designing a sustainable coffee supply chain. |
[41] | Quality | Coffee characterization for quality improvement. |
[42] | Quality | Model for improving sensory properties. |
[43] | Quality | Recommendations for optimal postharvest processing |
[44] | Quality | Recommendations for improving coffee roasting. |
[45] | Quality | Theorical recommendations for improving sensory characteristics. |
[46] | Sustainability | Multi-frequency, multimode, modulated vibration technique for recovering antioxidants. |
[47] | Innovation | Identification of innovation in coffee co-operatives for resilience. |
[48] | Quality | Sensory and hedonic analyses for investigating the effect of coffee color. |
[49] | Health | Effect of coffee consumption and the association with deaths. |
[50] | Sustainability | Actions against climate change as a way of innovation. |
[32] | Sustainability | Waste coffee for biodiesel production. |
[51] | Health | Extracts of green coffee beans in commercial products for losing weight. |
[52] | Sustainability | Practices of small farmers for climate change mitigation. |
[53] | Health | Coffee’s role against the apparition of colorectal and liver cancer. |
[54] | Quality | Storage of coffee crop (hermetic bags) for preserving the quality. |
[55] | Sustainability | Properties of coffee solid residues for improving their management. |
[56] | Sustainability | Coffee technologies for evaluating environmental impact. |
[57] | Quality | Model about patronages of coffee consumers (repurchase intention and habit consumer). |
Tag | (1) To Know Where We Want to Go | (2) To Identify Where We Are Now | (3) To Explore How We Can Get There |
---|---|---|---|
e1 | Coffee plants renovation wanted | Having old coffee plantations | To have more quality in the coffee beans |
2 | Coffee quality certifications wanted | They have an exportation coffee bean | Improving interaction to obtain the renovation of coffee plants |
3 | Wanting to access specialized markets | Selling his coffee at the local market | Access to infrastructure programs to improve coffee quality |
4 | Access to roasting and grinding infrastructure | They need intermediaries | Improving interaction to have a better-quality coffee bean |
5 | Wanting to collaborate with academics, institutions and research centres | The interaction with actors is very little | Government programs to improve the quality of coffee plants |
6 | Wanting to differentiate the coffee | They have an organic certification | |
7 | Wanting effective actions against pest and diseases | They have problems with pest and diseases |
Socio-Productive Variables | Women | Men |
---|---|---|
Small producers | 10.70% | 89.30% |
Age (average) | 40–44 years old | |
Family members (average) | 4–6 members | |
Standard area cultivated (ha) | 0.1–5 ha | |
Additional crops | 62.1% none | |
Sale price (Kg) (average) | 1.06–2.12 US dollars (20–40 Mexican pesos) | |
Coffee production level | 500–1000 kg p/ha |
Socio-Productive/Roadmapping Variables | Actions to be Implemented |
---|---|
Family members | 0.658 |
Age | 0.621 |
Additional crops | 0.411 |
Gender | 0.326 |
Price p/kg | 0.033 |
Production level | 0.026 |
Cultivated area | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Medina, D.I.; Contreras-Medina, L.M.; Pardo-Nuñez, J.; Olvera-Vargas, L.A.; Rodriguez-Peralta, C.M. Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies. Sustainability 2020, 12, 5817. https://doi.org/10.3390/su12145817
Contreras-Medina DI, Contreras-Medina LM, Pardo-Nuñez J, Olvera-Vargas LA, Rodriguez-Peralta CM. Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies. Sustainability. 2020; 12(14):5817. https://doi.org/10.3390/su12145817
Chicago/Turabian StyleContreras-Medina, David Israel, Luis Miguel Contreras-Medina, Joaliné Pardo-Nuñez, Luis Alberto Olvera-Vargas, and Carlos Mario Rodriguez-Peralta. 2020. "Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies" Sustainability 12, no. 14: 5817. https://doi.org/10.3390/su12145817
APA StyleContreras-Medina, D. I., Contreras-Medina, L. M., Pardo-Nuñez, J., Olvera-Vargas, L. A., & Rodriguez-Peralta, C. M. (2020). Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies. Sustainability, 12(14), 5817. https://doi.org/10.3390/su12145817