Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Materials
2.2. Experimental Design
2.3. Growth Measurements
2.4. Foliage Nutrient Analyses
2.5. Vector Analysis
2.6. Statistical Analysis
3. Results
3.1. Height and Root Collar Diameter Growth
3.2. Biomass Growth and Allocation
3.3. Foliar N, P, and K Responses
4. Discussion
4.1. Effects of Different Placement Treatments on Growth and Foliar Nutrients
4.2. Implications for Sustainable Urban Afforestation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Warren, R.J.; Felson, A.J.; Bradford, M.A. Challenges and future directions in urban afforestation. J. Appl. Ecol. 2013, 50, 1169–1177. [Google Scholar] [CrossRef]
- Lehmann, A.; Stahr, K. Nature and significance of anthropogenic urban soils. J. Soils Sediments 2007, 7, 247–260. [Google Scholar] [CrossRef]
- Roman, L.A.; Battles, J.J.; McBride, J.R. Determinants of establishment survival for residential trees in Sacramento County, CA. Landsc. Urban. Plan. 2014, 129, 22–31. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Sonti, N.F.; Hallett, R.A. Variability in urban soils influences the health and growth of native tree seedlings. Ecol. Restor. 2016, 34, 106–116. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Szlavecz, K.; Yesilonis, I.D.; Groffman, P.M.; Schwarz, K. Chemical, physical, and biological characteristics of urban soils. In Urban Ecosystem Ecology: Agronomy Monograph 55; Aitkenhead-Peterson, J., Volder, A., Eds.; American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Soceity of America, Inc.: Madison, WI, USA, 2010; pp. 119–152. [Google Scholar]
- Harris, J.R.; Day, S.D.; Kane, B. Nitrogen fertilization during planting and establishment of the urban forest: A collection of five studies. Urban For. Urban Green. 2008, 7, 195–206. [Google Scholar] [CrossRef]
- Miller, R.W. Practical application: Are we asking the right question and looking in the right places? In Tree and Shrub Fertilization; Siewert, A., Rao, B., and Marion, D., Eds.; Dixon Graphics Publishing: Champaign, IL, USA, 2003; pp. 15–20. [Google Scholar]
- Sharenbroch, B.C.; Lloyd, J.E. A literature review of nitrogen availability indices for use in urban landscapes. J. Arboric. 2004, 30, 214–229. [Google Scholar]
- Rahman, K.M.A.; Zhang, D.F. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Marion, D.F. Tree fertilization in the 21st century: Where to from here? In Tree and Shrub Fertilization; Siewert, A., Rao, B., and Marion, D., Eds.; Dixon Graphics Publishing: Champaign, IL, USA, 2003; pp. 3–5. [Google Scholar]
- Hussain, N.; Abbasi, S. Efficacy of the vermicomposts of different organic wastes as “Clean” fertilizers: State-of-the-art. Sustainability 2018, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.M.; Pasian, C.; Lal, R.; Lopez, R.; Diaz, M.J.; Fernandez, M. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban For. Urban Green. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Singh, A.; Singh, G.S. Vermicomposting: A sustainable tool for environmental equilibria. Environ. Qual Manag. 2017, 27, 23–40. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Farrell, M.; Griffith, G.W.; Hobbs, P.J.; Perkins, W.T.; Jones, D.L. Microbial diversity and activity are increased by compost amendment of metal-contaminated soil. FEMS Microbiol. Ecol. 2009, 71, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Jouquet, E.; Bloquel, E.; Doan, T.T.; Ricoy, M.; Orange, D.; Rumpel, C.; Duc, T.T. Do Compost and Vermicompost Improve Macronutrient Retention and Plant Growth in Degraded Tropical Soils? Compost. Sci. Util. 2011, 19, 15–24. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Ghorbani, R.; von Fragstein Niemsdorff, P. Effect of vermicompost placement on nutrient use efficiency and yield of tomato (Lycopersicum escuslentum). Biol. Agric. Hortic. 2020, 36, 44–52. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Babenko, A.; Cannon, J.; Galvis, P.; Metzger, J.D. Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl. Soil. Ecol. 2008, 39, 91–99. [Google Scholar] [CrossRef]
- Adhikary, S. Vermicompost, the story of organic gold: A review. Agric. Sci. 2012, 03, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil. Sci. Plan. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Lim, P.N.; Wu, T.Y.; Clarke, C.; Daud, N.N.N. A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. Int. J. Environ. Sci. Technol. 2015, 12, 2533–2544. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.K.; Liu, Z.G.; Zhang, M.; Shi, Y.F.; Zhu, Q.; Sun, Y.B.; Zhou, H.Y.; Li, C.L.; Yang, Y.C.; Geng, J.B.A. Improving crop yields, nitrogen use efficiencies, and profits by using mixtures of coated controlled-released and uncoated urea in a wheat-maize system. Field Crop. Res. 2017, 205, 106–115. [Google Scholar] [CrossRef]
- Shen, J.B.; Li, C.J.; Mi, G.H.; Li, L.; Yuan, L.X.; Jiang, R.F.; Zhang, F.S. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J. Exp. Bot 2013, 64, 1181–1192. [Google Scholar] [CrossRef]
- International Fertililizer Development Centre (IFDC). Fertilizer Deep Placement (FDP); IFDC: Muscle Shoals, AL, USA, 2013; Available online: https://ifdc.org/2013/09/23/fertilizer-deep-placement/ (accessed on 6 May 2020).
- Bakhtiari, M.R.; Ghahraei, O.; Ahmad, D.; Yazdanpanah, A.R.; Jafari, A.M. Selection of fertilization method and fertilizer application rate on corn yield. Agric. Eng. Int. Cigr. J. 2014, 16, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.T.; Li, T.P.; Zhang, Y.; Hu, J.; Bai, Y.C.; Shan, Y.H.; Ke, F. Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. J. Soil. Sediment. 2017, 17, 2718–2730. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of Vermicompost Amendment on Nutritional Status of Sandy Loam Soil, Growth Performance, and Yield of Pineapple (Ananas comosus var. MD2) under Field Conditions. Agronomy 2018, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Wuyts, K.; Nuyts, G.; De Wael, K.; Samson, R. Characterization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability. Urban For. Urban Green. 2020, 47. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Zhou, W.; He, X.Y.; Wang, W.J. Urbanization led to a decline in glomalin-soil-carbon sequestration and responsible factors examination in Changchun, Northeastern China. Urban For. Urban Green. 2020, 48. [Google Scholar] [CrossRef]
- Kimm, H.; Ryu, Y. Seasonal variations in photosynthetic parameters and leaf area index in an urban park. Urban For. Urban Green. 2015, 14, 1059–1067. [Google Scholar] [CrossRef]
- Gilman, E.F. Trees for Urban. and Suburban Landscapes; Delmar Publishers: Albany, NY, USA, 1997; pp. 19–104. [Google Scholar]
- Dao, H.T.T. Effects of Organic and Inorganic Fertilizer in Different Application Methods on Growth and Nutrient Responses of Betula Platyphylla, Larix Kaempferi, and Chamaecyparis Obtusa. Master’s Thesis, Chungnam National University, Daejeon, Korea, August 2019. [Google Scholar]
- Sestak, Z.; Catsky, J.; Jarvis, P.G. Plant photosynthetic production. Manual of methods. Q. Rev. Biol. 1971, 47, 235. [Google Scholar]
- Haase, D.L.; Rose, R. Vector Analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. Science 1995, 41, 54–66. [Google Scholar] [CrossRef]
- Timmer, V.R.; Stone, E.L. Comparative foliar analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil. Sci. Soc. Am. J. 1978, 42, 125–130. [Google Scholar] [CrossRef]
- Drewniak, B.A. Simulating dynamic roots in the energy exascale earth system land model. J. Adv. Model Earth Syst. 2019, 11, 338–359. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Liu, B.; Liu, X.W.; Li, X.K.; Ren, T.; Cong, R.H.; Lu, J.W. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). Eur. J. Agron. 2015, 62, 38–45. [Google Scholar] [CrossRef]
- Weligama, C.; Tang, C.; Sale, P.W.G.; Conyers, M.K.; Liu, D.L. Localised nitrate and phosphate application enhances root proliferation by wheat and maximises rhizosphere alkalisation in acid subsoil. Plant. Soil 2008, 312, 101–115. [Google Scholar] [CrossRef]
- Nurhidayati, N.; Machfudz, M.; Murwani, I. Direct and residual effect of various vermicompost on soil nutrient and nutrient uptake dynamics and productivity of four mustard Pak-Coi (Brassica rapa L.) sequences in organic farming system. Int. J. Recycl. Org. Waste Agric. 2018, 7, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Jat, R.S.; Ahlawat, I.P.S. Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. J. Sustain. Agric. 2006, 28, 41–54. [Google Scholar] [CrossRef]
- Comerford, N.B. Soil factors affecting nutrient bioavailability. In Ecological Studies, Nutrient Acquisition by Plants an Ecological Perspective; Bassiri, R.H., Ed.; Springer: Berlin, Germany, 2005; Volume 181, pp. 1–7. [Google Scholar]
- Tang, Z.; Xu, W.; Zhou, G.; Bai, Y.; Li, J.; Tang, X.; Xie, Z. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2018, 115, 4033–4038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnihotri, A.; Seth, C.S. Exogenously applied nitrate improves the photosynthetic performance and nitrogen metabolism in tomato (Solanum lycopersicum L. cv Pusa Rohini) under arsenic (V) toxicity. Physiol. Mol. Biol. Plants 2016, 22, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Azarmi, R.; Giglou, M.T.; Taleshmikail, R.D. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol. 2008, 7, 2397–2401. [Google Scholar]
- Smith, E. Tree growth as influenced by fertilizer treatment. In Tree and Shrub Fertilization; Siewert, A., Rao, B., Marion, D., Eds.; Dixon Graphics Publishing: Champaign, IL, USA, 2003; pp. 79–81. [Google Scholar]
- Ferrini, F.; Giuntoli, A.; Nicese, F.P.; Pellegrini, S.; Vignozzi, N. Effect of fertilization and backfill amendments on soil characteristics, growth and leaf gas exchanges of English oak (Quercus robur L.). J. Arboric. 2005, 31, 182–190. [Google Scholar]
- Rashmi, I.; Biswas, A.; Kartika, K.; Kala, S. Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India. J. Saudi Soc. 2020, 19, 241–248. [Google Scholar] [CrossRef]
Species | Treatment | Relative Height Growth | Relative RCD Growth | ||
---|---|---|---|---|---|
Coefficient (a) | R2 | Coefficient (a) | R2 | ||
Betula platyphylla | CON | 0.53 b | 0.85 | 0.43 c | 0.84 |
VCs | 0.88 ab | 0.82 | 0.76 ab | 0.84 | |
VCc | 1.03 a | 0.81 | 0.81 a | 0.78 | |
VCb | 0.70 ab | 0.82 | 0.52 bc | 0.75 | |
VCm | 0.72 ab | 0.87 | 0.67 abc | 0.82 | |
Larix kaempferi | CON | 0.21 c | 0.91 | 0.59 b | 0.90 |
VCs | 0.56 ab | 0.93 | 1.27 a | 0.89 | |
VCc | 0.73 a | 0.92 | 1.33 a | 0.96 | |
VCb | 0.42 b | 0.79 | 0.88 b | 0.92 | |
VCm | 0.53 ab | 0.93 | 0.88 b | 0.93 | |
Chamaecyparis obtusa | CON | 0.29 b | 0.88 | 0.38 c | 0.77 |
VCs | 0.46 a | 0.93 | 0.62 ab | 0.88 | |
VCc | 0.42 a | 0.88 | 0.72 a | 0.90 | |
VCb | 0.28 b | 0.96 | 0.35 c | 0.62 | |
VCm | 0.37 ab | 0.93 | 0.52 b | 0.85 |
Species | Treatment | N | P | K | |||
---|---|---|---|---|---|---|---|
Betula platyphylla | CON | 1.29 | (0.06) b | 1.75 | (0.80) a | 0.45 | (0.02) a |
VCs | 1.29 | (0.04) b | 1.98 | (0.62) a | 0.53 | (0.05) a | |
VCc | 1.45 | (0.09) b | 1.38 | (0.45) a | 0.41 | (0.06) a | |
VCb | 1.95 | (0.22) a | 2.45 | (0.32) a | 0.53 | (0.06) a | |
VCm | 1.49 | (0.10) b | 1.82 | (0.48) a | 0.43 | (0.06) a | |
Larix kaempferi | CON | 0.93 | (0.07) b | 1.60 | (0.19) a | 0.42 | (0.06) a |
VCs | 1.19 | (0.01) a | 1.89 | (0.46) a | 0.45 | (0.08) a | |
VCc | 1.28 | (0.03) a | 2.34 | (0.20) a | 0.57 | (0.07) a | |
VCb | 1.29 | (0.07) a | 1.65 | (0.30) a | 0.35 | (0.07) a | |
VCm | 1.21 | (0.05) a | 1.76 | (0.36) a | 0.34 | (0.06) a | |
Chamaecyparis obtusa | CON | 1.22 | (0.03) c | 2.45 | (0.32) a | 0.58 | (0.16) a |
VCs | 1.51 | (0.01) a | 2.61 | (0.77) a | 0.42 | (0.16) a | |
VCc | 1.51 | (0.06) a | 2.58 | (0.44) a | 0.55 | (0.11) a | |
VCb | 1.28 | (0.08) bc | 3.15 | (0.63) a | 0.55 | (0.05) a | |
VCm | 1.45 | (0.09) ab | 2.72 | (0.28) a | 0.64 | (0.07) a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, H.T.T.; Seo, J.M.; Hernandez, J.O.; Han, S.H.; Youn, W.B.; An, J.Y.; Park, B.B. Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation. Sustainability 2020, 12, 5822. https://doi.org/10.3390/su12145822
Dao HTT, Seo JM, Hernandez JO, Han SH, Youn WB, An JY, Park BB. Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation. Sustainability. 2020; 12(14):5822. https://doi.org/10.3390/su12145822
Chicago/Turabian StyleDao, Huong Thi Thuy, Jeong Min Seo, Jonathan O. Hernandez, Si Ho Han, Woo Bin Youn, Ji Young An, and Byung Bae Park. 2020. "Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation" Sustainability 12, no. 14: 5822. https://doi.org/10.3390/su12145822
APA StyleDao, H. T. T., Seo, J. M., Hernandez, J. O., Han, S. H., Youn, W. B., An, J. Y., & Park, B. B. (2020). Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation. Sustainability, 12(14), 5822. https://doi.org/10.3390/su12145822