Analysis of Potential Shift to Low-Carbon Urban Travel Modes: A Computational Framework Based on High-Resolution Smartphone Data
Abstract
:1. Introduction
2. Computational Framework
2.1. Data Collection and Filtering of Trip Ddata
2.2. Computing Alternative Trips
2.3. Quantifying Trip Attributes
2.4. Changes in Travel Time and Its Relation to Emission Reduction and Physically Active Distance
2.5. Weather Context and Its Influence on Physically Active Travel
3. Case Study Data
4. Case Study Results
4.1. Summative Potential Changes with Lower-Carbon Alternatives
4.2. Potential Travel Time Changes, Emission Reduction, and Physically Active Travel Distance
4.3. Influence of Travel Time Threshold Variance
4.4. Alternatives in Relation to the Weather Context
5. Discussion and Conclusions
5.1. Highlights of Case Study Findings on the Potential for Modal Shift
5.2. Usefulness of Understanding Modal Shift Potential
5.3. Challenges and Potentials for Data Collection and Public Engagement using Smartphone Apps
5.4. Accuracy and Noise in Sampling and Computation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Cellina, F.; Bucher, D.; Mangili, F.; Simão, J.V.; Rudel, R.; Raubal, M. A large scale, app-based behaviour change experiment persuading sustainable mobility patterns: Methods, results and lessons learnt. Sustainability 2019, 11, 2674. [Google Scholar] [CrossRef] [Green Version]
- Shannon, T.; Giles-Corti, B.; Pikora, T.; Bulsara, M.; Shilton, T.; Bull, F. Active commuting in a university setting: Assessing commuting habits and potential for modal change. Transp. Policy 2006, 13, 240–253. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.; Kim, S.; Fujii, S. How to promote sustainable public bike system from a psychological perspective? Int. J. Sustain. Transp. 2017, 11, 272–281. [Google Scholar] [CrossRef]
- Mokhtarian, P.L.; Chen, C. TTB or not TTB, that is the question: A review and analysis of the empirical literature on travel time (and money) budgets. Transp. Res. Part A Policy and Prac. 2004, 38, 643–675. [Google Scholar] [CrossRef] [Green Version]
- Stopher, P.R.; Ahmed, A.; Liu, W. Travel time budgets: New evidence from multi-year, multi-day data. Transportation 2017, 44, 1069–1082. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, H.; Zhu, H.; Zhu, J. Analysis of Travel Mode Choice Behavior Considering the Indifference Threshold. Sustainability 2019, 11, 5495. [Google Scholar] [CrossRef] [Green Version]
- Weckström, C.; Kujala, R.; Mladenović, M.N.; Saramäki, J. Assessment of large-scale transitions in public transport networks using open timetable data: Case of Helsinki metro extension. J. Transp. Geogr. 2019, 79. [Google Scholar] [CrossRef]
- Haglund, N.; Mladenovic, M.N.; Kujala, R.; Weckstrom, C.; Saramaki, J. Where did Kutsuplus drive us? Ex post evaluation of on-demand micro- transit pilot in the Helsinki capital region. Res. Transp. Bus. Manag. 2019, 32, 100390. [Google Scholar] [CrossRef]
- Weckström, C.; MladenoviĆ, M.N.; Ullah, W.; Nelson, J.D.; Givoni, M.; Bussman, S. User perspectives on emerging mobility services: Ex post analysis of Kutsuplus pilot. Res. Transp. Bus. Manag. 2018, 27, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Pangbourne, K.; MladenoviĆ, M.N.; Stead, D.; Stead, D. Questioning mobility as a service: Unanticipated implications for society and governance. Transp. Res. Part A Policy Pract. 2019, 131, 35–49. [Google Scholar] [CrossRef]
- Glavić, D.; Mladenovic, M.; Luttinen, T.; Cicevic, S.; Trifunovic, A.; Milos, M. Road to price: User perspectives on road pricing in transition country. Transp. Res. Part A Policy Pract. 2017, 105, 79–94. [Google Scholar] [CrossRef]
- Gardner, B.; Abraham, C. What drives car use? A grounded theory analysis of commuters’ reasons for driving. Transp. Res. Part F Traffic Psychol. Behav. 2007, 10, 187–200. [Google Scholar] [CrossRef]
- Mitra, R.; Ziemba, R.A.; Hess, P.M. Mode substitution effect of urban cycle tracks: Case study of a downtown street in Toronto, Canada. Int. J. Sustain. Transp. 2016, 11, 248–256. [Google Scholar] [CrossRef]
- De Witte, A.; Hollevoet, J.; Dobruszkes, F.; Hubert, M.; Macharis, C. Linking modal choice to motility: A comprehensive review. Transp. Res. Part A Policy Pract. 2013, 49, 329–341. [Google Scholar] [CrossRef]
- Grotenhuis, J.-W.; Wiegmans, B.W.; Rietveld, P. The desired quality of integrated multimodal travel information in public transport: Customer needs for time and effort savings. Transp. Policy 2007, 14, 27–38. [Google Scholar] [CrossRef]
- Monzon, A.; Vega, L.A. How to measure the potential of transferring trips from car to public transport and soft modes—The case of Madrid. In Proceedings of the European Transport Conference, Strasbourg, France, 18–20 September 2006. [Google Scholar]
- Monzón, A.; Vega, L.A.; López-Lambas, M.E. Potential to attract drivers out of their cars in dense urban areas. Eur. Transp. Res. Rev. 2011, 3, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Beirão, G.; Cabral, J.A.S. Understanding attitudes towards public transport and private car: A qualitative study. Transp. Policy 2007, 14, 478–489. [Google Scholar] [CrossRef]
- Sharples, R. Travel competence: Empowering travellers. Transp. Res. Part F Traffic Psychol. Behav. 2017, 44, 63–75. [Google Scholar] [CrossRef]
- Van Exel, J.; Rietveld, P. Could you also have made this trip by another mode? An investigation of perceived travel possibilities of car and train travellers on the main travel corridors to the city of Amsterdam, The Netherlands. Transp. Res. Part A Policy Pract. 2009, 43, 374–385. [Google Scholar] [CrossRef]
- Stopher, P.R.; Greaves, S.P. Household travel surveys: Where are we going? Transp. Res. Part A Policy Pract. 2007, 41, 367–381. [Google Scholar] [CrossRef]
- Bricka, S.; Zmud, J.; Wolf, J.; Freedman, J. Household travel surveys with GPS: An experiment. Transp. Res. Rec. 2009, 2105, 51–56. [Google Scholar] [CrossRef]
- Patterson, Z.; Fitzsimmons, K. DataMobile: Smartphone Travel Survey Experiment. Transp. Res. Rec. 2016, 2594, 35–43. [Google Scholar] [CrossRef]
- Murakami, E.; Wagner, D. Can using global positioning system (GPS) improve trip reporting? Transp. Res. Part C Emerg. Technol. 1999, 7, 149–165. [Google Scholar] [CrossRef]
- Wolf, J.; Oliveira, M.; Thompson, M. Impact of Underreporting on Mileage and Travel Time Estimates: Results from Global Positioning System-Enhanced Household Travel Survey. Transp. Res. Rec. J. Transp. Res. Board 2003, 1854, 189–198. [Google Scholar] [CrossRef]
- Clifton, K.J.; Muhs, C. Capturing and Representing Multimodal Trips in Travel Surveys. Transp. Res. Rec. J. Transp. Res. Board 2012, 2285, 74–83. [Google Scholar] [CrossRef]
- Wolf, J.; Guensler, R.; Bachman, W. Elimination of the Travel Diary: Experiment to Derive Trip Purpose from Global Positioning System Travel Data. Transp. Res. Rec. J. Transp. Res. Board 2001, 1768, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Gonder, J.; Lin, L. Prediction of Individual Social-Demographic Role Based on Travel Behavior Variability Using Long-Term GPS Data. J. Adv. Transp. 2017, 2017, 7290248. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wan, X.; Ding, F.; Li, Q.; McCarthy, C.; Cheng, Y.; Ran, B. Data-Driven Prediction System of Dynamic People-Flow in Large Urban Network Using Cellular Probe Data. J. Adv. Transp. 2019, 2019, 9401630. [Google Scholar] [CrossRef] [Green Version]
- Asakura, Y.; Hato, E. Tracking survey for individual travel behaviour using mobile communication instruments. Transp. Res. Part C Emerg. Technol. 2004, 12, 273–291. [Google Scholar] [CrossRef]
- Jiang, S.; Fiore, G.A.; Yang, Y.; Ferreira, J.; Frazzoli, E.; González, M.C. A review of urban computing for mobile phone traces: Current methods, challenges and opportunities. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013. [Google Scholar] [CrossRef] [Green Version]
- Abdulazim, T.; AbdelGawad, H.; Habib, K.N.; Abdulhai, B. Using Smartphones and Sensor Technologies to Automate Collection of Travel Data. Transp. Res. Rec. 2013, 2383, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.; Dumont, J.; Greene, E.; Ehrlich, J. Use of a Smartphone GPS Application for Recurrent Travel Behavior Data Collection. Transp. Res. Rec. 2019, 2673, 89–98. [Google Scholar] [CrossRef]
- Cottrill, C.D.; Pereira, F.C.; Zhao, F.; Dias, I.F.; Lim, H.B.; Ben-Akiva, M.E.; Zegras, P.C. Future Mobility Survey: Experience in Developing a Smartphone-Based Travel Survey in Singapore. Transp. Res. Rec. J. Transp. Res. Board 2013, 2354, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Vlassenroot, S.; Gillis, D.; Bellens, R.; Gautama, S. The Use of Smartphone Applications in the Collection of Travel Behaviour Data. Int. J. Intell. Transp. Syst. Res. 2015, 13, 17–27. [Google Scholar] [CrossRef]
- Prelipcean, A.C.; Gidófalvi, G.; Susilo, Y. MEILI: A travel diary collection, annotation and automation system. Comput. Environ. Urban Syst. 2018, 70, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Safi, H.; Assemi, B.; Mesbah, M.; Ferreira, L.; Hickman, M.; Information, R. Design and Implementation of a Smartphone-Based Travel Survey. Transp. Res. Rec. J. Transp. Res. Board 2015, 2526, 99–107. [Google Scholar] [CrossRef]
- Nitsche, P.; Widhalm, P.; Breuss, S.; Brändle, N.; Maurer, P. Supporting large-scale travel surveys with smartphones—A practical approach. Transp. Res. Part C Emerg. Technol. 2014, 43, 212–221. [Google Scholar] [CrossRef]
- Gadzinski, J. Perspectives of the use of smartphones in travel behaviour studies: Findings from a literature review and a pilot study. Transp. Res. Part C Emerg. Technol. 2018, 88, 74–86. [Google Scholar] [CrossRef]
- Wang, Z.; He, S.Y.; Leung, Y. Applying mobile phone data to travel behaviour research: A literature review. Travel Behav. Soc. 2017, 11, 141–155. [Google Scholar] [CrossRef]
- Chu, H.; Raman, V.; Shen, J.; Kansal, A.; Bahl, V.; Choudhury, R.R.; Raman, V.; Shen, J.; Kansal, A. I am a smartphone and I know my user is driving. In Proceedings of the 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 6–10 January 2014; pp. 1–8. [Google Scholar]
- Bierlaire, M.; Chen, J.; Newman, J. A probabilistic map matching method for smartphone GPS data. Transp. Res. Part C Emerg. Technol. 2013, 26, 78–98. [Google Scholar] [CrossRef]
- Liebner, M.; Klanner, F.; Stiller, C. Active safety for vulnerable road users based on smartphone position data. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Austrslia, 23–26 June 2013; pp. 256–261. [Google Scholar]
- Rinne, M.; Bagheri, M.; Tolvanen, T.; Hollmén, J.; Guidotti, R.; Monreale, A.; Pedreschi, D.; Abiteboul, S. Automatic Recognition of Public Transport Trips from Mobile Device Sensor Data and Transport Infrastructure Information. In Proceedings of the International Workshop on Personal Analytics and Privacy (PAP 2017); Springer International Publishing AG: Cham, Switzerland, 2017; Volume 10708 LNCS, pp. 76–97. [Google Scholar]
- Servizi, V.; Pereira, F.C.; Anderson, M.K.; Nielsen, O.A. Mining User Behaviour from Smartphone Data, a Literature Review. arXiv 2019, arXiv:1912.11259. [Google Scholar]
- Jiang, S.; Ferreira, J.; González, M.C. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Trans. Big Data 2017, 3, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Aultman-Hall, L. Increasing the accuracy of trip rate information from passive multi-day GPS travel datasets: Automatic trip end identification issues. Transp. Res. Part A Policy Pract. 2007, 41, 220–232. [Google Scholar] [CrossRef]
- Hemminki, S.; Nurmi, P.; Tarkoma, S. Accelerometer-based transportation mode detection on smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems—SenSys ’13; ACM Press: New York, NY, USA, 2013; pp. 1–14. [Google Scholar]
- Shin, D.; Aliaga, D.; Tuncer, B.; Arisona, S.M.; Kim, S.; Zünd, D.; Schmitt, G. Urban sensing: Using smartphones for transportation mode classification. Comput. Environ. Urban Syst. 2015, 53, 76–86. [Google Scholar] [CrossRef]
- Patterson, Z.; Fitzsimmons, K.; Jackson, S.; Mukai, T. Itinerum: The open smartphone travel survey platform. SoftwareX 2019, 10, 100230. [Google Scholar] [CrossRef]
- Yazdizadeh, A.; Patterson, Z.; Farooq, B. An automated approach from GPS traces to complete trip information. Int. J. Transp. Sci. Technol. 2019, 8, 82–100. [Google Scholar] [CrossRef]
- Shankari, K.; Bouzaghrane, M.A.; Maurer, S.M.; Waddell, P.; Culler, D.E.; Katz, R.H. e-mission: An Open-Source, Smartphone Platform for Collecting Human Travel Data. Transp. Res. Rec. 2018, 2672, 1–12. [Google Scholar] [CrossRef]
- Harrison, G.; Grant-Muller, S.M.; Hodgson, F.C. New and emerging data forms in transportation planning and policy: Opportunities and challenges for “Track and Trace” data. Transp. Res. Part C Emerg. Technol. 2020, 10, 2672. [Google Scholar] [CrossRef]
- Bagheri, M.; MladenoviĆ, M.N.; Kosonen, I.; Nurminen, J.K.; Roncoli, C.; Ylä-Jääski, A. A Computational Framework for Revealing Competitive Travel Times with Low-Carbon Modes Based on Smartphone Data Collection. J. Adv. Transp. 2020, 2020, 4693750. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Pereira, F.C.; Ball, R.; Kim, Y.; Han, Y.; Zegras, C.; Ben-Akiva, M.; Information, R. Exploratory Analysis of a Smartphone-Based Travel Survey in Singapore. Transp. Res. Rec. 2015, 2494, 45–56. [Google Scholar] [CrossRef]
- Ye, N.; Gao, L.; Juan, Z.; Ni, A. Are People from Households with Children More Likely to Travel by Car? An Empirical Investigation of Individual Travel Mode Choices in Shanghai, China. Sustainability 2018, 10, 4573. [Google Scholar] [CrossRef] [Green Version]
- Morency, C.; Verreault, H.; Frappier, A. Estimating latent cycling and walking trips in Montreal. In Proceedings of the TRB 2017 Annual Meeting, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Godefroy, F.; Morency, C. Estimating Latent Cycling Trips in Montreal, Canada. Transp. Res. Rec. J. Transp. Res. Board 2012, 2314, 120–128. [Google Scholar] [CrossRef]
- Greaves, S.P.; Ellison, A.; Ellison, R.; Rance, D.; Standen, C.; Rissel, C.; Crane, M.; Standen, C. A Web-Based Diary and Companion Smartphone app for Travel/Activity Surveys. Transp. Res. Procedia 2015, 11, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, D.; Tight, M.R.; Rogers, C.D.F. Exploring the distances people walk to access public transport. Transp. Rev. 2019, 40, 160–182. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, M.; Zhao, Y.; Zhang, B. Trade-off between environmental benefits and time costs for public bicycles: An empirical analysis using streaming data in China. Sci. Total. Environ. 2020, 715, 136847. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Anowar, S.; Miller, E.J.; Eluru, N. Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City. Transp. Res. Part A Policy Pract. 2017, 101, 11–21. [Google Scholar] [CrossRef]
- Google Fused Location Provider API. Available online: developers.google.com/location-context/fused-location-provider (accessed on 1 February 2020).
- Google Activity Recognition API. Available online: developers.google.com/location-context/activity-recognition (accessed on 1 February 2020).
- Safi, H.; Assemi, B.; Mesbah, M.; Ferreira, L. Trip detection with smartphone-assisted collection of travel data. Transp. Res. Rec. 2016, 2594, 18–26. [Google Scholar] [CrossRef]
- OpenTripPlanner. Available online: www.opentripplanner.org (accessed on 1 February 2020).
- Reittiopas (Trip Planner for Finland). Available online: https://www.reittiopas.fi/ (accessed on 1 February 2020).
- Digitransit Platform Routing API. Available online: www.digitransit.fi/en/developers/apis/1-routing-api/ (accessed on 1 February 2020).
- Tiwary, A.; Colls, J. Air Pollution: Measurement, modelling and mitigation, 3rd ed.; Routledge: New York, NY, USA, 2010; ISBN 0203871960. [Google Scholar]
- LIPASTO—Unit Emissions (Database of Transport Emissions in Finland). Available online: lipasto.vtt.fi/yksikkopaastot/indexe.htm (accessed on 1 June 2020).
- The Finnish Meteorological Institute’s Open Data. Available online: en.ilmatieteenlaitos.fi/open-data (accessed on 1 June 2020).
- Time Use Survey—Time Use (132 Categories) by Sex in 1999–2000 and 2009–2010. Available online: pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/StatFin__eli__akay/statfin_akay_pxt_007.px/ (accessed on 1 June 2020).
- Schönfelder, S.; Axhausen, K.W. Urban Rhythms and Travel Behaviour: Spatial and Temporal Phenomena of Daily Travel, 1st ed.; Ashgate Publishing, Ltd.: Burlington, VT, USA, 2010; ISBN 9780754675150. [Google Scholar]
- Heinen, E.; van Wee, B.; Maat, K. Commuting by Bicycle: An Overview of the Literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Campbell, A.A.; Cherry, C.; Ryerson, M.S.; Yang, X. Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transp. Res. Part C Emerg. Technol. 2016, 67, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Jariyasunant, J.; Abou-Zeid, M.; Carrel, A.; Ekambaram, V.; Gaker, D.; Sengupta, R.; Walker, J.L. Quantified Traveler: Travel Feedback Meets the Cloud to Change Behavior. J. Intell. Transp. Syst. 2014, 19, 109–124. [Google Scholar] [CrossRef]
- Sunio, V.; Schmöcker, J.-D. Can we promote sustainable travel behavior through mobile apps? Evaluation and review of evidence. Int. J. Sustain. Transp. 2017, 11, 553–566. [Google Scholar] [CrossRef]
- Kujala, R.; Weckström, C.; Darst, R.K.; MladenoviĆ, M.N.; Saramäki, J. A collection of public transport network data sets for 25 cities. Sci. Data 2018, 5, 180089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahabi, S.A.H.; Ajzachi, A.; Patterson, Z. Transit Trip Itinerary Inference with GTFS and Smartphone Data. Transp. Res. Rec. 2017, 2652, 59–69. [Google Scholar] [CrossRef]
- OpenTripPlanner Routing Bibliography. Available online: docs.opentripplanner.org/en/latest/Bibliography (accessed on 1 June 2020).
- Delling, D.; Wagner, D. Time-Dependent Route Planning. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), San Jose, CA, USA, 13–17 February 2005. [Google Scholar]
- Mandow, L.; De La Cruz, J.P. Multiobjective A * search with consistent heuristics. J. ACM 2010, 57, 1–25. [Google Scholar] [CrossRef]
- Tung, C.T.; Chew, K.L. A multicriteria Pareto-optimal path algorithm. Eur. J. Oper. Res. 1992, 62, 203–209. [Google Scholar] [CrossRef]
Component | Parameters |
---|---|
Summative potential changes with lower-carbon alternatives |
|
Potential travel time changes, emission reduction, and physically active travel distance |
|
Influence of travel time threshold variance |
|
Alternatives in relation to the weather context |
|
Observed Trip | Total Duration | Total Distance (km) | Duration Traveled by Each Mode | Distance Traveled by Each Mode (km) |
Walk→Car→Walk | 00:43:43 | 19.9 | Car: 00:41:03 Walk: 00:02:40 | Car: 19.78 Walk: 0.12 |
Computed Alternative Trip | Total Duration | Total Distance (km) | Duration Traveled by Each Mode | Distance Traveled by Each Mode (km) |
Walk→Bus→Walk→Train→Walk | 00:45:28 | 18.5 | Bus: 00:11:00 Train: 00:19:00 Walk: 00:15:28 | Bus: 2.9 Train: 14.9 Walk: 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagheri, M.; Mladenović, M.N.; Kosonen, I.; Nurminen, J.K. Analysis of Potential Shift to Low-Carbon Urban Travel Modes: A Computational Framework Based on High-Resolution Smartphone Data. Sustainability 2020, 12, 5901. https://doi.org/10.3390/su12155901
Bagheri M, Mladenović MN, Kosonen I, Nurminen JK. Analysis of Potential Shift to Low-Carbon Urban Travel Modes: A Computational Framework Based on High-Resolution Smartphone Data. Sustainability. 2020; 12(15):5901. https://doi.org/10.3390/su12155901
Chicago/Turabian StyleBagheri, Mehrdad, Miloš N. Mladenović, Iisakki Kosonen, and Jukka K. Nurminen. 2020. "Analysis of Potential Shift to Low-Carbon Urban Travel Modes: A Computational Framework Based on High-Resolution Smartphone Data" Sustainability 12, no. 15: 5901. https://doi.org/10.3390/su12155901
APA StyleBagheri, M., Mladenović, M. N., Kosonen, I., & Nurminen, J. K. (2020). Analysis of Potential Shift to Low-Carbon Urban Travel Modes: A Computational Framework Based on High-Resolution Smartphone Data. Sustainability, 12(15), 5901. https://doi.org/10.3390/su12155901