Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
3. Results
3.1. Distribution of UHI and Water Pollution
3.2. Spatial Matching
4. Discussion
4.1. Compatibility of NBS Strategies
4.2. Settlement Structures and Urban Challenges
4.3. Suitability of NBS Measures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. The World’s Cities in 2018: Data Booklet; Statistical Papers–United Nations (Ser. A), Population and Vital Statistics Report; UN: New York, NY, USA, 2018; ISBN 978-92-1-047610-2. [Google Scholar]
- Bazaz, A.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; de Coninck, H.; Engelbrecht, F.; Jacob, D.; Hourcade, J.-C.; Klaus, I.; de Kleijne, K.; et al. Summary for Urban Policymakers–What the IPCC Special Report on 1.5C Means for Cities; Indian Institute for Human Settlements. 2018. Available online: http://iihs.co.in/knowledge-gateway/summary-for-urban-policymakers-what-the-ipcc-special-report-on-1-5c-means-for-cities-2/ (accessed on 25 May 2020).
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 25 May 2020).
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ’Nature-Based Solutions and Re-Naturing Cities’: (Full Version); Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-46051-7. [Google Scholar]
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Viavattene, C.; Ellis, J.B. The management of urban surface water flood risks: SUDS performance in flood reduction from extreme events. Water Sci. Technol. 2012, 67, 99. [Google Scholar] [CrossRef] [PubMed]
- Riechel, M.; Matzinger, A.; Pawlowsky-Reusing, E.; Sonnenberg, H.; Uldack, M.; Heinzmann, B.; Caradot, N.; von Seggern, D.; Rouault, P. Impacts of combined sewer overflows on a large urban river–Understanding the effect of different management strategies. Water Res. 2016, 105, 264–273. [Google Scholar] [CrossRef]
- Leimgruber, J.; Krebs, G.; Camhy, D.; Muschalla, D. Model-Based Selection of Cost-Effective Low Impact Development Strategies to Control Water Balance. Sustainability 2019, 11, 2440. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Bonn, A.; Korn, H.; Stadler, J. Nature-Based Solutions to Climate Change Adaptation in Urban Areas Linkages between Science, Policy and Practice; Springer Nature: Cham, Switzerland, 2017; ISBN 978-3-319-56091-5. [Google Scholar]
- Gopalakrishnan, V.; Ziv, G.; Hirabayashi, S.; Bakshi, B.R. Nature-Based Solutions Can Compete with Technology for Mitigating Air Emissions Across the United States. Environ. Sci. Technol. 2019, 53, 13228–13237. [Google Scholar] [CrossRef]
- Colléony, A.; Shwartz, A. Beyond Assuming Co-Benefits in Nature-Based Solutions: A Human-Centered Approach to Optimize Social and Ecological Outcomes for Advancing Sustainable Urban Planning. Sustainability 2019, 11, 4924. [Google Scholar] [CrossRef] [Green Version]
- Panno, A.; Carrus, G.; Lafortezza, R.; Mariani, L.; Sanesi, G. Nature-based solutions to promote human resilience and wellbeing in cities during increasingly hot summers. Environ. Res. 2017, 159, 249–256. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A review of green infrastructure research in Europe: Challenges and opportunities. Landscape Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Parker, J.; de Baro, M.E.Z. Green Infrastructure in the Urban Environment: A Systematic Quantitative Review. Sustainability 2019, 11, 3182. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Kuller, M.; Bach, P.M.; Ramirez-Lovering, D.; Deletic, A. Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice. Environ. Modell. Softw. 2017, 96, 265–282. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sweetapple, C.; Fu, G.; Farmani, R.; Butler, D. A framework to support decision making in the selection of sustainable drainage system design alternatives. J. Environ. Manag. 2017, 201, 145–152. [Google Scholar] [CrossRef]
- Morales-Torres, A.; Escuder-Bueno, I.; Andrés-Doménech, I.; Perales-Momparler, S. Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Environ. Model. Softw. 2016, 84, 518–528. [Google Scholar] [CrossRef]
- Radinja, M.; Comas, J.; Corominas, L.; Atanasova, N. Assessing stormwater control measures using modelling and a multi-criteria approach. J. Environ. Manag. 2019, 243, 257–268. [Google Scholar] [CrossRef]
- Keeley, M.; Koburger, A.; Dolowitz, D.P.; Medearis, D.; Nickel, D.; Shuster, W. Perspectives on the Use of Green Infrastructure for Stormwater Management in Cleveland and Milwaukee. J. Environ. Manag. 2013, 51, 1093–1108. [Google Scholar] [CrossRef]
- Alexandre, K. When it rains: Stormwater management, redevelopment, and chronologies of infrastructure. Geoforum 2018, 97, 66–72. [Google Scholar] [CrossRef]
- Fryd, O.; Jensen, M.B.; Ingvertsen, S.T.; Jeppesen, J.; Magid, J. Doing the first loop of planning for sustainable urban drainage system retrofits: A case study from Odense, Denmark. Urban Water J. 2010, 7, 367–378. [Google Scholar] [CrossRef]
- Papakos, T.H.; Gould, M.; Brunner, J. Redeveloping Brownfields with LID Design. In Proceedings of the Low Impact Development 2010: Redefining Water in the City; American Society of Civil Engineers: San Francisco, CA, USA, 2010; pp. 1684–1697. [Google Scholar]
- Kim, G. An integrated system of urban green infrastructure on different types of vacant land to provide multiple benefits for local communities. Sustain. Cities Soc. 2018, 36, 116–130. [Google Scholar] [CrossRef]
- Shapiro, N.; Valentine, B. Green Street Retrofit in an Urban Trasportation Infrastructure. In Proceedings of the 2010 Green Streets and Highways Conference, Denver, CO, USA, 14–17 November 2010; American Society of Civil Engineers: Denver, CO, USA, 2011. [Google Scholar]
- SenStadtUm Stadtentwicklungsplan Klima. KONKRET. Klimaanpassung in der Wachsenden Stadt (Urban Development Plan Climate. KONKRET. Climate Change Adaptation in a Growing City); Senatsverwaltung für Stadtentwicklung und Umwelt: Berlin, Germany, 2016. (In German) [Google Scholar]
- MA22 Urban Heat Islands. Strategieplan Wien (Strategy plan Vienna) In German; Magistrat der Stadt Wien, Wiener Umweltschutzabteilung–Magistratsabteilung 22. 2015. Available online: https://www.wien.gv.at/umweltschutz/raum/uhi-strategieplan.html (accessed on 25 May 2020).
- U.S. EPA Heat Island Reduction Activities. In Reducing Urban Heat Islands: Compendium of Strategies. Draft; 2008. Available online: https://www.epa.gov/heatislands/heat-island-compendium (accessed on 25 May 2020).
- Oke, T.R. Boundary Layer Climates, 2nd reprinted ed.; Routledge: London, UK, 2009; ISBN 978-0-415-04319-9. [Google Scholar]
- Fenner, D.; Meier, F.; Scherer, D.; Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Clim. 2014, 10, 308–331. [Google Scholar] [CrossRef]
- Stadtentwicklungsplan Klima: Urbane Lebensqualität im Klimawandel Sichern (Urban Development Plan Climate: Securing Urban Quality of Life in the Context of Climate Change); Brandl, H. (Ed.) Senatsverwaltung für Stadtentwicklung, Kommunikation: Berlin, Germany, 2011; ISBN 978-3-88961-322-6. (In German) [Google Scholar]
- Wicke, D.; Matzinger, A.; Rouault, P. Relevanz organischer Spurenstoffe im Regenwasserabfluss Berlins–Abschlussbericht (Relevance of Trace Organic Substances in Berlin’s Stomwater Runoff–Final Report) In German. 2015. Available online: https://www.kompetenz-wasser.de/wp-content/uploads/2017/11/abschlussbericht_ogre_final_rev2.pdf (accessed on 25 May 2020).
- Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz Ergänzender Länderbericht Berlins zum Entwurf des Bewirtschaftungsplans für den deutschen Teil der Flussgebietseinheit Elbe–Dokumentation der Umsetzung der EG-Wasserrahmenrichtlinie in Berlin (Supplementary country report of Berlin on the draft management plan for the German part of the Elbe river basin district–documentation of the implementation of the EC Water Framework Directive in Berlin); Senatsverwaltung für Gesundheit, Pflege und Gleichstellung: Berlin, Germany, 2009. (In German)
- Senate Department for Urban Development and Housing 04.11 Climate Model Berlin—Planning Advices Urban Climate (Edition 2016). Available online: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edin_411.htm (accessed on 24 February 2020).
- Groß, G. Numerical Simulation of Canopy Flows; Springer: Berlin, Germany, 1993. [Google Scholar]
- VDI. VDI 3787 Part 1–Environmental Meteorology Climate and Air Pollution Maps for Cities and Regions; Verein Deutscher Ingenieure: Düsseldorf, Germany, 2015. Available online: https://standards.globalspec.com/std/1126312/VDI%203787%20BLATT%202 (accessed on 5 June 2020).
- Senate Department for Urban Development and Housing 04.10 Climate Model Berlin–Analysis Maps (Edition 2016). Available online: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edb410_06_zusatz.htm#A9 (accessed on 24 February 2020).
- Wicke, D.; Matzinger, A.; Sonnenberg, H.; Caradot, N.; Schubert, R.-L.; Rouault, P.; Heinzmann, B.; Dünnbier, U.; von Seggern, D. Spurenstoffe im Regenwasserabfluss Berlins (Trace substances in Berlin’s stormwater runoff) In German. KA Korrespondenz Abwasser Abfall 2017, 5, 394–404. [Google Scholar]
- Glugla, G.; Goedecke, M.; Wessolek, G.; Gürtig, G. Langjährige Abflussbildung und Wasserhaushalt im urbanen Gebiet Berlin (Long-term runoff formation and water balance in the urban area of Berlin). Wasserwirtschaft 1999, 89, 34–42. (In German) [Google Scholar]
- Matzinger, A.; Wicke, D.; Schubert, R.-L.; Quilitzki, J.; Caradot, N.; Heinzmann, B.; Dünnbier, U.; von Seggern, D.; Rouault, P. Micropollutants in stormwater runoff–Load estimation at city scale. In Proceedings of the 17th IWA Conference on Diffuse Pollution (DIPCON), Berlin, Germany, 13–18 September 2015; p. 5. [Google Scholar]
- Wicke, D.; Matzinger, A.; Sonnenberg, H.; Schubert, R.-L.; Caradot, N.; Heinzmann, B.; von Seggern, D.; Rouault, P. Micropollutants in stormwater runoff–citywide loads and comparison with sewage inputs. In Proceedings of the 10th IWA Micropol and Ecohazard Conference, Vienna, Austria, 17–20 September 2017. [Google Scholar]
- Simperler, L.; Himmelbauer, P.; Ertl, T.; Stoeglehner, G. Prioritization of stormwater management sites in urban areas. J. Environ. Manag. 2020, 265, 110507. [Google Scholar] [CrossRef]
- Simperler, L.; Himmelbauer, P.; Stöglehner, G.; Ertl, T. Siedlungswasserwirtschaftliche Strukturtypen und ihre Potenziale für die dezentrale Bewirtschaftung von Niederschlagswasser (Urban structures and their potential for decentralized stormwater management). Österr. Wasser. Abfallwirtsch. 2018, 595–603. (In German) [Google Scholar] [CrossRef] [Green Version]
- Riechel, M.; Remy, C.; Matzinger, A.; Schwarzmüller, H.; Rouault, P.; Schmidt, M.; Offermann, M.; Strehl, C.; Nickel, D.; Sieker, H.; et al. Maßnahmensteckbriefe der Regenwasserbewirtschaftung–Ergebnisse des Projektes KURAS (Description of Measures for Stormwater Management–Results of the KURAS Project) In German; Berlin, Germany. 2017. Available online: http://kuras-projekt.de/fileadmin/Dokumenten_Verwaltung/pdf/KURAS_M_Katalog_20161209_lower.pdf (accessed on 24 February 2020).
- Matzinger, A.; Riechel, M.; Schmidt, M.; Corral, C.; Hein, A.; Offermann, M.; Strehl, C.; Nickel, D.; Sieker, H.; Pallasch, M.; et al. Quantification of multiple benefits and cost of stormwater management. In Proceedings of the Novatech, Lyon, France, 28 June–1 July 2016; GRAIE: Lyon, France, 2016. [Google Scholar]
- Hensen, B.; Lange, J.; Jackisch, N.; Zieger, F.; Olsson, O.; Kümmerer, K. Entry of biocides and their transformation products into groundwater via urban stormwater infiltration systems. Water Res. 2018, 144, 413–423. [Google Scholar] [CrossRef]
- Tedoldi, D.; Chebbo, G.; Pierlot, D.; Branchu, P.; Kovacs, Y.; Gromaire, M.-C. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices–Inter-site comparison. Sci. Total Environ. 2017, 579, 881–892. [Google Scholar] [CrossRef]
- Karlsson, K.; Viklander, M.; Scholes, L.; Revitt, M. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J. Hazard. Mater. 2010, 178, 612–618. [Google Scholar] [CrossRef]
- Meera, V.; Ahammed, M.M. Water quality of rooftop rainwater harvesting systems: A review. J. Water Supply Res. Technol. 2006, 55, 257–268. [Google Scholar] [CrossRef]
- Trapp, J.H.; Nenz, D.; Rouault, P.; Matzinger, A.; Gunkel, M.; Reichmann, B. Planungsprozesse in der wassersensiblen und klimagerechten Stadt–blau-grün-grau gekoppelte Infrastrukturen in der Planungspraxis am Beispiel Berlin (Planning processes in the water-sensitive and climate-friendly city–blue-green-grey coupled infrastructures in planning practice using Berlin as an example). KA Korrespondenz Abwasser Abfall 2019, 66, 929–934. (In German) [Google Scholar]
Considered Parameter | Number of Areas |
---|---|
4 Parameters | |
PAH, Terbutryn, TSS, Zinc | 250 |
3 Parameters | |
PAH, Terbutryn, TSS | 250 |
PAH, Terbutryn, Zinc | 1757 |
PAH, TSS, Zinc | 250 |
Terbutryn, TSS, Zinc | 250 |
2 Parameters | |
PAH, Terbutryn | 1769 |
PAH, TSS | 508 |
PAH, Zinc | 1890 |
Terbutryn, TSS | 250 |
Terbutryn, Zinc | 1757 |
TSS, Zinc | 250 |
1 Parameter | |
PAH | 2191 |
Terbutryn | 1776 |
TSS | 508 |
Zinc | 1962 |
Settlement Structure | Number of Areas | Size of Areas [ha] |
---|---|---|
Areas with low sealing and density | 3 | 6.8 |
Areas with medium sealing and density | 10 | 62.3 |
Areas with multi-story development with medium sealing and high density | 48 | 182.1 |
Multi-story residential areas with a high degree of sealing and density | 1127 | 2375.3 |
Highly sealed, dense and mixed-use development | 651 | 1874.8 |
Public facilities and special areas | 70 | 213.1 |
Office, administration, trade and commerce | 2 | 1.4 |
Business and industry areas | 101 | 655.5 |
Street | 258 | 3668.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simperler, L.; Ertl, T.; Matzinger, A. Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution. Sustainability 2020, 12, 5967. https://doi.org/10.3390/su12155967
Simperler L, Ertl T, Matzinger A. Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution. Sustainability. 2020; 12(15):5967. https://doi.org/10.3390/su12155967
Chicago/Turabian StyleSimperler, Lena, Thomas Ertl, and Andreas Matzinger. 2020. "Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution" Sustainability 12, no. 15: 5967. https://doi.org/10.3390/su12155967
APA StyleSimperler, L., Ertl, T., & Matzinger, A. (2020). Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution. Sustainability, 12(15), 5967. https://doi.org/10.3390/su12155967