Air Transportation Income and Price Elasticities in Remote Areas: The Case of the Brazilian Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Methodology
- c: constant
- ln: the natural logarithm of the variables;
- ωi,j: estimated fixed effect coefficients of cross-sections;
- α, β and ɤ: estimated coefficients in regression model;
- : GDP of the origin city;
- : GDP of the destination city;
- : weighted-average fare of O–D;
- εi,j,t: regression error.
3. Results
3.1. Case Study
3.2. Data
3.3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ICAO | City/County * | State | Number of Cities/Counties |
---|---|---|---|
SBCZ | Cruzeiro do Sul | Acre (AC) | 1 |
SWBC | Barcelos | Amazonas (AM) | 14 |
SWCA | Carauari | ||
SWKO | Coari | ||
SWEI | Eirunepé | ||
SWOB | Fonte Boa | ||
SWHT | Humaitá | ||
SWLB | Lábrea | ||
SBMY | Manicoré | ||
SWPI | Parintins | ||
SWTP | Santa Isabel do Rio Negro | ||
SBUA | São Gabriel da Cachoeira | ||
SDCG | São Paulo de Olivença | ||
SBTT | Tabatinga | ||
SBTF | Tefé | ||
SBMD | Almeirim | Pará (PA) | 13 |
SBHT | Altamira | ||
SBAA | Conceição do Araguaia | ||
SBIH | Itaituba | ||
SBMA | Marabá | ||
SNOX | Oriximiná | ||
SDOW | Ourilândia do Norte | ||
SBCJ | Parauapebas | ||
SNDC | Redenção | ||
SNKE | Santana do Araguaia | ||
SBSN | Santarém | ||
SNFX | São Félix do Xingu | ||
SBTU | Tucuruí | ||
SSKW | Cacoal | Rondônia (RO) | 3 |
SBJI | Ji-Paraná | ||
SBVH | Vilhena | ||
SWGN | Araguaína | Tocantins (TO) | 2 |
SWGI | Gurupi |
References
- Morlotti, C.; Cattaneo, M.; Malighetti, P.; Redondi, R. Multi-dimensional price elasticity for leisure and business destinations in the low-cost air transport market: Evidence from easyJet. Tour. Manag. 2017, 61, 23–34. [Google Scholar] [CrossRef]
- Bijmolt, T.; van Heerde, H.; Pieters, R. New empirical generalizations on the determinants of price elasticity. J. Mark. Res. 2005, 42, 141–156. [Google Scholar] [CrossRef]
- Brons, M.; Pels, E.; Nijkamp, P.; Rietveld, P. Price elasticities of demand for passenger air travel: A meta-analysis. J. Air Transp. Manag. 2002, 8, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Granados, N.; Gupta, A.; Kauffman, R. Online and offline demand and price elasticities: Evidence from the air travel industry. Inf. Syst. Res. 2012, 23, 164–181. [Google Scholar] [CrossRef] [Green Version]
- Granados, N.; Kauffman, R.; Lai, H.; Lin, H. À la carte pricing and price elasticity of demand in air travel. Decis. Support Syst. 2012, 53, 381–394. [Google Scholar] [CrossRef]
- Mumbower, S.; Garrow, L.; HigginsM. Estimating flight-level price elasticities using online airline data: A first step toward integrating pricing, demand, and revenue optimization. Transp. Res. Part A Policy Pract. 2014, 66, 196–212. [Google Scholar] [CrossRef]
- Garda, A.A.; da Silva, J.M.C.; Baião, P.C. Biodiversity conservation and sustainable development in the Amazon. Syst. Biodivers. 2010, 8, 169–175. [Google Scholar] [CrossRef]
- Abate, M. Economic effects of air transport market liberalization in Africa. Transp. Res. Part A Policy Pract. 2016, 92, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Oum, T.; Waters, W.; Yong, J. Concepts of price elasticities of transport demand and recent empirical estimates: An interpretative survey. J. Transp. Econ. Policy 1992, 26, 139–154. [Google Scholar]
- You, K.; Xiong, J.E.F. Airline passenger numbers impact analysis based on the income elasticity. In Proceedings of the International Conference on Computer Engineering, Information Science and Internet Technology (CII 2017), Sanya, China, 11–12 November 2017; pp. 560–565. [Google Scholar]
- Wang, K.; Zhang, A.; Zhang, Y. Key determinants of airline pricing and air travel demand in China and India: Policy, ownership, and LCC competition. Transp. Policy 2018, 63, 80–89. [Google Scholar] [CrossRef]
- Bråthen, S. Air transport services in remote regions. Int. Transp. Forum Discuss. Pap. 2011, 13, 1–23. [Google Scholar]
- Bråthen, S.; Halpern, N. Air transport service provision and management strategies to improve the economic benefits for remote regions. Res. Transp. Bus. Manag. 2012, 4, 3–12. [Google Scholar] [CrossRef]
- Fageda, X.; Suárez-Alemán, A.; Serebrisky, T.; Fioravanti, R. Air transport connectivity of remote regions: The impacts of public policies. Reg. Stud. 2019, 53, 1161–1169. [Google Scholar] [CrossRef]
- Fenley, C.A.; Machado, W.V.; Fernandes, E. Air transport and sustainability: Lessons from Amazonas. Appl. Geogr. 2007, 27, 63–77. [Google Scholar] [CrossRef]
- Twisk, J.W. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Frees, E.W. Longitudinal and Panel Data: Analysis and Applications in the Social Sciences; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Johnston, J. Econometric Methods, 3rd Edition. J. Appl. Econom. 1988, 3, 252–254. [Google Scholar]
- Hsiao, C. Analysis of Panel Data; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Eviews. Eviews 11 User´s Guide II—Instrumental Variables; In: Eviews 11; IHS Global Inc.: London, UK, 2019. [Google Scholar]
- IBGE. Área dos Municípios 2018. Available online: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?t=acesso-ao-produto&c=1 (accessed on 1 June 2020).
- IBGE. Estimativas da População Residente para os Municípios e para as Unidades da Federação com Data de Referência em 1º de Julho de 2019. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101662 (accessed on 1 June 2020).
- CIA. The World Factbook 2020; Central Intelligence Agency: Washington, DC, USA. Available online: https://www.cia.gov/library/publications/resources/the-world-factbook/index.html (accessed on 1 June 2020).
- IBGE. Produto Interno Bruto (PIB) Dos Municípios 2017. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101688 (accessed on 1 June 2020).
- IBGE. Amazônia Legal. Available online: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15819-amazonia-legal.html?=&t=acesso-ao-produto (accessed on 1 June 2020).
- Araújo, R.; Léna, P. Desenvolvimento Sustentável e Sociedades na Amazônia; Museu Paraense Emilio Goeldi: Belém, Pará, Brasil, 2011. [Google Scholar]
- Kauano, E.E.; Silva, J.M.C.; Diniz Filho, J.A.F.; Michalski, F. Do protected areas hamper economic development of the Amazon region? An analysis of the relationship between protected areas and the economic growth of Brazilian Amazon municipalities. Land Use Policy 2020, 92, 1–12. [Google Scholar] [CrossRef]
- Lima, W.T.; Silva, I.O.; Sousa, L.F. Breve Retrospectiva das Estratégias Geopolíticas de Incorporação Territorial da Amazônia Brasileira. RAEGA O Espaço Geográfico em Análise 2012, 24, 18–37. [Google Scholar]
- IBGE. Ligações Rodoviárias e Hidroviárias 2016. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2100617 (accessed on 1 June 2020).
- CNT. Anuário CNT do Transporte: EstatíSticas Consolidadas 2019. Available online: https://anuariodotransporte.cnt.org.br/2019/ (accessed on 1 June 2020).
- SAC—Secretaria de Aviação Civil da Presidência da República, 2014. O Brasil que voa. Available online: http://transportes.gov.br/obrasilquevoa/pdf/Relatorio_Executivo_O_Brasil_que_Voa_v4.pdf (accessed on 1 June 2020).
- Ssamula, B. Comparing air transport network operations in sparse networks in Africa. Res. Transp. Bus. Manag. 2012, 4, 22–28. [Google Scholar] [CrossRef]
- Cabo, M.; Fernandes, E.; Alonso, P.; Pacheco, R.R.; Fagundes, F. Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport. Sustainability 2020, 12, 303. [Google Scholar] [CrossRef] [Green Version]
- IBGE. Logística dos Transportes. Available online: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/redes-e-fluxos-geograficos/15793-logistica-dos-transportes.html?=&t=downloads (accessed on 1 June 2020).
Region | Cities, 2019 | Area, 2018 | Population, 2019 | GDP, 2017 | Population Density (inhab./km2) | Economic Density (BRL Thousand/km2) | GDP Per Capita (BRL Thousand) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | % | Millions km2 | % | Millions Inhab. | % | BRL Billions | % | ||||
Brazil | 5570 | 100 | 8.5 | 100 | 210 | 100 | 6583.3 | 100.0 | 24.7 | 774.5 | 31.7 |
North | 450 | 8 | 3.8 | 45 | 18 | 9 | 367.9 | 5.6 | 4.7 | 96.8 | 20.6 |
Legal Amazon | 772 | 14 | 5.0 | 59 | 27 | 13 | 574.8 | 8.7 | 5.4 | 114.5 | 21.2 |
Year | Cities | PAX | POP (Millions) | GDPO (BRL Billions) | PRICE (BRL) |
---|---|---|---|---|---|
2011 | 31 | 633,805 | 2.526 | 73.793 | 290.31 |
2012 | 28 | 680,136 | 2.340 | 69.380 | 311.63 |
2013 | 27 | 781,275 | 2.376 | 73.399 | 300.41 |
2014 | 26 | 755,907 | 2.335 | 64.237 | 355.40 |
2015 | 26 | 746,508 | 2.409 | 58.180 | 323.32 |
2016 | 20 | 482,963 | 2.084 | 50.112 | 314.15 |
LPAX | LGDPO | LGDPD | LPRICE | |
---|---|---|---|---|
Mean | 3.67 | 14.60 | 16.60 | 6.75 |
Maximum | 11.47 | 17.20 | 20.41 | 8.34 |
Minimum | 0.00 | 11.64 | 10.76 | 3.68 |
Std. Dev. | 2.41 | 1.09 | 1.72 | 0.47 |
Observations | 5231 | 5231 | 5231 | 5231 |
Test Cross-Section and Period Fixed Effects | |||
---|---|---|---|
Effects Test | Statistic | d.f. | p-Value |
Cross-section F | 11.29 | −13,713,856 | 0.00 |
Cross-Section/Period F | 8434.62 | 1371 | 0.00 |
Test Hypothesis | |||
---|---|---|---|
Cross-Section | Time | Both | |
Breusch-Pagan | 4220.44 | 136.29 | 4356.74 |
p-value | 0.00 | 0.00 | 0.00 |
Test Summary | Chi-Sq. Statistic | Chi-Sq. d.f. | p-Value |
---|---|---|---|
Cross-section random | 76.093436 | 3 | 0.00 |
Dependent Variable: ln(PAX) | |||
---|---|---|---|
Cross-Section Fixed (Dummy Variables) | |||
Total Panel (Unbalanced) Observations: 5231 | |||
Variable | Coefficient | t-Statistic | Prob. |
ln(GDPO) | 0.66 | 6.74 | 0.00 |
ln(GDPD) | 0.55 | 3.23 | 0.00 |
ln(PRICE) | −0.93 | −18.26 | 0.00 |
C | −8.88 | −2.99 | 0.00 |
Adjusted R-squared | 0.821 |
Dependent Variable: LPAX | |||
---|---|---|---|
Cross-Section Fixed (Dummy Variables) | |||
Total Panel (Unbalanced) Observations: 5141 | |||
Variable | Coefficient | t-Statistic | Prob. |
LGDPO | 1.15 | 10.54 | 0.00 |
LGDPD | 0.62 | 7.11 | 0.00 |
LPRICE | −1.03 | −32.63 | 0.00 |
C | −15.89 | −7.51 | 0.00 |
Adjusted R-squared | 0.956 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventura, R.V.; Cabo, M.; Caixeta, R.; Fernandes, E.; Aprigliano Fernandes, V. Air Transportation Income and Price Elasticities in Remote Areas: The Case of the Brazilian Amazon Region. Sustainability 2020, 12, 6039. https://doi.org/10.3390/su12156039
Ventura RV, Cabo M, Caixeta R, Fernandes E, Aprigliano Fernandes V. Air Transportation Income and Price Elasticities in Remote Areas: The Case of the Brazilian Amazon Region. Sustainability. 2020; 12(15):6039. https://doi.org/10.3390/su12156039
Chicago/Turabian StyleVentura, Rodrigo V., Manoela Cabo, Rafael Caixeta, Elton Fernandes, and Vicente Aprigliano Fernandes. 2020. "Air Transportation Income and Price Elasticities in Remote Areas: The Case of the Brazilian Amazon Region" Sustainability 12, no. 15: 6039. https://doi.org/10.3390/su12156039
APA StyleVentura, R. V., Cabo, M., Caixeta, R., Fernandes, E., & Aprigliano Fernandes, V. (2020). Air Transportation Income and Price Elasticities in Remote Areas: The Case of the Brazilian Amazon Region. Sustainability, 12(15), 6039. https://doi.org/10.3390/su12156039