How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming
Abstract
:1. Introduction
- How much agroforestry would be desirable in a mix of FLR options to balance ecological and socio-economic ecosystem services at the landscape scale under uncertainty?
- How does the landscape context impact the share of agroforestry under uncertainty?
- How does the promotion of agroforestry affect the remaining landscape composition under uncertainty?
2. Materials and Methods
2.1. Study Area
2.2. Estimating Ecosystem Services Provided by Land-Cover Types
2.3. Optimization Approach
Rliu = Rli − fu × SDli for worst case
2.4. Analysis of the Landscape Context
3. Results
3.1. Agroforestry and Other FLR Options to Balance Ecological and Socio-Economic Objectives
3.2. Influence of Landscape Context on Agroforestry Selection
3.3. Impact of Promoting Agroforestry
4. Discussion
4.1. The Role of Agroforestry in an Uncertain Multifunctional Landscape
4.2. Combining Expert Opinion and Multi-Objective Optimization
4.3. Opportunities for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibbons, A. Agroforestry. Greening Haiti, tree by tree. Science 2010, 327, 640–641. [Google Scholar] [CrossRef] [PubMed]
- Minang, P.A.; van Noordwijk, M.; Freeman, O.E.; Mbow, C.; de Leeuw, J.; Catacutan, D. Climate-Smart Landscapes: Multifunctionality in Practice; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015; ISBN 929059375X. [Google Scholar]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Reed, J.; van Vianen, J.; Foli, S.; Clendenning, J.; Yang, K.; MacDonald, M.; Petrokofsky, G.; Padoch, C.; Sunderland, T. Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics. For. Policy Econ. 2017, 84, 62–71. [Google Scholar] [CrossRef]
- Waldron, A.; Garrity, D.; Malhi, Y.; Girardin, C.; Miller, D.C.; Seddon, N. Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Trop. Conserv. Sci. 2017, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L. Towards more effective integration of tropical forest restoration and conservation. Biotropica 2019, 51, 463–472. [Google Scholar] [CrossRef]
- Vieira, D.L.M.; Holl, K.D.; Peneireiro, F.M. Agro-Successional Restoration as a Strategy to Facilitate Tropical Forest Recovery. Restor. Ecol. 2009, 17, 451–459. [Google Scholar] [CrossRef]
- Djenontin, I.; Foli, S.; Zulu, L. Revisiting the Factors Shaping Outcomes for Forest and Landscape Restoration in Sub-Saharan Africa: A Way Forward for Policy, Practice and Research. Sustainability 2018, 10, 906. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Vides, C.; Aguilar, A.; Vivar, P. Bonn Challenge Lating America 2016. Panama City, Panama, 26 August 2016. Available online: www.iucn.org/sites/dev/files/content/documents/2016/report_bonn_challenge_latin_america_2016.pdf (accessed on 1 February 2019).
- Gichuki, L.; Brouwer, R.; Davies, J.; Vidal, A.; Kuzee, M.; Magero, C.; Walter, S.; Lara, P.; Oragbade, C.; Gilbey, B. Reviving Land and Restoring Landscapes: Policy Convergence between Forest Landscape Restoration and Land Degradation Neutrality; IUCN Publication: Gland, Switzerland, 2019. [Google Scholar]
- Lamb, D.; Stanturf, J.; Madsen, P. What is Forest Landscape Restoration? In Forest Landscape Restoration: Integrating Natural and Social Sciences; Stanturf, J.A., Lamb, D., Madsen, P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–23. ISBN 978-94-007-5326-6. [Google Scholar]
- Meli, P.; Rey-Benayas, J.M.; Brancalion, P.H.S. Balancing land sharing and sparing approaches to promote forest and landscape restoration in agricultural landscapes: Land approaches for forest landscape restoration. Perspect. Ecol. Conserv. 2019, 17, 201–205. [Google Scholar] [CrossRef]
- Barlow, J.; França, F.; Gardner, T.A.; Hicks, C.C.; Lennox, G.D.; Berenguer, E.; Castello, L.; Economo, E.P.; Ferreira, J.; Guénard, B.; et al. The future of hyperdiverse tropical ecosystems. Nature 2018, 559, 517–526. [Google Scholar] [CrossRef]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Wright, S.; Samaniego, M.J. Historical, Demographic, and Economic Correlates of Land-Use Change in the Republic of Panama. Ecol. Soc. 2008, 13, 17. [Google Scholar] [CrossRef]
- Sloan, S. Reforestation amidst deforestation: Simultaneity and succession. Glob. Environ. Chang. 2008, 18, 425–441. [Google Scholar] [CrossRef]
- MiAmbiente. Guía Técnica de la Reforestación en Panamá; Manual for the Reforestation in Panama; Ministerio de Ambiente: Panama City, Panama, 2010. [Google Scholar]
- Bremer, L.L.; Farley, K.A. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef] [Green Version]
- Que Establece un Programa de Incentivos para Recuperar la Cobertura Forestal y Promover la Conservación de los Bosques Naturales del País; Población, Ambiente y Desarollo: Panama City, Panama, 2017.
- Knoke, T.; Paul, C.; Härtl, F.; Castro, L.M.; Calvas, B.; Hildebrandt, P. Optimizing agricultural land-use portfolios with scarce data—A non-stochastic model. Ecol. Econ. 2015, 120, 250–259. [Google Scholar] [CrossRef]
- Herrero-Jáuregui, C.; Arnaiz-Schmitz, C.; Herrera, L.; Smart, S.M.; Montes, C.; Pineda, F.D.; Schmitz, M.F. Aligning landscape structure with ecosystem services along an urban–rural gradient. Trade-offs and transitions towards cultural services. Landsc. Ecol. 2018, 34, 1525–1545. [Google Scholar] [CrossRef]
- Santana, J.; Reino, L.; Stoate, C.; Moreira, F.; Ribeiro, P.F.; Santos, J.L.; Rotenberry, J.T.; Beja, P. Combined effects of landscape composition and heterogeneity on farmland avian diversity. Ecol. Evol. 2016, 7, 1212–1223. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J. Linking landscape structures and ecosystem service value using multivariate regression analysis: A case study of the Chaohu Lake Basin, China. Environ. Earth Sci. 2016, 75, 3. [Google Scholar] [CrossRef]
- Elsawah, S.; Pierce, S.A.; Hamilton, S.H.; van Delden, H.; Haase, D.; Elmahdi, A.; Jakeman, A.J. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ. Model. Softw. 2017, 93, 127–145. [Google Scholar] [CrossRef]
- Gonzalez-Redin, J.; Gordon, I.J.; Hill, R.; Polhill, J.G.; Dawson, T.P. Exploring sustainable land use in forested tropical social-ecological systems: A case-study in the Wet Tropics. J. Environ. Manag. 2019, 231, 940–952. [Google Scholar] [CrossRef] [Green Version]
- Schulze, J.; Müller, B.; Groeneveld, J.; Grimm, V. Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward. JASSS 2017, 20. [Google Scholar] [CrossRef] [Green Version]
- Kaim, A.; Cord, A.F.; Volk, M. A review of multi-criteria optimization techniques for agricultural land use allocation. Environ. Model. Softw. 2018, 105, 79–93. [Google Scholar] [CrossRef]
- Knoke, T.; Paul, C.; Rammig, A.; Gosling, E.; Hildebrandt, P.; Härtl, F.; Peters, T.; Richter, M.; Diertl, K.-H.; Castro, L.M.; et al. Accounting for multiple ecosystem services in a simulation of land-use decisions: Does it reduce tropical deforestation? Glob. Chang. Biol. 2020, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blandon, P. Analyzing Risk in Agroforestry Systems Using a Portfolio Approach: A Case Study from the United Kingdom. In Valuing Agroforestry Systems: Methods and Applications; Alavalapati, J.R.R., Mercer, D.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 95–122. ISBN 1-4020-2412-6. [Google Scholar]
- Matthies, B.D.; Jacobsen, J.B.; Knoke, T.; Paul, C.; Valsta, L. Utilising portfolio theory in environmental research—New perspectives and considerations. J. Environ. Manag. 2019, 231, 926–939. [Google Scholar] [CrossRef]
- Paul, C.; Weber, M.; Knoke, T. Agroforestry versus farm mosaic systems - Comparing land-use efficiency, economic returns and risks under climate change effects. Sci. Total Environ. 2017, 587–588, 22–35. [Google Scholar] [CrossRef]
- Paul, C.; Reith, E.; Salecker, J.; Knoke, T. How Integrated Ecological-Economic Modelling Can Inform Landscape Pattern in Forest Agroecosystems. Curr. Landsc. Ecol. Rep. 2019, 4, 125–138. [Google Scholar] [CrossRef]
- Castro, L.M.; Calvas, B.; Knoke, T. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios. PLoS ONE 2015, 10, e0120384. [Google Scholar] [CrossRef]
- Romhadhoni, P.; Chaerani, D.; Ruchjana, B.N. Robust Optimization Model for Spatial Land-Use Allocation Problem in Jatinangor Subdistrict, Indonesia. World Sci. News 2020, 142, 44–59. [Google Scholar]
- Knoke, T.; Paul, C.; Hildebrandt, P.; Calvas, B.; Castro, L.M.; Härtl, F.; Döllerer, M.; Hamer, U.; Windhorst, D.; Wiersma, Y.F.; et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat. Commun. 2016, 7, 11877. [Google Scholar] [CrossRef]
- Tsonkova, P.; Quinkenstein, A.; Böhm, C.; Freese, D.; Schaller, E. Ecosystem services assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem services provided by alley cropping systems. Ecol. Indic. 2014, 45, 285–299. [Google Scholar] [CrossRef]
- Kadoya, T.; Washitani, I. The Satoyama Index: A biodiversity indicator for agricultural landscapes. Agric. Ecosyst. Environ. 2011, 140, 20–26. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Hayashi, K.; Kohsaka, R. Typology of Cities Based on City Biodiversity Index: Exploring Biodiversity Potentials and Possible Collaborations among Japanese Cities. Sustainability 2015, 7, 14371–14384. [Google Scholar] [CrossRef] [Green Version]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584–585, 118–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallis, H.; Polasky, S. Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann. N. Y. Acad. Sci. 2009, 1162, 265–283. [Google Scholar] [CrossRef]
- Kovács, B.; Uchiyama, Y.; Miyake, Y.; Penker, M.; Kohsaka, R. An explorative analysis of landscape value perceptions of naturally dead and cut wood: A case study of visitors to Kaisho Forest, Aichi, Japan. J. For. Res. 2020, 46, 1–8. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Off. J. Int. Assoc. Landsc. Ecol. Reg. Chapter Ger. 2014, 1–32. [Google Scholar] [CrossRef]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—the approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Harrison, S.R. Application of the analytic hierarchy process to riparian revegetation policy options. Small Scale For. Econ. Manag. Policy 2003, 2, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; de Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Lima, J.E.F.W.; de Gois Aquino, F.; Chaves, T.A.; Lorz, C. Development of a spatially explicit approach for mapping ecosystem services in the Brazilian Savanna—MapES. Ecol. Indic. 2017, 82, 513–525. [Google Scholar] [CrossRef]
- Fontana, V.; Radtke, A.; Bossi Fedrigotti, V.; Tappeiner, U.; Tasser, E.; Zerbe, S.; Buchholz, T. Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecol. Econ. 2013, 93, 128–136. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Uhde, B.; Heinrichs, S.; Stiehl, C.R.; Ammer, C.; Müller-Using, B.; Knoke, T. Bringing ecosystem services into forest planning—Can we optimize the composition of Chilean forests based on expert knowledge? For. Ecol. Manag. 2017, 404, 126–140. [Google Scholar] [CrossRef]
- Paul, C. Timber-Based Agrisilvicultural Systems to Facilitate Reforestation in Panama: A Silvicultural and Economic Evaluation. Ph.D. Thesis, Fakultät Wissenschaftszentrum Weihenstephan, Freising, Germany, 2014. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Sukhdev, P.; Wittmer, H.; Schröter-Schlaack, C.; Nesshöver, C.; Bishop, J.; ten Brink, P.; Gundimeda, H.; Kumar, P.; Simmons, B. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; Progress Press: Gland, Switzerland, 2010. [Google Scholar]
- Duguma, L.A.; Hager, H. Farmers’ assessment of the social and ecological values of land uses in central highland Ethiopia. Environ. Manag. 2011, 47, 969–982. [Google Scholar] [CrossRef] [PubMed]
- MiAmbiente. Alianza por el Millón. Available online: www.alianzaporelmillon.org (accessed on 15 June 2020).
- INEC. Censo Nacional Agropecuario 2010, VIII Tenencia y Aprovechamiento de la Tierra, Cuadro 24 and 25. Available online: https://www.contraloria.gob.pa/inec/Publicaciones/subcategoria.aspx?ID_CATEGORIA=15&ID_SUBCATEGORIA=60&ID_IDIOMA=1ID_SUBCATEGORIA=60&ID_PUBLICACION=470&ID_IDIOMA=1&ID_CATEGORIA=15 (accessed on 20 November 2018).
- Schuchmann, J. A Participatory Survey on Current Integration of Trees on Farms and Pastures Within Land Use Systems in the Township of Tortí in Panamá. Masters’s Thesis, Technical University, Munich, Germany, 2011. [Google Scholar]
- Cerrud, R.; Villanueva, C.; Ibrahim, M.; Stoian, D.; Esquivel, H. Caracterización de los sistemas silvopastoriles tradicionales del distrito de Bugaba, Provincia de Chiriquí, Panamá. Agrofor. Am. 2004, 41–42, 43–49. [Google Scholar]
- Cubbage, F.; Balmelli, G.; Bussoni, A.; Noellemeyer, E.; Pachas, A.N.; Fassola, H.; Colcombet, L.; Rossner, B.; Frey, G.; Dube, F.; et al. Comparing silvopastoral systems and prospects in eight regions of the world. Agroforest Syst. 2012, 86, 303–314. [Google Scholar] [CrossRef]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Montagnini, F.; Ibrahim, M.; Murgueitio, E. Silvopastoral systems and climate change mitigation in Latin America. Bois For. Trop. 2013, 316, 3–16. [Google Scholar] [CrossRef]
- Bryman, A. Social Research Methods; International Edition; Oxford University Press: Oxford, UK, 2016; ISBN 0198755953. [Google Scholar]
- Autoridad Nacional del Ambiente. Atlas Ambiental de la Republica de Panama 2010, 1st ed.; Autoridad Nacional del Ambiente: Panama City, Panama, 2010; ISBN 978-9962-651-49-9. [Google Scholar]
- Romero, C. Extended lexicographic goal programming: A unifying approach. Omega 2001, 29, 63–71. [Google Scholar] [CrossRef]
- Ben-Tal, A.; El Ghaoui, L.; Nemirovskij, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009; ISBN 978-0-691-14368-2. [Google Scholar]
- Gosling, E.; Reith, E.; Knoke, T.; Paul, C. A goal programming approach to evaluate agroforestry systems in Eastern Panama. J. Environ. Manag. 2020, 261, 110248. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Berger, T. Land use decisions in developing countries and their representation in multi-agent systems. J. Land Use Sci. 2006, 1, 29–44. [Google Scholar] [CrossRef]
- Shavazipour, B.; Stewart, T.J. Multi-objective optimisation under deep uncertainty. Oper. Res. Int. J. 2019, 55, 43. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, Z.; Ellis, E.C.; Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 2018, 1, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Dagang, A.B.K.; Nair, P.K.R. Silvopastoral research and adoption in Central America: Recent findings and recommendations for future directions. Agrofor. Syst. 2003, 59, 149–155. [Google Scholar] [CrossRef]
- Somarriba, E.; Beer, J.; Alegre-Orihuela Andrade, H.J.; Cerda, R.; DeClerck, F.; Detlefsen, G.; Escalante, M.; Giraldo, L.A.; Ibrahim, M.; Krischnamurthy, L.; et al. Mainstreaming Agroforestry in Latin America. In Agroforestry—The Future of Global Land Use; Nair, P.R., Garrity, D., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 429–473. ISBN 978-94-007-4675-6. [Google Scholar]
- Runting, R.K.; Ruslandi; Griscom, B.W.; Struebig, M.J.; Satar, M.; Meijaard, E.; Burivalova, Z.; Cheyne, S.M.; Deere, N.J.; Game, E.T.; et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat. Sustain. 2019, 2, 53–61. [Google Scholar] [CrossRef]
- Paul, C.; Knoke, T. Between land sharing and land sparing—What role remains for forest management and conservation? Int. For. Rev. 2015, 17, 210–230. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D. Is Agroforestry Likely to Reduce Deforestation; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Van der Plas, F.; Manning, P.; Soliveres, S.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Ampoorter, E.; Baeten, L.; et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl. Acad. Sci. USA 2016, 113, 3557–3562. [Google Scholar] [CrossRef] [Green Version]
- Van der Plas, F.; Allan, E.; Fischer, M.; Alt, F.; Arndt, H.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Hölzel, N.; et al. Towards the development of general rules describing landscape heterogeneity—Multifunctionality relationships. J. Appl. Ecol. 2018, 56, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Grass, I.; Kubitza, C.; Krishna, V.V.; Corre, M.D.; Mußhoff, O.; Pütz, P.; Drescher, J.; Rembold, K.; Ariyanti, E.S.; Barnes, A.D.; et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 2020, 11, 1186. [Google Scholar] [CrossRef] [Green Version]
- Santos Martin, F.; van Noordwijk, M. Is native timber tree intercropping an economically feasible alternative for smallholder farmers in the Philippines? Aust. J. Agric. Resour. Econ. 2011, 55, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Potvin, C.; Tschakert, P.; Lebel, F.; Kirby, K.; Barrios, H.; Bocariza, J.; Caisamo, J.; Caisamo, L.; Cansari, C.; Casamá, J.; et al. A participatory approach to the establishment of a baseline scenario for a reforestation Clean Development Mechanism project. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 1341–1362. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed on 23 July 2020).
- Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Coomes, O.T.; Grimard, F.; Potvin, C.; Sima, P. The fate of the tropical forest: Carbon or cattle? Ecol. Econ. 2008, 65, 207–212. [Google Scholar] [CrossRef]
- Peterson St-Laurent, G.; Gélinas, N.; Potvin, C. REDD+ and the agriculture frontier: Understanding colonists’ utilization of the land. Land Use Policy 2013, 31, 516–525. [Google Scholar] [CrossRef]
- Frey, G.E.; Fassola, H.E.; Pachas, A.N.; Colcombet, L.; Lacorte, S.M.; Pérez, O.; Renkow, M.; Warren, S.T.; Cubbage, F.W. Perceptions of silvopasture systems among adopters in northeast Argentina. Agric. Syst. 2012, 105, 21–32. [Google Scholar] [CrossRef]
- Clough, Y.; Krishna, V.V.; Corre, M.D.; Darras, K.; Denmead, L.H.; Meijide, A.; Moser, S.; Musshoff, O.; Steinebach, S.; Veldkamp, E.; et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 2016, 7, 13137. [Google Scholar] [CrossRef]
- Löfqvist, S.; Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 2019, 3, 1612–1615. [Google Scholar] [CrossRef]
- Temesgen, H.; Wu, W.; Shi, X.; Yirsaw, E.; Bekele, B.; Kindu, M. Variation in Ecosystem Service Values in an Agroforestry Dominated Landscape in Ethiopia: Implications for Land Use and Conservation Policy. Sustainability 2018, 10, 1126. [Google Scholar] [CrossRef] [Green Version]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- De Groot, R.; Fisher, B.; Christie, M.; Aronson, J.; Braat, L.; Gowdy, J.; Haines-Young, R.; Maltby, E.; Neuville, A. Integrating The Ecological And Economic Dimensions In Biodiversity And Ecosystem Service Valuation. In The Economics of Ecosystems and Biodiversity (TEEB): Ecological and Economic Foundations; Earthscan, Routledge: London, UK, 2010; pp. 9–40. [Google Scholar]
- Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O. New parsimonious simulation methods and tools to assess future food and environmental security of farm populations. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014, 369. [Google Scholar] [CrossRef] [Green Version]
- Knoke, T.; Bendix, J.; Pohle, P.; Hamer, U.; Hildebrandt, P.; Roos, K.; Gerique, A.; Sandoval, M.L.; Breuer, L.; Tischer, A.; et al. Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nat. Commun. 2014, 5, 5612. [Google Scholar] [CrossRef] [Green Version]
- Walker, W.E.; Lempert, R.J.; Kwakkel, J.H. Deep uncertainty. In Encyclopedia of Operations Research and Management Science; Gass, S.I., Fu, M.C., Eds.; Springer US: Boston, MA, USA, 2013; pp. 395–402. ISBN 978-1-4419-1137-7. [Google Scholar]
- Burkhard, B.; Kroll, F.; Müller, F. Landscapes’ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landsc. Online 2009, 1–22. [Google Scholar] [CrossRef]
- Kukrety, S.; Jose, S.; Alavalapati, J.R.R. Exploring Stakeholders’ Perceptions with Analytic Hierarchy Process-A Case Study of Red Sanders (Pterocarpus santalinus L.) Restoration in India. Restor. Ecol. 2013, 21, 777–784. [Google Scholar] [CrossRef]
- Rollan, C.D.; Li, R.; San Juan, J.L.; Dizon, L.; Ong, K.B. A planning tool for tree species selection and planting schedule in forestation projects considering environmental and socio-economic benefits. J. Environ. Manag. 2018, 206, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Gourevitch, J.D.; Hawthorne, P.L.; Keeler, B.L.; Beatty, C.R.; Greve, M.; Verdone, M.A. Optimizing investments in national-scale forest landscape restoration in Uganda to maximize multiple benefits. Environ. Res. Lett. 2016, 11, 114027. [Google Scholar] [CrossRef] [Green Version]
- Turnhout, E.; Bloomfield, B.; Hulme, M.; Vogel, J.; Wynne, B. Conservation policy: Listen to the voices of experience. Nature 2012, 488, 454–455. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Forest fragments modulate the provision of multiple ecosystem services. J. Appl. Ecol. 2014, 51, 909–918. [Google Scholar] [CrossRef]
- Castro, L.M.; Härtl, F.; Ochoa, S.; Calvas, B.; Izquierdo, L.; Knoke, T. Integrated bio-economic models as tools to support land-use decision making: A review of potential and limitations. J. Bioecon. 2018, 20, 183–211. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Camm, J.; Csuti, B.; Fackler, P.; Lonsdorf, E.; Montgomery, C.; White, D.; Arthur, J.; Garber-Yonts, B.; et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 2008, 141, 1505–1524. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, W.; van Teeffelen, A.J.A.; Baggio Compagnucci, A.; Poggio, L.; Gimona, A.; Verburg, P.H. Effects of landscape configuration on mapping ecosystem service capacity: A review of evidence and a case study in Scotland. Landsc. Ecol. 2016, 31, 1457–1479. [Google Scholar] [CrossRef]
- Knoke, T.; Kindu, M.; Jarisch, I.; Gosling, E.; Friedrich, S.; Bödeker, K.; Paul, C. How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest. For. Policy Econ. 2020, 118, 102239. [Google Scholar] [CrossRef]
- Grass, I.; Loos, J.; Baensch, S.; Batáry, P.; Librán-Embid, F.; Ficiciyan, A.; Klaus, F.; Riechers, M.; Rosa, J.; Tiede, J.; et al. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat. 2019, 121, 109. [Google Scholar] [CrossRef]
Category | Ecosystem Service Indicators | Description |
---|---|---|
Ecological | Global climate regulation | Contribution of land-cover to regulate global climate, i.e., the capacity of vegetation to store atmospheric carbon (without taking into account substitution effects). |
Water regulation | Contribution of land-cover to regulate water flow and supply, e.g., reduced overland flow. | |
Biodiversity | The extent to which the land-cover supports species richness, i.e., the number of plant and animal species. | |
Long-term soil fertility | Capacity of land-cover to maintain soil fertility, protect soil quality and soil health over the long-term (e.g., 20 years). Potentially quantified through carbon-nitrogen-ratio. | |
Micro climate regulation | Contribution of land-cover to local and regional climate regulation. For example, the effect of trees on air temperature and wind speed [53]. | |
Socio-economic | Food security | The extent to which the land-cover type provides a stable food supply concerning dietary calories produced. |
Long-term profit | Contribution of land-cover to provide income in the long run (e.g., 20 years). Potentially quantified through the present value of cash flows generated by the land-cover over time. | |
Liquidity | The extent to which the land-cover provides frequent and regular income flows, including how easily the land-cover can be converted to cash if needed. | |
Stability of economic return | Contribution of land-cover to provide stable returns against risk (e.g., extreme weather events, price fluctuations). Potentially quantified through financial losses. | |
Scenic beauty | The extent to which the land-cover provides an aesthetic landscape for society. |
Land-Cover | Description | Source |
---|---|---|
Cropland | Cropland can include various species of annual crops. Different crops might be cultivated at the same time on one plot of land (crop-mix) or rotated over a time (crop rotation). For planting and harvesting, farmers mainly use manual/traditional methods. | [56] |
Pasture | Traditional pasture with a stocking rate of one and a half to two cows per hectare, can include scattered trees. | [50,55] |
Alley croppingFLR | An agroforestry practice where alleys of trees (with a distance of around 6 m between trees) are alternated with rows of annual crops. Trees are grown for timber. | [31] |
SilvopastureFLR | An agroforestry practice where cattle (conservative count of around one cow per ha) and trees (around 200 trees per ha) are combined on the same plot of land. Trees are planted or guarded against cows and harvested for timber. | [57,60] |
Forest-PlantationFLR | Forest-plantations comprising one introduced tree species (e.g., teak, Tectona grandis) forming even-aged stands and planted with regular spacing (3 × 3 m). Trees are pruned, thinned and harvested. | [31] |
Abandoned landFLR | Natural succession of abandoned land: Agricultural land (cropland or pasture) which has not been managed or cultivated for more than five years, mainly due to low productivity. There can be secondary succession of vegetation. | [55] |
Forest | Humid tropical forest, specifically unmanaged secondary forest with natural regeneration. Forest is neither under conservation (i.e., can be used to collect firewood or fruits for human consumption), nor managed for commercial purposes (i.e., timber production). | [50,55] |
Category | Ecosystem Service Indicators | Cropland | Pasture | Alley Cropping | Silvopasture | Forest | Forest-Plantation | Abandoned | N |
---|---|---|---|---|---|---|---|---|---|
Ecological | Global climate regulation | 5.2 | 4.2 | 10.1 | 9.0 | 15.4 | 12.1 | 7.0 | 40 |
(±1.42) | (±1.48) | (±1.70) | (±2.10) | (±1.46) | (±2.31) | (±2.92) | |||
Water regulation | 5.5 | 5.0 | 10.2 | 9.2 | 15.4 | 10.4 | 7.3 | 39 | |
(±1.44) | (±2.05) | (±2.20) | (±1.84) | (±2.26) | (±2.10) | (±3.28) | |||
Biodiversity | 5.2 | 4.6 | 10.0 | 9.0 | 16.1 | 9.5 | 8.6 | 38 | |
(±1.37) | (±1.53) | (±1.78) | (±1.56) | (±1.03) | (±2.49) | (±3.55) | |||
Long-term soil fertility | 5.6 | 4.8 | 9.9 | 8.7 | 15.8 | 9.6 | 8.5 | 38 | |
(±1.23) | (±1.81) | (±1.84) | (±1.74) | (±1.89) | (±2.59) | (±3.31) | |||
Micro climate regulation | 5.1 | 4.7 | 10.4 | 9.0 | 15.7 | 10.9 | 7.1 | 38 | |
(±1.17) | (±1.41) | (±2.00) | (±1.74) | (±1.25) | (±1.95) | (±3.29) | |||
Socio-economic | Food security | 11.3 | 8.7 | 12.8 | 11.9 | 7.9 | 5.9 | 4.7 | 36 |
(±3.98) | (±2.77) | (±2.11) | (±2.37) | (±2.93) | (±2.20) | (±2.38) | |||
Long-term profit | 7.9 | 7.9 | 12.2 | 11.9 | 8.0 | 10.9 | 4.2 | 37 | |
(±3.23) | (±2.83) | (±2.39) | (±2.06) | (±3.92) | (±3.05) | (±2.27) | |||
Liquidity | 11.5 | 11.6 | 10.8 | 11.2 | 6.4 | 7.3 | 4.2 | 37 | |
(±2.98) | (±2.35) | (±2.64) | (±2.46) | (±3.55) | (±2.67) | (±2.79) | |||
Stability of economic return | 7.6 | 7.8 | 11.1 | 11.1 | 9.6 | 10.0 | 5.7 | 36 | |
(±3.16) | (±3.02) | (±3.08) | (±2.03) | (±3.42) | (±3.23) | (±3.94) | |||
Scenic beauty | 6.7 | 6.4 | 12.1 | 11.3 | 12.5 | 9.8 | 4.3 | 37 | |
(±2.24) | (±2.49) | (±2.53) | (±2.16) | (±3.23) | (±2.61) | (±2.25) |
Variable | Description |
---|---|
i | ecosystem service indicator |
l | land-cover type |
Rli | nominal score of ecosystem service indicator, i, provided by land-cover, l, derived from the AHP survey |
SDli | standard deviation of nominal score for ecosystem service indicator, i, and land-cover, l |
fu | uncertainty factor to determine the deviation from the expected nominal score, Rli, ranging from 0 (ignoring uncertainty) to 3 (high level of uncertainty) |
u | uncertainty scenario |
Rliu | score of ecosystem service indicator, i, for land-cover, l, adjusted for uncertainty, u |
min {Rliu} | minimum uncertainty-adjusted indicator score, Rliu, across all land-cover types in a given uncertainty scenario |
max {Rliu} | maximum uncertainty-adjusted indicator score, Rliu, across all land-cover types in a given uncertainty scenario |
Riu | represents the sum of the ecosystem service indicator scores for each land-cover type, weighted by their area share in the landscape composition for each uncertainty scenario |
al | allocated share (area fraction) of a given land-cover type, l, in a landscape composition |
piu | normalized indicator score, i, for a landscape composition per uncertainty scenario, u, expressed as a percentage (landscape performance value)—100% represents best possible performance |
Diu | distance between the normalized indicator score, piu, of a given ecosystem service indicator, i, and the hypothetical maximum of 100% (can be thought of as underperformance) |
β | maximum underperformance, Diu, across all indicators, i, and all uncertainty scenarios, u (worst underperformance) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reith, E.; Gosling, E.; Knoke, T.; Paul, C. How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming. Sustainability 2020, 12, 6077. https://doi.org/10.3390/su12156077
Reith E, Gosling E, Knoke T, Paul C. How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming. Sustainability. 2020; 12(15):6077. https://doi.org/10.3390/su12156077
Chicago/Turabian StyleReith, Esther, Elizabeth Gosling, Thomas Knoke, and Carola Paul. 2020. "How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming" Sustainability 12, no. 15: 6077. https://doi.org/10.3390/su12156077
APA StyleReith, E., Gosling, E., Knoke, T., & Paul, C. (2020). How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming. Sustainability, 12(15), 6077. https://doi.org/10.3390/su12156077