Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities
Abstract
:1. Introduction
2. Literature Survey
- What are the important decision variables that can influence the implementation of Industry 4.0 in universities?
- What would be the relevant classification (in terms of the university’s strengths, weaknesses, opportunities, and challenges) of these variables from the stakeholder’s perspective?
- What should be the approach or the strategic agenda of universities at this juncture for their smooth transition in Industry 4.0 and to achieve sustainable education?
- How to effectively utilize, contrive, or systematize the employment of SWOT-AHP for analyzing the prospect of Industry 4.0 in universities?
- What are the appropriate steps to adapt universities with prospective Industry 4.0 principles?
3. Research Method
3.1. Phase 1: Identification and Categorization of Influencing Factors
3.2. Phase 2: SWOT–AHP Analysis and Establishing a Strategy
- The mth root of the product of row elements across each row in the square matrix was computed.
- The values obtained for each row in the preceding step were divided by the column (mth root column) sum.
- A column matrix was estimated by multiplying the square decision matrix with the column matrix obtained in the previous step.
- Each of the elements in the previously calculated column matrix was divided by the corresponding elements in the column matrix obtained in the second step.
- The average of the column matrix computed in the fourth step provided λmax.
4. Results Analysis
4.1. Findings and Discussion
4.2. SWOT–AHP Outcome
5. Recommendations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The World Bank. World Development Indicators 2018; World Bank Publications: Washington, DC, USA, 2018; Available online: http://wdi.worldbank.org/table/4.2 (accessed on 25 August 2019).
- The World Bank. World Bank National Accounts Data, and OECD National Accounts Data Files (License: CC BY-4.0), Manufacturing, Value Added (% of GDP). Available online: https://data.worldbank.org/indicator/NV.IND.MANF.ZS?end=2018&locations=SA&start=1968&view=chart (accessed on 25 August 2019).
- Pikas, B.; Zhang, X.; Peek, W.A.; Lee, T. The Transformation and Upgrading of the Chinese Manufacturing Industry: Based on “German Industry 4.0”. J. Appl. Bus. Econ. 2016, 18, 97–105. [Google Scholar]
- Mourtzis, D. Development of Skills and Competences in Manufacturing Towards Education 4.0: A Teaching Factory Approach. In Lecture Notes in Mechanical Engineering, Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing, AMP 2018, Belgrade, Serbia, 5–7 June 2018; Ni, J., Majstorovic, V., Djurdjanovic, D., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Bongomin, O.; Gilibrays Ocen, G.; Oyondi Nganyi, E.; Musinguzi, A.; Omara, T. Exponential Disruptive Technologies and the Required Skills of Industry 4.0. J. Eng. 2020, 2020, 4280156. [Google Scholar] [CrossRef] [Green Version]
- Aulbur, W.; CJ, A.; Bigghe, R. Skill Development for Industry 4.0: BRICS Skill Development Working Group (FICCI and Roland Berger), BRICS India 2016. pp. 1–60. Available online: http://www.globalskillsummit.com/whitepaper-summary.pdf (accessed on 26 August 2019).
- Industry 4.0: The Fourth Industrial Revolution–Guide to Industrie 4.0, i-SCOOP. Available online: https://www.i-scoop.eu/industry-4-0/ (accessed on 26 August 2019).
- Wee, D.; Kelly, R.; Cattel, J.; Breunig, M. Industry 4.0—How to Navigate Digitization of the Manufacturing Sector; McKinsey & Company: New York, NY, USA, 2015. [Google Scholar]
- Schütze, A.; Helwig, N.; Schneider, T. Sensors 4.0–smart sensors and measurement technology enable Industry 4.0. J. Sens. Sens. Syst. 2018, 7, 359–371. [Google Scholar] [CrossRef]
- Manufacturing Trends Report (Microsoft), 2019. Available online: https://info.microsoft.com/rs/157-GQE-382/images/EN-US-CNTNT-Report-2019-Manufacturing-Trends.pdf (accessed on 17 July 2020).
- Industrial IoT Sensors Growth, Sensor Solution. Available online: https://www.te.com/global-en/industries/sensor-solutions/insights/industrial-iiot-sensors-growth.html (accessed on 17 July 2020).
- Industrial IoT Is Booming Thanks to a Drop in Sensor Prices. Available online: https://www.ennomotive.com/industrial-iot-sensor-prices/ (accessed on 17 July 2020).
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, J.; Xu, S. The Application of Industry 4.0 in Customized Furniture Manufacturing Industry. In Proceedings of the 13th Global Congress on Manufacturing and Management (GCMM 2016), MATEC Web of Conferences, Zhengzhou, China, 28–30 November 2016; Volume 100, pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Liu, Y.; Grosvenor, R. A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia Cirp 2016, 52, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Silva, H.R.; Terra da Silva, M.; Franco Gonçalves, R.; Sacomano, J.B. Sacomano, Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015. [Google Scholar] [CrossRef]
- Assante, D.; Caforio, A.; Flamini, M.; Romano, E. Smart Education in the context of Industry 4.0. In Proceedings of the 2019 IEEE Global Engineering Education Conference (EDUCON), Dubai, UAE, 9–11 April 2019. [Google Scholar]
- Coskun, S.; Kayıkcı, Y.; Gençay, E. Adapting Engineering Education to Industry 4.0 Vision. Technologies 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Umachandran, K.; Jurcic, I.; Ferdinand-James, D.; Said, M.M.T.; Abd Rashid, A. Gearing up education towards Industry 4.0. Int. J. Comput. Technol. 2018, 17, 7305–7311. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Factories of the Future-Multi-Annual Roadmap for the Contractual PPP under Horizon 2020. Available online: https://www.scribd.com/document/271903700/Factories-of-the-Future-2020-Roadmap# (accessed on 16 December 2019).
- Sackey, S.M.; Bester, A.; Adams, D. Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa. S. Afr. J. Ind. Eng. 2017, 28, 114–124. [Google Scholar] [CrossRef]
- Maria, M.; Shahbodin, F.; Pee, N.C. Malaysian higher education system towards Industry 4.0–Current Trends Overview. In AIP Conference Proceedings, Proceedings of the 3rd International Conference on Applied Science and Technology (ICAST’18), Penang, Malaysia, 10–12 April 2018; AIP Publishing LLC: Melville, NY, USA, 2018; p. 020081. [Google Scholar] [CrossRef]
- Gleason, N.W. Higher Education in the Era of the Fourth Industrial Revolution; Palgrave Macmillan: Singapore, 2018. [Google Scholar]
- Karre, H.; Hammer, M.; Kleindienst, M.; Ramsauer, C. Transition towards an Industry 4.0 State of the LeanLab at Graz University of Technology. Procedia Manuf. 2017, 9, 206–213. [Google Scholar] [CrossRef]
- Schuh, G.; Gartzen, T.; Rodenhauser, T.; Marks, A. Promoting Work-based Learning through industry 4.0. Procedia Cirp 2015, 32, 82–87. [Google Scholar] [CrossRef]
- Barakabitze, A.A.; William-Andey Lazaro, A.; Ainea, N.; Mkwizu, M.H.; Maziku, H.; Matofali, A.X.; Iddi, A.; Sanga, C. Transforming African Education Systems in Science, Technology, Engineering, and Mathematics (STEM) Using ICTs: Challenges and Opportunities. Educ. Res. Int. 2019, 2019, 6946809. [Google Scholar] [CrossRef] [Green Version]
- Buasuwan, P. Rethinking Thai higher education for Thailand 4.0. Asian Educ. Dev. Stud. 2018, 7, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Vlachou, E.; Dimitrakopoulos, G.; Zogopoulos, V. Cyber-Physical Systems and Education 4.0–The Teaching Factory 4.0 Concept. Procedia Manuf. 2018, 23, 129–134. [Google Scholar] [CrossRef]
- Demartini, C.; Benussi, L. Do Web 4.0 and Industry 4.0 Imply Education X.0? IT Prof. 2017, 19, 4–7. [Google Scholar] [CrossRef]
- Baena, F.; Guarin, A.; Mora, J.; Sauza, J.; Retat, S. Learning Factory: The Path to Industry 4.0. Procedia Manuf. 2017, 9, 73–80. [Google Scholar] [CrossRef]
- Vu, T.L.A. Building CDIO Approach Training Programmes against Challenges of Industrial Revolution 4.0 for Engineering and Technology Development. Int. J. Eng. Res. Technol. 2018, 11, 1129–1148. [Google Scholar]
- Cansino Muñoz-Repiso, J.M.; Román Collado, R.; Expósito García, A. Does Student Proactivity Guarantee Positive Academic Results? Educ. Sci. 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Ellahi, R.M.; Khan, M.U.A.; Shah, A. Redesigning Curriculum in line with Industry 4.0. Procedia Comput. Sci. 2019, 151, 699–708. [Google Scholar] [CrossRef]
- Silva, V.L.; Kovaleski, J.L.; Pagani, R.N. Technology Transfer and Human Capital in the Industrial 4.0 Scenario: A Theoretical Study. Future Stud. Res. J. 2019, 11, 98–118. [Google Scholar] [CrossRef] [Green Version]
- Komara, E. The Challenges of Higher Education Institutions in Facing the Industrial Revolution 4.0. HONAI Int. J. Educ. Soc. Political Cult. Stud. 2020, 3, 15–26. [Google Scholar]
- Tilak, G.; Singh, D. Industry 4.0–4th Rising Industrial Revolution in Manufacturing Industries and its Impact on Employability and Existing Education System. Pramana Res. J. 2018, 8, 161–169. [Google Scholar]
- Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry; Final report of the Industrie 4.0 Working Group; Forschungsunion: Berlin, Germany, 2013. [Google Scholar]
- Shahroom, A.A.; Hussin, N. Industrial Revolution 4.0 and Education. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Avogaro, M. The Highest Skilled Workers of Industry 4.0: New Forms of Work Organization for New Professions. A Comparative Study. E-J. Int. Comp. Labour Stud. 2019, 8, 29–50. [Google Scholar]
- Hariharasudan, A.; Kot, S. A Scoping Review on Digital English and Education 4.0 for Industry 4.0. Soc. Sci. 2018, 7, 227. [Google Scholar] [CrossRef] [Green Version]
- Slusarczyk, B. Industry 4.0—Are We Ready? Pol. J. Manag. Stud. 2018, 17, 232–248. [Google Scholar] [CrossRef]
- Vuksanović Herceg, I.; Kuč, V.; Mijušković, V.M.; Herceg, T. Challenges and Driving Forces for Industry 4.0 Implementation. Sustainability 2020, 12, 4208. [Google Scholar] [CrossRef]
- Hamada, T. Determinants of Decision-Makers’ Attitudes toward Industry 4.0 Adaptation. Soc. Sci. 2019, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Stachová, K.; Papula, J.; Stacho, Z.; Kohnová, L. External Partnerships in Employee Education and Development as the Key to Facing Industry 4.0 Challenges. Sustainability 2019, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Bakhtari, A.R.; Waris, M.M.; Mannan, B.; Sanin, C.; Szczerbicki, E. Assessing Industry 4.0 Features Using SWOT Analysis. In Intelligent Information and Database Systems. ACIIDS 2020. Communications in Computer and Information Science; Sitek, P., Pietranik, M., Krótkiewicz, M., Srinilta, C., Eds.; Springer: Singapore, 2020; Volume 1178. [Google Scholar]
- Kamran, M.; Fazal, M.R.; Mudassar, M. Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis. Renew. Energy 2020, 146, 543–558. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. Symmetry 2018, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Vlados, C. On a correlative and evolutionary SWOT analysis. J. Strategy Manag. 2019, 12, 347–363. [Google Scholar]
- Stroiteleva, T.G.; Kalinicheva, E.Y.; Vukovich, G.G.; Osipov, V.S. Peculiarities and Problems of Formation of Industry 4.0 in Modern Russia. In Industry 4.0: Industrial Revolution of the 21st Century; Studies in Systems, Decision and Control; Popkova, E., Ragulina, Y., Bogoviz, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 169. [Google Scholar]
- Chen, W.-M.; Kim, H.; Yamaguchi, H. Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 2014, 74, 319–329. [Google Scholar] [CrossRef]
- Nagara, G.; Lam, W.-H.; Lee, N.C.H.; Othman, F.; Shaaban, M.G. Comparative SWOT analysis for water solutions in Asia and Africa. Water Resour. Manag. 2015, 29, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Falcone, P.M.; Tani, A.; Tartiu, V.E.; Imbriani, C. Towards a sustainable forest-based bioeconomy in Italy: Findings from a SWOT analysis. For. Policy Econ. 2020, 110, 101910. [Google Scholar] [CrossRef]
- Hajizadeh, Y. Machine learning in oil and gas; a SWOT analysis approach. J. Pet. Sci. Eng. 2019, 176, 661–663. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective—A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Lei, Y.; Lu, X.; Shi, M.; Wang, L.; Lv, H.; Chen, S.; Hu, C.; Yu, Q.; da Silveira, S.D.H. SWOT analysis for the development of photovoltaic solar power in Africa in comparison with China. Environ. Impact Assess. Rev. 2019, 77, 122–127. [Google Scholar] [CrossRef]
- Pesonen, M.; Kurttila, M.; Kangas, J.; Kajanus, M.; Heinonen, P. Assessing the priorities using A’WOT among resource management strategies at the Finish Forest and Park Service. For. Sci. 2000, 47, 534–541. [Google Scholar]
- Kurttila, M.; Pesonen, M.; Kangas, J.; Kajanus, M. Utilizing the analytic hierarchy process AHP in SWOT analysis—A hybrid method and its application to a forest-certification case. For. Policy Econ. 2000, 1, 41–52. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Alavalapati, J.R.; Kalmbacher, R.S. Exploring the potential for silvopasture adoption in south-central Florida: An application of SWOT–AHP method. Agric. Syst. 2004, 81, 185–199. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, J. A Sustainable Development Strategy for the Uzbekistan Textile Industry: The Results of a SWOT-AHP Analysis. Sustainability 2019, 11, 4613. [Google Scholar] [CrossRef] [Green Version]
- Brunnhofer, M.; Gabriella, N.; Schöggl, J.P.; Stern, T.; Posch, A. The biorefinery transition in the European pulp and paper industry—A three-phase Delphi study including a SWOT-AHP analysis. For. Policy Econ. 2020, 110, 101882. [Google Scholar] [CrossRef]
- Görener, A.; Toker, K.; Ulucay, K. Application of Combined SWOT and AHP: A Case Study for a Manufacturing Firm. Procedia-Soc. Behav. Sci. 2012, 58, 1525–1534. [Google Scholar]
- Du, F.; Liu, Y. Study on Eco-environmental Evaluation of Southwest Frontier Ethnic Areas Based on SWOT-AHP. IOP Conf. Ser. Earth Environ. Sci. 2020, 450, 012090. [Google Scholar] [CrossRef]
- Ashutosh, A.; Sharma, A.; Beg, M.A. Strategic analysis using SWOT-AHP: A fibre cement sheet company application. J. Manag. Dev. 2020. [Google Scholar] [CrossRef]
- Laroche, G.; Domon, G.; Gélinas, N.; Doyon, M.; Olivier, A. Integrating agroforestry intercropping systems in contrasted agricultural landscapes: A SWOT-AHP analysis of stakeholders’ perceptions. Agrofor. Syst. 2019, 93, 947–959. [Google Scholar] [CrossRef]
- Mor, R.S.; Bhardwaj, A.; Singh, S. Integration of SWOT-AHP Approach for Measuring the Critical Factors of Dairy Supply Chain. Logistics 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, I.; Falcone, P.M.; Gastaldi, M.; Morone, P. RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport. Energy Policy 2020, 138, 111220. [Google Scholar] [CrossRef]
- Gogus, A. Brainstorming and Learning Encyclopedia of the Sciences of Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 484–488. [Google Scholar]
- Al-Samarraie, H.; Hurmuzan, S. A Review of Brainstorming Techniques in Higher Education. Think. Ski. Creat. 2018, 27, 78–91. [Google Scholar] [CrossRef]
- Bristol, T.; Fern, E.F. Exploring the Atmosphere Created by Focus Group Interviews: Comparing Consumers’ Feelings across Qualitative Techniques. Int. J. Mark. Res. 1996, 38, 1–9. [Google Scholar] [CrossRef]
- Colucci, E. “Focus Groups Can Be Fun”: The Use of Activity-Oriented Questions in Focus Group Discussions. Qual. Health Res. 2007, 17, 1422–1433. [Google Scholar] [CrossRef] [PubMed]
- Boone, H.N., Jr.; Deborah, A. Boone, Analyzing Likert Data. J. Ext. 2012, 50, 2TOT2. [Google Scholar]
- Shah, R.; Ward, P. Defining and developing measures of lean production. J. Oper. Manag. 2007, 25, 785–805. [Google Scholar] [CrossRef]
- Tortorella, G.; Cawley Vergara, A.; Mac Garza-Reyes, J.; Sawhney, R. Organizational learning paths based upon industry 4.0 adoption: An empirical study with Brazilian manufacturers. Int. J. Prod. Econ. 2020, 219, 284–294. [Google Scholar] [CrossRef]
- Weihrich, H. The TOWS matrix—A tool for situation analysis. Long Range Plan. 1982, 15, 54–66. [Google Scholar] [CrossRef]
- Kotler, P. Marketing Management: Analysis, Planning, Implementation and Control, 8th ed.; Printice-Hall: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Smith, J.A. The behavior and performance of young micro firms: Evidence from businesses in Scotland. Small Bus. Econ. 1999, 13, 185–200. [Google Scholar] [CrossRef]
- Hill, T.; Westbrook, R. SWOTanalysis: It_s time for a product recall. Long Range Plan. 1997, 30, 46–52. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Çimren, E.; Çatay, B.; Budak, E. Development of a machine tool selection system using AHP. Int. J. Adv. Manuf. Technol. 2007, 35, 363–376. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic Hierarchy Process and Expert Choice: Benefits and limitations. OR Insight 2009, 22, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. A scaling method for priorities in hierarchical structure. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The analytic hierarchy process: A 1993 overview. Cent. Eur. J. Oper. Res. Econ. 1993, 2, 119–137. [Google Scholar]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Tafti, S.F.; Jalili, E.; Yahyaeian, L. Assessment and Analysis Strategies according to Space matrix-case study: Petrochemical and banking industries in Tehran Stock Exchange (TSE). Procedia-Soc. Behav. Sci. 2013, 99, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Budiman, I.; Tarigan, U.P.P.; Mardhatillah, A.; Sembiring, A.C.; Teddy, W. Developing business strategies using SWOT analysis in a color crackers industry. J. Phys. Conf. Ser. 2018, 1007, 012023. [Google Scholar] [CrossRef] [Green Version]
Numerical Value | Significance | Reason |
---|---|---|
1 | Equal importance | Two criteria are equally important |
3 | Moderate importance | One criterion is slightly favored over another |
5 | Strong importance | One criterion is strongly favored over another |
7 | Very strong importance | One criterion is very strongly favored over another |
9 | Extreme importance | A criterion is of highest importance with respect to another |
2, 4, 6, and 8 can be used to represent intermediate values. |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
SWOT | Experts | E1 | E2 | E3 | E4 |
---|---|---|---|---|---|
Strengths | λmax | 7.0135 | 7.1952 | 7.1801 | 7.1953 |
CI | 0.0023 | 0.0325 | 0.0300 | 0.0325 | |
CR (%) | 0.17 | 2.47 | 2.27 | 2.47 | |
Weaknesses | λmax | 9.0153 | 9.2711 | 9.3119 | 9.0398 |
CI | 0.0019 | 0.0339 | 0.0390 | 0.0050 | |
CR (%) | 0.13 | 2.34 | 2.69 | 0.34 | |
Opportunities | λmax | 5.0099 | 5.0680 | 5 | 5.0363 |
CI | 0.0025 | 0.0170 | 0 | 0.0091 | |
CR (%) | 0.22 | 1.52 | 0.00 | 0.81 | |
Threats | λmax | 4 | 4.0605 | 4.0732 | 4 |
CI | 0 | 0.0202 | 0.0244 | 0 | |
CR (%) | 0.00 | 2.24 | 2.71 | 0.00 |
SWOT | Experts | Weight | ||||
---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | GM | Normalized Weights | |
Strengths | ||||||
Willingness | 0.1192 | 0.3543 | 0.2814 | 0.1959 | 0.2196 | 0.2380 |
Experts | 0.1192 | 0.1587 | 0.2814 | 0.2300 | 0.1870 | 0.2027 |
Competitiveness | 0.2291 | 0.0676 | 0.1200 | 0.0501 | 0.0982 | 0.1064 |
Infrastructure | 0.0650 | 0.0312 | 0.0542 | 0.1479 | 0.0635 | 0.0688 |
Established Departments | 0.1192 | 0.1036 | 0.0542 | 0.1479 | 0.0998 | 0.1081 |
Internet Access | 0.2291 | 0.2399 | 0.1813 | 0.1479 | 0.1960 | 0.2124 |
Inventions and Patents | 0.1192 | 0.0448 | 0.0276 | 0.0801 | 0.0586 | 0.0635 |
Weaknesses | ||||||
Laboratory collaboration | 0.1194 | 0.0743 | 0.0523 | 0.0428 | 0.0668 | 0.0764 |
Funded projects | 0.1194 | 0.2733 | 0.2005 | 0.0749 | 0.1488 | 0.1703 |
Industrial collaborations | 0.2182 | 0.1802 | 0.2205 | 0.0749 | 0.1597 | 0.1827 |
Specialized staff (Industry) | 0.1194 | 0.1164 | 0.0473 | 0.2229 | 0.1100 | 0.1259 |
Educational programs | 0.0617 | 0.0485 | 0.2005 | 0.1369 | 0.0952 | 0.1090 |
Multidisciplinary teams | 0.0617 | 0.0743 | 0.0271 | 0.0749 | 0.0552 | 0.0632 |
System development and Retrofit | 0.1194 | 0.0336 | 0.1206 | 0.0749 | 0.0776 | 0.0888 |
Promoting strategies | 0.0617 | 0.1803 | 0.0501 | 0.0749 | 0.0804 | 0.0920 |
IT dependence | 0.1194 | 0.0191 | 0.0812 | 0.2229 | 0.0802 | 0.0917 |
Opportunities | ||||||
Domestic growth | 0.1843 | 0.2625 | 0.0909 | 0.0683 | 0.1316 | 0.1492 |
Worldwide popularity | 0.0980 | 0.1599 | 0.3636 | 0.3192 | 0.2065 | 0.2340 |
Skill development | 0.1843 | 0.0973 | 0.3636 | 0.1840 | 0.1861 | 0.2109 |
Smart factories | 0.1843 | 0.0618 | 0.0909 | 0.1093 | 0.1031 | 0.1169 |
International collaborations | 0.3491 | 0.4185 | 0.0909 | 0.3192 | 0.2552 | 0.2891 |
Threats | ||||||
Security Issues | 0.2857 | 0.0790 | 0.1514 | 0.3333 | 0.1837 | 0.2133 |
Intangible roadmap | 0.1429 | 0.2689 | 0.6348 | 0.3333 | 0.3002 | 0.3486 |
Huge investments | 0.2857 | 0.5732 | 0.1514 | 0.1667 | 0.2536 | 0.2944 |
Employee fear and concern | 0.2857 | 0.0790 | 0.0624 | 0.1667 | 0.1237 | 0.1437 |
SWOT Factors | Value | Weight | Value × Weight | |
---|---|---|---|---|
Strengths | University willingness to support programs pertaining to Industry 4.0 | 3.4177 | 0.2380 | 0.8135 |
Presence of experts and staff to develop the specialized talents | 3.2152 | 0.2027 | 0.6517 | |
Availability of the infrastructure, mandatory to Industry 4.0 | 2.8987 | 0.0688 | 0.1995 | |
Matured and well-established computer science and engineering departments | 3.4051 | 0.1081 | 0.3681 | |
Internet accessibility and speed within the university | 3.7975 | 0.2124 | 0.8064 | |
Support for inventions and patent generation | 3.6709 | 0.0635 | 0.2332 | |
Digital transformation could improve competitiveness on the international stage | 3.9873 | 0.1064 | 0.4244 | |
3.4969 | ||||
Weaknesses | Collaboration between laboratories | 3.3038 | 0.0764 | 0.2524 |
Funded projects related to Industry 4.0 | 3.2658 | 0.1703 | 0.5561 | |
Collaboration between university and industries | 2.2405 | 0.1827 | 0.4094 | |
Educational programs and seminars | 3.2152 | 0.1090 | 0.3503 | |
Projects with multidisciplinary teams | 2.8861 | 0.0632 | 0.1823 | |
Inclination to develop own system or retrofit the existing one | 3.2405 | 0.0888 | 0.2877 | |
Dependence on IT or technology | 4.1518 | 0.0917 | 0.3809 | |
Staff with industrial experience | 3.3924 | 0.1259 | 0.4272 | |
Strategies to promote, invest, and generate awareness regarding Industry 4.0 | 3.2278 | 0.0920 | 0.2970 | |
3.1433 | ||||
S–W | 0.3536 | |||
Opportunities | Market growth | 3.5443 | 0.1492 | 0.5287 |
Worldwide popularity | 3.5570 | 0.2340 | 0.8323 | |
Skill development | 3.6835 | 0.2109 | 0.7767 | |
Smart factories and intelligent applications | 4.0127 | 0.1169 | 0.4689 | |
International collaborations | 3.8608 | 0.2891 | 1.1163 | |
3.7229 | ||||
Threats | Security issues | 3.5949 | 0.2133 | 0.7668 |
Intangible roadmap, strategies, and framework | 3.2025 | 0.3486 | 1.1164 | |
Large investments and uncertain profitability | 3.3924 | 0.2944 | 0.9987 | |
Employee fear and concerns | 3.3038 | 0.1437 | 0.4747 | |
3.3567 | ||||
O–T | 0.3662 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian, S.H.; Salah, B.; Ameen, W.; Moiduddin, K.; Alkhalefah, H. Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities. Sustainability 2020, 12, 6100. https://doi.org/10.3390/su12156100
Mian SH, Salah B, Ameen W, Moiduddin K, Alkhalefah H. Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities. Sustainability. 2020; 12(15):6100. https://doi.org/10.3390/su12156100
Chicago/Turabian StyleMian, Syed Hammad, Bashir Salah, Wadea Ameen, Khaja Moiduddin, and Hisham Alkhalefah. 2020. "Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities" Sustainability 12, no. 15: 6100. https://doi.org/10.3390/su12156100
APA StyleMian, S. H., Salah, B., Ameen, W., Moiduddin, K., & Alkhalefah, H. (2020). Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities. Sustainability, 12(15), 6100. https://doi.org/10.3390/su12156100