Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration
Abstract
:1. Introduction
2. Terrestrial and Aquatic C Pools: Processes, Uses, Management, and Budgets
2.1. C Pools and Fluxes
2.1.1. C Pools: Organic and Inorganic C in Natural Systems
2.1.2. C Pools within Soils, and Uncertainties
2.1.3. C pools, fluxes within Aquatic Systems, and Uncertainties
2.1.4. The Need to Improve Understanding and Measurement of C Pools, Stocks, and Fluxes
2.2. Targetable Knowledge: Reducing Uncertainties in Calculated C Stocks and CoCS Budgets
2.2.1. Create/Sustain Measurements Databases and Standardized Monitoring in Various Socio-Ecosystems to Monitor C Stocks and C Sequestration
2.2.2. Improve Modelling to Predict/Calculate C Stocks, Fluxes, Budgets, and their Climatic Feedbacks
- The poorly understood links between soil organic carbon and inorganic carbon pools.
- C transport between terrestrial and aquatic systems, particularly at the bottoms of slopes, along riverbanks, and in flood plains.
- Underground lateral C transport.
- Capture and release of C in the aquatic network.
- Terrestrial biological activities of soil and inland water macro-fauna and microorganisms, whose effects on CoCS budgets are poorly understood and may be controversial.
- The poorly understood links between rural and urban anthropic processes: e.g., OM transfers involving land uses and practices; the biophysical processes affected by OM transfers; and the effects of OM transfers upon CoCS [43].
3. Processes Involved in the C cycle, from Individual Plants to Landscape Management
3.1. Diversity of Biophysical Processes and Human Processes; Upscaling to Landscape-Management Scenarios in CoCS
3.1.1. Biodiversity, land uses in the framework of C-allocation/CoCS
3.1.2. Plant Diversity and Evolution of Landscapes According to Biophysical and Ideational Characteristics
3.1.3. Spatial and Temporal Variations of Landscapes; Modelling CoCS in Landscape Management Scenarios
3.2. Targetable Knowledge: Identifying Processes on Which Innovative Technique Can Be Based
3.2.1. At the Plant Level: Specify and Quantify Factors Limiting Photosynthesis and C Metabolites Remaining in the Soil
- Identify interactions between rhizosphere microbiota and the C, water, and plant-nutrient cycles (e.g., N, P, and K).
- Quantify fraction of net primary production and C metabolites remaining in the soil.
- Study the factors that limit photosynthesis, and the plants species that circumvent these limits.
3.2.2. Between Plants and Landscape Levels: Developing Methods to Foster Monitoring of Innovative Plant Management for CoCS
3.2.3. At the Landscape Level: Specify Links Between Biodiversity and CoCS
3.2.4. How CoCS is Affected by Agricultural Practices and by Scales of Land-Use Management Under Different Intensities of Land Use
3.2.5. Facilitating Shifts from Plant-Scale to Landscape-Scale Management and CoCS Modelling
3.2.6. Toward a Typology for Classifying Soil and Plant Processes
4. Viability, Vulnerability, and Resilience in CoCS Practices
4.1. Participative Research as a Holistic Approach in CoCS
4.2. Sustainable Development and the Juridical Challenges of CoCS Implementation
4.3. A Long-Term Timescale to Better Understand CoCS Dynamics and Their Juridical Implementation within Socio-Ecosystems
4.4. Side Benefits of CoCS Juridical Implementation for Socio Ecosystems, from Local to Global
4.5. Targetable Knowledge: Understanding the Process of Adopting Practices to Increase C Stocks
4.5.1. Engage Stakeholders in Participative Research to Implement CoCS Practices
4.5.2. Identified Issues in Participative Research on CoCS and the Implementation of CoCS Practices
- Identifying routes, speeds, obstructions, stocks, transformations, points of no return, and real or perceived risks taken by individuals, families, and local government when adopting or continuing practices to increase C stocks.
- Identifying social, cultural, and financial constraints: What are the characteristics of the local community that may influence individual or collective adoption of particular practices? (e.g., what are the inhabitants’ needs; cultural, social, and agricultural customs, standards of living, and financial resources?) Also, how do the inhabitants’ relationships with administrative, legislative, and political systems affect their agricultural choices?
4.6. Targetable Knowledge: Improving Viability of Practices to Increase C Stocks, from Land Tenure and Agricultural Stakeholders to Consumers
- Individual and collective benefits from C stocks, and
- Support from appropriate social, financial, legal, and technological tools.
5. Moving toward Sustainability Science
5.1. The Paris Agreement and Nationally Determined Contributions (NDCs): Mismatch between Calculated and Recommended CoCS Budgets
5.2. From Biophysical Processes of CoCS to the Inclusion of Human Sciences: Defragmenting the Field of CoCS
5.3. Organizing Existing Knowledge
5.3.1. Achieving Homogeneity of CoCS Concepts and Databases for Transdisciplinary Objectives
5.3.2. Having Strong Policy Support for CoCS Systems (from Fundamental Research to Implementation)
5.3.3. Building Man-Environment Observatories as a Framework for Moving Toward a CoCS Sustainability Science
5.4. Produce Hybrid Knowledge (Building Bridges between the Scientific Community, General Public, and Decision-Makers)
5.4.1. Fostering Communication among Stakeholders (Scientists, Producers, Decision-Makers, and Citizens)
5.4.2. Broad Spatio-Temporal Scales: International and Local Agreements with Inclusion of CoCS in Development Plans and Guides
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gasser, T.; Guivarch, C.; Tachiiri, K.; Jones, C.D.; Ciais, P. Negative emissions physically needed to keep global warming below 2 C. Nat. Commun. 2015, 6, 7958. [Google Scholar] [CrossRef] [PubMed]
- Beerling, D.J.; Leake, J.R.; Long, S.P.; Scholes, J.D.; Ton, J.; Nelson, P.N.; Bird, M.; Kantzas, E.; Taylor, L.L.; Sarkar, B.; et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 2018, 4, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.L.; Beerling, D.J.; Quegan, S.; Banwart, S.A. Simulating carbon capture by enhanced weathering with croplands: An overview of key processes highlighting areas of future model development. Biol. Lett. 2017, 13, 20160868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, D.; Goglio, P.; Williams, A.; Manning, D.A.; de Azevedo, A.C.; Bergmann, M.; Meersmans, J.; Smith, P. Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil. J. Clean. Prod. 2019, 233, 468–481. [Google Scholar] [CrossRef]
- Huijgen, W.J.; Witkamp, G.J.; Comans, R.N. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef] [PubMed]
- Mayes, W.M.; Riley, A.L.; Gomes, H.I.; Brabham, P.; Hamlyn, J.; Pullin, H.; Renforth, P. Atmospheric CO2 sequestration in iron and steel slag: Consett, County Durham, United Kingdom. Environ. Sci. Technol. 2018, 52, 7892–7900. [Google Scholar] [CrossRef]
- Lal, R. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. 2008, 1, 86–100. [Google Scholar] [CrossRef]
- Tubiello, F.; Van der Velde, M. Land and Water Use Options for Climate Change Adaptation and Mitigation in Agriculture; SOLAW Background Thematic Report—TR04A; GET-Carbon: New York, NY, USA, 2010. [Google Scholar]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Eory, V.; Pellerin, S.; Garcia, G.C.; Lehtonen, H.; Licite, I.; Mattila, H.; Lund-Sørensen, T.; Muldowney, J.; Popluga, D.; Strandmark, L.; et al. Marginal abatement cost curves for agricultural climate policy: State-of-the art, lessons learnt and future potential. J. Clean. Prod. 2018, 182, 705–716. [Google Scholar] [CrossRef]
- IPCC, A.R. Intergovernmental Panel on Climate Change Climate Change Fifth Assessment Report (AR5); IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Barriere, O.; Behnassi, M.; David, G.; Douzal, V.; Fargette, M.; Libourel, T.; Loireau, M.; Pascal, L.; Prost, C.; Ravenacanete, V.; et al. Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change, 1st ed.; Springer International Editions: Cham, Switzerland, 2019; Volume 1, p. 789. [Google Scholar]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action, 1st ed.; Cambridge University Press: Cambridge, UK, 1990; p. 295. [Google Scholar]
- Bernoux, M.; Cerri, C.C.; Cerri, C.E.; Neto, M.S.; Metay, A.; Perrin, A.S.; Scopel, E.; Tantely, R.; Blavet, D.; de Piccolo, M.C.; et al. Cropping systems, carbon sequestration and erosion in Brazil: A review. In Sustainable Agriculture, 1st ed.; Springer: Dordrecht, Germany, 2009; pp. 75–85. [Google Scholar]
- Odum, E.P.; Barrett, G.W. Fundamentals of Ecology, 5th ed.; Elsevier: Philadelphia, PA, USA, 1971; Volume 3, p. 546. [Google Scholar]
- Delahaye, D.; Gascuel-Odoux, C. Écosystèmes continentaux aquatiques et terrestres. In Changement Climatique Dans l’Ouest. Evaluation, Impacts, Perceptions; Merot, P., Delahaye, D., Desnos, P., Eds.; Presses Universitaires de Rennes, Espace et Territoires: Rennes, France, 2013; pp. 179–182. [Google Scholar]
- Berkowitz, A.R.; Nilon, C.H.; Hollweg, K.S. (Eds.) Understanding Urban Ecosystems: A New Frontier for Science and Education, 2nd ed.; Springer: New York, NY, USA, 2003; p. 526. [Google Scholar]
- Quéré, C.L.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global carbon budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Bustamante, M.M.C.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.J.; House, J.I.; Jafari, M.; et al. Agriculture, Forestry and other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 811–922. [Google Scholar]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisaki, K.; Chevallier, T.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J.L. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- Orange, D.; Rinh, P.D.; Tran, D.; Thierry, H.; Tureaux, D.; Laissus, M.; Phuong, N.D.; Phai, D.D.; Nguyen, B.; Nguyen, T.; et al. Long-term erosion measurements on sloping lands in northern Vietnam: Impact of land use change on bed load output. In Conservation Agriculture and Sustainable Upland Livelihoods: Innovations for, with and by Farmers to Adapt to Local and Global Changes: Proceedings, 1st ed.; Hauswirth, D., Pham Thi, S., Nicetic, O., Le Quoc, D., Kirchof, G., Boulakia, S., Chabierski, S., Hudsson, O., Chabanne, A., Boyer, J., et al., Eds.; CIRAD: Montpellier, France, 2012; pp. 49–52. [Google Scholar]
- Regnier, P.; Friedlingstein, P.; Ciais, P.; Mackenzie, F.T.; Gruber, N.; Janssens, I.A.; Laruelle, G.G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 2013, 6, 597–607. [Google Scholar] [CrossRef]
- Batjes, N.H. Landmark Papers: Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 2014, 65, 4–21. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Corbeels, M.; Cardinael, R.; Naudin, K.; Guibert, H.; Torquebiau, E. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil Tillage Res. 2019, 188, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Hastie, A.; Lauerwald, R.; Weyhenmeyer, G.; Sobek, S.; Verpoorter, C.; Regnier, P. CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections. Glob. Chang. Biol. 2018, 24, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, T.W.; Raymond, P.A.; Spencer, R.G. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 2018, 3, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Sadaoui, M.; Ludwig, W.; Bourrin, F.; Bissonnais, Y.L.; Romero, E. Anthropogenic reservoirs of various sizes trap most of the sediment in the Mediterranean Maghreb Basin. Water 2018, 10, 927. [Google Scholar] [CrossRef] [Green Version]
- Phyoe, W.W.; Wang, F. A review of carbon sink or source effect on artificial reservoirs. Int. J. Environ. Sci. Technol. 2019, 16, 2161–2174. [Google Scholar] [CrossRef]
- Bispo, A.; Andersen, L.; Angers, D.A.; Bernoux, M.; Brossard, M.; Cécillon, L.; Comans, R.N.; Harmsen, J.; Jonassen, K.; Lamé, F.; et al. Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: Do we have the necessary standards? Front. Environ. Sci. 2017, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Cardinael, R.; Chevallier, T.; Guenet, B.; Girardin, C.; Cozzi, T.; Pouteau, V.; Chenu, C. Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system. Eur. J. Soil Sci. 2019. [Google Scholar] [CrossRef]
- An, H.; Wu, X.; Zhang, Y.; Tang, Z. Effects of land-use change on soil inorganic carbon: A meta-analysis. Geoderma 2019, 353, 273–282. [Google Scholar] [CrossRef]
- Rossel, R.V.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B.; Doney, S.C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 2018, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dignac, M.F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Huang, S.L.; Budd, W.W. Assessing the environmental impacts of high-altitude agriculture in Taiwan: A Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis. Ecol. Indic. 2013, 32, 42–50. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Effects of land use and cover change on terrestrial carbon stocks in urbanized areas: A study from Changzhou, China. J. Clean. Prod. 2015, 103, 651–657. [Google Scholar] [CrossRef]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, S107–S118. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Loireau, M.; Sghaier, M.; Chouikhi, F.; Fétoui, M.; Leibovici, D.G.; Debard, S.; Desconnets, J.C.; Khatra, N.B. SIEL: Système intégré pour la modélisation et l’évaluation du risque de désertification. Ingénierie Systèmes D’information. 2015, 20, 117–142. [Google Scholar] [CrossRef] [Green Version]
- Brossard, T.; Wieber, J.C. Le paysage: Trois définitions, un mode d’analyse et de cartographie. In L’Espace Géographique; Editions Belin: Paris, France, 1984; Volume 13, pp. 5–12. [Google Scholar]
- Council of Europe. European Landscape Convention, European Treaty Series; Council of Europe: Florence, Italy, 2000. [Google Scholar]
- Colomb, V.; Touchemoulin, O.; Bockel, L.; Chotte, J.L.; Martin, S.; Tinlot, M.; Bernoux, M. Selection of appropriate calculators for landscape-scale greenhouse gas assessment for agriculture and forestry. Environ. Res. Lett. 2013, 8, 015029. [Google Scholar] [CrossRef]
- Grinand, C.; Le Maire, G.; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 1–14. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Beral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatté, C. Atmosphere–soil carbon transfer as a function of soil depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, I.; Viaud, V.; Daufresne, T.; Pellerin, S.; Recous, S. Stoichiometry constraints challenge the potential of agroecological practices for the soil C storage. A review. Agron. Sustain. Dev. 2019, 39, 54. [Google Scholar] [CrossRef]
- Vezy, R.; Le Maire, G.; Christina, M.; Georgiou, S.; Imbach, P.; Hidalgo, H.G.; Alfaro, E.J.; Blitz-Frayret, C.; Charbonnier, F.; Lehner, P.; et al. DynACof: A process-based model to study growth, yield and ecosystem services of coffee agroforestry systems. Environ. Model. Softw. 2020, 124, 104609. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.; Monestiez, P.; Gomez, C.; Lagacherie, P. Combining measured sites, soilscapes map and soil sensing for mapping soil properties of a region. Geoderma 2017, 300, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Brossard, M.; López-Hernández, D. Des indicateurs d’évolution du milieu et des sols pour rendre durable l’usage des savanes d’Amérique du Sud. Nat. Sci. Sociétés 2005, 13, 266–278. [Google Scholar] [CrossRef]
- Demenois, J.; Torquebiau, E.; Arnoult, M.H.; Eglin, T.; Masse, D.; Assouma, M.H.; Blanfort, V.; Chenu, C.; Chapuis-Lardy, L.; Medoc, J.M.; et al. Barriers and strategies to boost soil carbon sequestration in agriculture. Front. Sustain. Food Syst. 2020, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Janzen, H.H. The soil carbon dilemma: Shall we hoard it or use it? Soil Biol. Biochem. 2006, 38, 419–424. [Google Scholar] [CrossRef]
- Manlay, R.J.; Freschet, G.T.; Abbadie, L.; Barbier, B.; Chotte, J.L.; Feller, C.; Leroy, M.; Serpantié, G. Séquestration du carbone et usage durable des savanes ouest-africaines: Synergie ou antagonisme? In Carbone des sols en Afrique. Impacts des Usages des sols et des Pratiques Agricoles, 1st ed.; Chevallier, T., Razafimbelo, T., Chapuis-Lardy, L., Brossard, M., Eds.; FAO/IRD: Marseille, France; Rome, Italy, 2020; pp. 239–252. [Google Scholar]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, A.; Janet, V. Etude Énergétique Territoriale du Parc Naturel Régional de Millevaches en Limousin, 2nd ed.; Parc naturel régional de Millevaches en Limousin: Millevaches, France, 2014; p. 59. [Google Scholar]
- Fargette, M.; Loireau, M.; Libourel, T. The relationships between Man and his environment: A systemic approach of System Earth viability. In Coviability of Social and Ecological Systems: Reconnecting Mankind and Biosphere in an Era of Global Change; The Foundations of a New Paradigm, Barrière, O., Benhassi, M., David, G., Douzal, V., Fargette, M., Libourel, T., Loireau, M., Pascal, L., Prost, C., et al., Eds.; Springer Nature: Cham, Switzerland, 2019; Volume 1, pp. 105–149. [Google Scholar]
- Durand, M.H.; Désilles, A.; Saint-Pierre, P.; Angeon, V.; Ozier-Lafontaine, H. Agroecological transition: A viability model to assess soil restoration. Nat. Resour. Modeling 2017, 30, e12134. [Google Scholar] [CrossRef] [Green Version]
- Sustainable Goals Knowledge Platform. Available online: https://sustainabledevelopment.un.org/index.php?page=view&type=30022&nr=126&menu=3170 (accessed on 12 June 2020).
- Drieux, E.; St-Louis, M.; Schlickenrieder, J.; Bernoux, M. State of the Koronivia Joint Work on Agriculture—Boosting Koronivia, 1st ed.; FAO: Rome, Italy, 2019; p. 32. [Google Scholar]
- FAO. The Agriculture Sectors in the Intended Nationally Determined Contributions: Analysis; FAO: Rome, Italy, 2016; p. 92. [Google Scholar]
- FAO. A Preliminary Review of Agriculture-Related Activities in the Green Climate Fund Portfolio; FAO: Rome, Italy, 2018; p. 6. [Google Scholar]
- Pellerin, S.; Bamière, L.; Launay, C.; Martin, R.; Schiavo, M.; Angers, D.; Augusto, L.; Balesdent, J.; Doelsch, I.B.; Bellassen, V.; et al. Stocker du Carbone Dans les sols Français, Quel Potentiel au Regard de L’objectif 4 Pour 1000 et à Quel Coût, 1st ed.; INRA Science et Impact: Paris, France, 2019; p. 117. [Google Scholar]
- Chorover, J.; Troch, P.; Rasmussen, C.; Brooks, P.D.; Pelletier, J.D.; Breshears, D.D.; Huxman, T.E.; Papuga, S.; Lohse, K.; McIntosh, J.C.; et al. Probing how water, carbon, and energy drive landscape evolution and surface water dynamics: The Jemez River Basin–Santa Catalina Mountains Critical Zone Observatory. Vadose Zone J. 2011, 10, 884–899. [Google Scholar] [CrossRef] [Green Version]
- Brandt, M.; Wigneron, J.P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2018, 2, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisaki, K.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Chotte, J.L.; Chevallier, T. Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands. Geoderma 2018, 313, 41–51. [Google Scholar] [CrossRef]
- Amendola, D.; Mutema, M.; Rosolen, V.; Chaplot, V. Soil hydromorphy and soil carbon: A global data analysis. Geoderma 2018, 324, 9–17. [Google Scholar] [CrossRef]
- Zalewski, M. Ecohydrology, biotechnology and engineering for cost efficiency in reaching the sustainability of biogeosphere. Ecohydrol. Hydrobiol. 2014, 14, 14–20. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Gao, Y.; Peng, J. Hotspot and relationship identification in multiple landscape services: A case study on an area with intensive human activities. Ecol. Indic. 2013, 29, 529–537. [Google Scholar] [CrossRef]
- Kearney, S.P.; Coops, N.C.; Chan, K.M.; Fonte, S.J.; Siles, P.; Smukler, S.M. Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador. J. Environ. Manag. 2017, 202, 287–298. [Google Scholar] [CrossRef]
- Poncet, Y.; Kuper, M.; Mullon, C.; Morand, P.; Orange, D. Représenter l’espace pour structurer le temps: La modélisation intégrée du delta intérieur du Niger au Mali. In Représentations Spatiales et Développement Territorial, 1st ed.; Lardon, S., Maurel, P., Piveteau, V., Eds.; Hermès: Paris, France, 2001; pp. 143–163. [Google Scholar]
- Fargette, M.; Loireau, M.; Ben Khatra, N.; Khiari, H.; Libourel, T. Conceptual Analysis of Climate Change in the Light of Society-Environment Relationships: Observatories Closer to Both Systems and Societies. In Communicating Climate Change Information for Decision-Making, 1st ed.; Serrao-Neumann, S., Coudrain, A., Coulter, L., Eds.; Springer Climate: Dordrecht, The Netherlands, 2018; pp. 29–48. [Google Scholar]
- Orange, D.; Toan, T.D.; Phuong, N.D.; Van Thiet, N.; Salgado, P.; Floraine, C. Different interests, common concerns and shared benefits. LEISA Mag. 2008, 242, 12–13. [Google Scholar]
- Eastes, R.E. Les SHS au secours de la communication des sciences—Pour une médiation scientifique en accord avec les besoins de la Société. Bull. l’AMCSTI Place SHS 2011, 35, 24–27. [Google Scholar]
- Scoones, I. Transforming soils: Transdisciplinary perspectives and pathways to sustainability. Curr. Opin. Environ. Sustain. 2015, 15, 20–24. [Google Scholar] [CrossRef]
- Loireau, M.; Fargette, M.; Desconnets, J.C.; Khiari, H. Observatoire scientifique en appui aux gestionnaires de territoire, entre abstraction OSAGE et réalité ROSELT/OSS. Rev. Int. Géomatique 2017, 27, 303–333. [Google Scholar] [CrossRef]
- Neches, R.; Fikes, R.E.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; Swartout, W.R. Enabling technology for knowledge sharing. AI Mag. 1991, 12, 36. [Google Scholar]
- Di Méo, G. Géographie Sociale et Territoires; Nathan Université: Paris, France, 1998. [Google Scholar]
- Raffestin, C. Écogenèse territoriale et territorialité. In Espaces, Jeux et Enjeux; Auriac, F., Brunet, R., Eds.; Fayard: Paris, France, 1986; pp. 173–185. [Google Scholar]
- Dérioz, P.; Bachimon, P.; Loireau, M.; Arcuset, L. Les non-dits du paysage: Explorer les controverses territoriales à partir d’une entrée paysagère. Expérimentation en Vicdessos (Ariège, France), entre dispositif pédagogique et recherche scientifique. In Débattre du Paysage. Enjeux Didactiques, Processus D’apprentissage, Formations; University of Geneva Faculté des Sciences de la Société: Geneva, Switzerland, 2017. [Google Scholar]
- Barrière, O.; Faure, J.F. L’enjeu d’un droit négocié pour le Parc amazonien de Guyane. Nat. Sci. Sociétés 2012, 20, 167–180. [Google Scholar]
- Barrière, O.; Bes, C. Droit foncier et pastoralisme, entre propriété et territoire. Rev. Électronique Sci. Environ. 2017, 17. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chevallier, T.; Loireau, M.; Courault, R.; Chapuis-Lardy, L.; Desjardins, T.; Gomez, C.; Grondin, A.; Guérin, F.; Orange, D.; Pélissier, R.; et al. Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration. Sustainability 2020, 12, 6715. https://doi.org/10.3390/su12176715
Chevallier T, Loireau M, Courault R, Chapuis-Lardy L, Desjardins T, Gomez C, Grondin A, Guérin F, Orange D, Pélissier R, et al. Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration. Sustainability. 2020; 12(17):6715. https://doi.org/10.3390/su12176715
Chicago/Turabian StyleChevallier, Tiphaine, Maud Loireau, Romain Courault, Lydie Chapuis-Lardy, Thierry Desjardins, Cécile Gomez, Alexandre Grondin, Frédéric Guérin, Didier Orange, Raphaël Pélissier, and et al. 2020. "Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration" Sustainability 12, no. 17: 6715. https://doi.org/10.3390/su12176715
APA StyleChevallier, T., Loireau, M., Courault, R., Chapuis-Lardy, L., Desjardins, T., Gomez, C., Grondin, A., Guérin, F., Orange, D., Pélissier, R., Serpantié, G., Durand, M.-H., Derioz, P., Laruelle, G. G., Schwoob, M.-H., Viovy, N., Barrière, O., Blanchart, E., Blanfort, V., ... Chotte, J.-L. (2020). Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration. Sustainability, 12(17), 6715. https://doi.org/10.3390/su12176715