Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts
Abstract
:1. Introduction
2. Methodology
- (i)
- To establish recyclability scenarios for plastic, steel, copper and aluminium fractions in the two batteries studied, based on available data.
- (ii)
- To perform a reliable and consistent life cycle model on the life cycle assessment (LCA) methodology, to evaluate the recyclability scenarios.
- (iii)
- To compare the environmental impacts of the two batteries in monetary terms quantified by external environmental costs (externalities), i.e., the monetarization of environmental impacts.
2.1. Recyclability Scenarios
2.1.1. Scenario A (Baseline)
2.1.2. Scenario B (Recyclability Routes)
2.2. LCA Modelling
2.2.1. Goal and Scope Definition
2.2.2. Inventory Analysis
2.2.3. Impact Assessment
2.3. External Environmental Costs (Externalities)
3. Results and Discussion
3.1. Battery Characteristics
3.2. Distribution of Recycled Materials
3.3. Comparative LCA of the Two Batteries
3.4. Comparative Cost Analysis of the Recyclability Scenarios
3.5. Assessment of VRFB Recyclability
3.6. VRFB Environmental Impact by Components
3.7. VRFB Environmental Impact by Battery Materials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
eq | equivalents |
EI | Environmental indicator |
EC | External cost |
ECF | External cost factor |
ELCC | Environmental life cycle costing |
EOFP | Ozone formation, terrestrial ecosystems |
EOL | End-of-life |
ESS | Energy storage system |
FEP | Freshwater eutrophication |
FETP | Freshwater ecotoxicity |
FFP | Fossil resource scarcity |
GWP | Global warming |
HOFP | Ozone formation, human health |
HTPc | Human carcinogenic toxicity |
HTPnc | Human non-carcinogenic toxicity |
IRP | Ionising radiation |
LCA | Life cycle assessment |
LCC | Life cycle costing |
LCI | Life cycle inventory |
LIB | Li-ion batteries |
LMO | Lithium manganese oxide |
LOP | Land use |
MEP | Marine eutrophication |
METP | Marine ecotoxicity |
ODP | Stratospheric ozone depletion |
PMFP | Fine particulate matter formation |
PTFE | Polytetrafluoroethylene |
PVC | Polyvinyl chloride |
RFB | Redox flow battery |
SOP | Mineral resource scarcity |
TAP | Terrestrial acidification |
TETP | Terrestrial ecotoxicity |
VRFB | Vanadium redox flow battery |
WCP | Water consumption |
References and Notes
- Sverdrup, H.U.; Olafsdottir, A.H.; Ragnarsdottir, K.V. On the long-term sustainability of copper, zinc and lead supply, using a system dynamics model. Resour. Conserv. Recycl. X 2019, 4, 100007. [Google Scholar] [CrossRef]
- Cong, L.; Zhao, F.; Sutherland, J.W. Integration of dismantling operations into a value recovery plan for circular economy. J. Clean. Prod. 2017, 149, 378–386. [Google Scholar] [CrossRef]
- Royo, P.; Ferreira, V.J.; Ure, Z.; Gledhill, S.; López-Sabirón, A.M.; Ferreira, G. Multiple-Criteria Decision Analysis and characterisation of phase change materials for waste heat recovery at high temperature for sustainable energy-intensive industry. Mater. Des. 2020, 186. [Google Scholar] [CrossRef]
- Opatokun, S.A.; Lopez-Sabiron, A.; Ferreira, G.; Strezov, V. Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System. Sustainability 2017, 9, 1804. [Google Scholar] [CrossRef] [Green Version]
- López-Sabirón, A.M.; Fleiger, K.; Schäfer, S.; Antoñanzas, J.; Irazustabarrena, A.; Aranda-Usón, A.; Ferreira, G.A. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry. Waste Manag. Res. 2015, 33, 715–722. [Google Scholar] [CrossRef]
- Rydh, C.J.; Karlström, M. Life cycle inventory of recycling portable nickel–cadmium batteries. Resour. Conserv. Recycl. 2002, 34, 289–309. [Google Scholar] [CrossRef]
- Unterreiner, L.; Jülch, V.; Reith, S. Recycling of Battery Technologies—Ecological Impact Analysis Using Life Cycle Assessment (LCA). Energy Procedia 2016, 99, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, Y. An overview of recycling and treatment of spent LiFePO4 batteries in China. Resour. Conserv. Recycl. 2017, 127, 233–243. [Google Scholar] [CrossRef]
- Song, J.; Yan, W.; Cao, H.; Song, Q.; Ding, H.; Lv, Z.; Zhang, Y.; Sun, Z. Material flow analysis on critical raw materials of lithium-ion batteries in China. J. Clean. Prod. 2019, 215, 570–581. [Google Scholar] [CrossRef]
- Weber, S.; Peters, J.F.; Baumann, M.; Weil, M. Life Cycle Assessment of a Vanadium Redox Flow Battery. Environ. Sci. Technol. 2018, 52, 10864–10873. [Google Scholar] [CrossRef]
- Rigamonti, L.; Grosso, M.; Sunseri, M.C. Influence of assumptions about selection and recycling efficiencies on the LCA of integrated waste management systems. Int. J. Life Cycle Assess. 2009, 14, 411–419. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IRENA Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, UAE, 2017; ISBN 978-92-9260-038-9.
- Díaz-Ramírez, M.C.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Environmental Assessment of Electrochemical Energy Storage Device Manufacturing to Identify Drivers for Attaining Goals of Sustainable Materials 4.0. Sustainability 2020, 12, 342. [Google Scholar] [CrossRef] [Green Version]
- Brief produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol. Towards the battery of the future. Future Brief 20. Science for Environment Polic. 2018. Available online: https://ec.europa.eu/environment/integration/research/newsalert/pdf/towards_the_battery_of_the_future_FB20_en.pdf (accessed on 22 August 2020).
- IRENA Battery Storage Report. 2015.
- Sato, F.E.; Nakata, T. Recoverability Analysis of Critical Materials from Electric Vehicle Lithium-Ion Batteries through a Dynamic Fleet-Based Approach for Japan. Sustainability 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, X.; Li, M.; Chen, R.; Wu, F.; Amine, K.; Lu, J. The Recycling of Spent Lithium-Ion Batteries: A Review of Current Processes and Technologies. Electrochem. Energy Rev. 2018, 1, 461–482. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Sullivan, J.L.; Gaines, L. Status of life cycle inventories for batteries. Energy Convers. Manag. 2012, 58, 134–148. [Google Scholar] [CrossRef]
- Hiremath, M.; Derendorf, K.; Vogt, T. Comparative Life Cycle Assessment of Battery Storage Systems for Stationary Applications. Environ. Sci. Technol. 2015, 49, 4825–4833. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- SUBAT-SSPI-CT-2003-502490 Deliverable D 34 – Final report. Available online: https://battery-electric.com/subatdocs/WP6-031.pdf (accessed on 22 August 2020).
- Rydh, C.J. Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J. Power Sources 1999, 80, 21–29. [Google Scholar] [CrossRef]
- Van den Bossche, P.; Vergels, F.; Van Mierlo, J.; Matheys, J.; Van Autenboer, W. SUBAT: An assessment of sustainable battery technology. J. Power Sources 2006, 162, 913–919. [Google Scholar] [CrossRef]
- Arbabzadeh, M.; Johnson, J.X.; De Kleine, R.; Keoleian, G.A. Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration. Appl. Energy 2015, 146, 397–408. [Google Scholar] [CrossRef]
- Baumann, M.; Peters, J.F.; Weil, M.; Grunwald, A. CO2 Footprint and Life-Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications. Energy Technol. 2017, 5, 1071–1083. [Google Scholar] [CrossRef] [Green Version]
- Zackrisson, M.; Fransson, K.; Hildenbrand, J.; Lampic, G.; O’Dwyer, C. Life cycle assessment of lithium-air battery cells. J. Clean. Prod. 2016, 135, 299–311. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Li, T.; Zhang, J.; Yang, F.; Yuan, C. Life cycle assessment of high capacity molybdenum disulfide lithium-ion battery for electric vehicles. Energy 2017, 123, 77–88. [Google Scholar] [CrossRef]
- Albuquerque, T.L.M.; Mattos, C.A.; Scur, G.; Kissimoto, K. Life cycle costing and externalities to analyze circular economy strategy: Comparison between aluminum packaging and tinplate. J. Clean. Prod. 2019, 234, 477–486. [Google Scholar] [CrossRef]
- Gluch, P.; Baumann, H. The life cycle costing (LCC) approach: A conceptual discussion of its usefulness for environmental decision-making. Build. Environ. 2004, 39, 571–580. [Google Scholar] [CrossRef] [Green Version]
- De Nocker, L.; Debacker, W. Annex: Monetisation of the MMG Method; OVAM: Mechelen, Belgium, 2018. [Google Scholar]
- De Bruyn, S.; Bijleveld, M.; de Graaff, L.; Schep, E.; Schroten, A.; Vergeer, R.; Ahdour, S. Environmental Prices Handbook EU28 Version; CE Delft: Delft, The Netherlands, 2018; pp. 1–175. Available online: https://www.cedelft.eu/en/publications/2191/environmental-prices-handbook-eu28-version (accessed on 22 August 2020).
- Chen, H.; Cong, N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Rydh, C.J.; Sandén, B.A. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies. Energy Convers. Manag. 2005, 46, 1980–2000. [Google Scholar] [CrossRef]
- Ponce de León, C.; Frías-Ferrer, A.; González-García, J.; Szánto, D.A.; Walsh, F.C. Redox flow cells for energy conversion. J. Power Sources 2006, 160, 716–732. [Google Scholar] [CrossRef] [Green Version]
- Du Pasquier, A.; Plitz, I.; Menocal, S.; Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 2003, 115, 171–178. [Google Scholar] [CrossRef]
- Kondoh, J.; Ishii, I.; Yamaguchi, H.; Murata, A.; Otani, K.; Sakuta, K.; Higuchi, N.; Sekine, S.; Kamimoto, M. Electrical energy storage systems for energy networks. Energy Convers. Manag. 2000, 41, 1863–1874. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Q.; Li, Y.; Li, H.; Pan, X.; Mclellan, B. The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism. Appl. Energy 2019, 251. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Li, Y.; Xi, G. The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl. J. Hazard. Mater. 2005, 127, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Minke, C.; Dorantes Ledesma, M.A. Impact of cell design and maintenance strategy on life cycle costs of vanadium redox flow batteries. J. Energy Storage 2019, 21, 571–580. [Google Scholar] [CrossRef]
- Lockhart, E.; Li, X.; Booth, S.; Salasovich, J.; Olis, D.; Elsworth, J.; Lisell, L. Comparative Study of Techno-Economics of Lithium-Ion and Lead-Acid Batteries in Micro-Grids in Sub-Saharan Africa; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2019. [Google Scholar]
Environmental Indicator | Acronym | Unit |
---|---|---|
Global Warming | GWP | kg CO2 eq |
Stratospheric Ozone Depletion | ODP | kg CFC-11 eq |
Ionising radiation. | IRP | kBq Co-60 eq |
Ozone formation, Human health | HOFP | kg NOx eq |
Fine particulate matter formation | PMFP | kg PM2.5 eq |
Ozone formation, Terrestrial ecosystems | EOFP | kg NOx eq |
Terrestrial acidification | TAP | kg SO2 eq |
Freshwater eutrophication | FEP | kg P eq |
Marine eutrophication | MEP | kg N eq |
Terrestrial ecotoxicity | TETP | kg 1,4-DCB |
Freshwater ecotoxicity | FETP | kg 1,4-DCB |
Marine ecotoxicity | METP | kg 1,4-DCB |
Human carcinogenic toxicity | HTPc | kg 1,4-DCB |
Human non-carcinogenic toxicity | HTPnc | kg 1,4-DCB |
Land use | LOP | m2a crop eq |
Mineral resource scarcity | SOP | kg Cu eq |
Fossil resource scarcity | FFP | kg oil eq |
Water consumption | WCP | m3 |
Environmental Indicator (EI) | Unit | External Cost Factor, (2019) (€/Unit EI) |
---|---|---|
Climate change | kg CO2 eq | 0.060 |
Ozone depletion | kg CFC-11 eq | 51.984 |
Terrestrial acidification | kg SO2 eq | 26.416 |
Freshwater eutrophication | kg P eq | 2.016 |
Marine eutrophication | kg N eq | 3.299 |
Human toxicity | kg 1,4-DB eq | 0.227 |
Photochemical oxidant formation | kg NMVOC | 2.228 |
Particulate matter formation | kg PM10 eq | 24.082 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 9.431 |
Freshwater ecotoxicity | kg 1,4-DB eq | 0.039 |
Marine ecotoxicity | kg 1,4-DB eq | 0.008 |
Ionising radiation | kBq U235 eq | 0.002 |
Urban land occupation | m2a | 1.015 |
Fossil depletion | kg oil eq | 0.007 |
Water depletion | m3 | 0.071 |
Battery Characteristic | Battery Type | |
---|---|---|
LMO | VRFB | |
Lifetime, years | 12.5 [35,36] | 10.9 [10,22,35,37] |
Specific Energy, Wh kg‒1 Cycle‒1 | 148.8 [35,38] | 19.9 [10,22,35] |
Cycles/all lifespan | 5500 [35] | 12068 [10,22,35,39] |
Battery Manufacturing Inputs | Raw Data [24] | LCI | |||
---|---|---|---|---|---|
Value | Unit | Value | Unit | ||
Energy consumption for Assembly | Electricity | 42.75 | MJ/(kg battery) | 0.08 | MJ/(kWh storage) |
Electrode | Carbon | 14.96 | g/100 g battery | 0.29 | g/(kWh storage) |
Lithium metal oxide | 23.63 | g/100 g battery | 0.46 | g/(kWh storage) | |
Polyvinylidene fluoride | 1.19 | g/100 g battery | 0.02 | g/(kWh storage) | |
Styrene butadiene rubber | 1.19 | g/100 g battery | 0.02 | g/(kWh storage) | |
Aluminium | 20.73 | g/100 g battery | 0.41 | g/(kWh storage) | |
Copper | 15.55 | g/100 g battery | 0.30 | g/(kWh storage) | |
Electrolyte | Propylene Carbonate | 3.15 | g/100 g battery | 0.06 | g/(kWh storage) |
Ethylene Carbonate | 6.30 | g/100 g battery | 0.12 | g/(kWh storage) | |
Dimethyl Carbonate | 3.15 | g/100 g battery | 0.06 | g/(kWh storage) | |
Lithium hexafluorophosphate | 3.15 | g/100 g battery | 0.06 | g/(kWh storage) | |
Separator | Polypropylene | 5 | g/100 g battery | 0.06 | g/(kWh storage) |
Case | Steel | 2 | g/100 g battery | 0.04 | g/(kWh storage) |
Battery Manufacturing Inputs | Raw Data [25] | LCI | ||||
---|---|---|---|---|---|---|
Value | Unit | Value | Unit | |||
Assembly | Energy consumption | Electricity | 4.90 | MJ/(kg battery) | 0.08 | MJ/(kWh storage) |
Components of Power Subsystem | Electrodes | Copper | 0.78 | g/100 g battery | 0.13 | g/(kWh storage) |
Carbon felt, graphite | 0.26 | g/100 g battery | 0.04 | g/(kWh storage) | ||
Ionic membranes | Polysulphone (polystyrene manufacturing assumed) | 0.44 | g/100 g battery | 0.07 | g/(kWh storage) | |
Flow frames, bipolar plates | Polypropylene, rubber, carbon black | 1.39 | g/100 g battery | 0.23 | g/(kWh storage) | |
Components of Energy Subsystem | Electrolyte | Water | 47.85 | g/100 g battery | 7.71 | g/(kWh storage) |
Sulfuric Acid (pure) | 25.95 | g/100 g battery | 4.18 | g/(kWh storage) | ||
Vanadium pentoxide | 10.07 | g/100 g battery | 1.62 | g/(kWh storage) | ||
Electrolyte container | Polypropylene | 2.55 | g/100 g battery | 0.41 | g/(kWh storage) | |
Components of Periphery | Pumps, motors, racks and bolts | Stainless steel | 10.70 | g/100 g battery | 1.72 | g/(kWh storage) |
Battery Type | Materials | Components |
---|---|---|
LIB | Aluminium | Electrodes |
Copper | Electrodes | |
Plastic (Rubber) | Electrodes | |
Plastic (Polypropylene) | Separator | |
Steel | Case (Cell container) | |
VRFB | Copper | Electrodes |
Polysulphone (polystyrene manufacturing assumed) | Ionic membranes | |
Plastic (rubber) | Flow frames, bipolar plates | |
Plastic (Polypropylene) | Electrolyte container | |
Steel | Pumps, motors, racks and bolts |
Battery Type | Materials | Amount (Scenario B), g/kWh Storage |
---|---|---|
LIB | Aluminium | virgin = 0.085, secondary = 0.325 |
Copper | virgin = 0.062, secondary = 0.238 | |
Plastic | virgin = 0.053, secondary = 0.067 | |
Steel | virgin = 0.007, secondary = 0.033 | |
VRFB | Copper | virgin = 0.026, secondary = 0.100 |
Plastic (Polypropylene) | virgin = 0.313, secondary = 0.394 | |
Steel | virgin = 0.320, secondary = 1.403 |
Environmental Indicator (EI) | Unit | External Cost Factor, (2019) (€/Unit EI) | Li-ion (Scenario A), €/kWh Delivered | Li-ion (Scenario B), €/kWh Delivered | VRFB (Scenario A), €/kWh Delivered | VRFB (Scenario B), €/kWh Delivered |
---|---|---|---|---|---|---|
GWP | kg CO2 eq | 0.061 | 1.2 × 10−3 | 1.0 × 10−3 | 4.2 × 10−4 | 2.8 × 10−4 |
ODP | kg CFC11 eq | 51.984 | 7.2 × 10−7 | 7.2 × 10−7 | 2.0 × 10−7 | 2.2 × 10−7 |
IRP | kBq Co-60 eq | 0.002 | 3.0 × 10−6 | 1.0 × 10−5 | 8.1 × 10−7 | 4.0 × 10−6 |
HOFP | kg NOx eq | 2.228 | 1.3 × 10−4 | 1.0 × 10−4 | 5.1 × 10−5 | 3.6 × 10−5 |
PMFP | kg PM2.5 eq | 24.082 | 2.2 × 10−3 | 1.3 × 10−3 | 7.6 × 10−4 | 4.3 × 10−4 |
EOFP | kg NOx eq | 2.228 | 1.3 × 10−4 | 1.1 × 10−4 | 5.3 × 10−5 | 3.7 × 10−5 |
TAP | kg SO2 eq | 26.416 | 6.6 × 10−3 | 3.8 × 10−3 | 2.2 × 10−3 | 1.4 × 10−3 |
FEP | kg P eq | 2.016 | 1.0 × 10−4 | 4.6 × 10−5 | 2.9 × 10−5 | 8.3 × 10−6 |
MEP | kg N eq | 3.299 | 1.1 × 10−5 | 7.8 × 10−6 | 2.5 × 10−6 | 1.7 × 10−6 |
TETP | kg 1,4-DCB | 9.431 | 1.1 × 10+1 | 4.7 | 2.8 | 8.1 × 10−1 |
FETP | kg 1,4-DCB | 0.039 | 3.5 × 10−4 | 1.7 × 10−4 | 9.6 × 10−5 | 3.3 × 10−5 |
METP | kg 1,4-DCB | 0.008 | 1.0 × 10−4 | 4.8 × 10−5 | 2.8 × 10−5 | 9.5 × 10−6 |
HTPc | kg 1,4-DCB | 0.227 | 8.3 × 10−4 | 4.8 × 10−4 | 6.6 × 10−4 | 1.8 × 10−4 |
HTPnc | kg 1,4-DCB | 0.227 | 7.3 × 10−2 | 3.0 × 10−2 | 2.0 × 10−2 | 5.5 × 10−3 |
LOP | m2a crop eq | 1.015 | 6.9 × 10−4 | 1.6 × 10−3 | 2.2 × 10−4 | 6.1 × 10−4 |
SOP | kg Cu eq | 0 | 0 | 0 | 0 | 0 |
FFP | kg oil eq | 0.007 | 3.2 × 10−5 | 3.1 × 10−5 | 1.9 × 10−5 | 1.4 × 10−5 |
WCP | m3 | 0.071 | 1.5 × 10−5 | 3.1 × 10−5 | 1.1 × 10−5 | 1.1 × 10−5 |
Total, €/kWh delivered (all indicators) | 11 | 4.74 | 2.86 | 0.82 | ||
Total, €/MWh delivered (case without Tox./Ecot.) | 11,122 | 8065 | 3773 | 2793 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Ramírez, M.C.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts. Sustainability 2020, 12, 6840. https://doi.org/10.3390/su12176840
Díaz-Ramírez MC, Ferreira VJ, García-Armingol T, López-Sabirón AM, Ferreira G. Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts. Sustainability. 2020; 12(17):6840. https://doi.org/10.3390/su12176840
Chicago/Turabian StyleDíaz-Ramírez, Maryori C., Victor J. Ferreira, Tatiana García-Armingol, Ana M. López-Sabirón, and Germán Ferreira. 2020. "Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts" Sustainability 12, no. 17: 6840. https://doi.org/10.3390/su12176840
APA StyleDíaz-Ramírez, M. C., Ferreira, V. J., García-Armingol, T., López-Sabirón, A. M., & Ferreira, G. (2020). Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts. Sustainability, 12(17), 6840. https://doi.org/10.3390/su12176840