The Effect of the Comprehensive Rural Village Development Program on Farm Income in South Korea
Abstract
:1. Introduction
2. Research Background
2.1. Korea’s Rural Development Program in the Period of 2004–2013
2.2. Ex-Post Quantitative Policy Evaluation in Rural Development
3. Methodology
3.1. The Heckman Selection Model
3.2. The Blinder–Oaxaca Decomposition Technique
4. Data and Variables
5. Empirical Results
5.1. Average Farm Household Income by Policy Implementation
5.2. Cross-Sectional Evaluation on Making Farm Income
5.2.1. Comparison of Farm Income between the Program Implemented and Not-Implemented Areas
5.2.2. Decomposition for Cross-Sectional Program Effectiveness
5.3. Longitudinal Evaluation on Making Farm Income
5.3.1. Comparison of Farm Income before and after Program Implementation
5.3.2. Decomposition for Longitudinal Program Effectiveness
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Heckman Selection Model
Appendix B. The Blinder–Oaxaca Decomposition Technique
Appendix C. Descriptive Statistics of Sample Farm Households
2005 | 2015 | |||||||
---|---|---|---|---|---|---|---|---|
Not-Implemented | Implemented | Not-Implemented | Implemented | |||||
Mean | S.D | Mean | S.D | Mean | S.D | Mean | S.D | |
FARM INCOME | 15.5004 | 1.5118 | 15.5567 | 1.4909 | 15.6327 | 1.5225 | 15.8342 | 1.4908 |
AGE | 60.8388 | 11.0930 | 61.4844 | 11.0334 | 64.9052 | 10.9964 | 65.9798 | 10.9077 |
AGE_SQ | 3824.41 | 1315.25 | 3902.06 | 1313.56 | 4333.60 | 1398.09 | 4472.30 | 1402.48 |
GENDER | 0.8380 | 0.3684 | 0.8270 | 0.3782 | 0.8314 | 0.3744 | 0.8202 | 0.3840 |
MARRY | 0.8021 | 0.3984 | 0.7883 | 0.4086 | 0.7887 | 0.4083 | 0.7665 | 0.4231 |
HHNUM | 7.2310 | 4.2797 | 6.5789 | 4.1412 | 8.5965 | 4.2956 | 7.7809 | 4.1896 |
EDUY | 70.6038 | 63.7423 | 60.4305 | 56.8310 | 92.3516 | 71.1499 | 78.0942 | 64.3175 |
EDUY_SQ | 2.7299 | 1.3952 | 2.5427 | 1.3052 | 2.3779 | 1.1620 | 2.2221 | 1.0922 |
NEW | 0.0538 | 0.2256 | 0.0395 | 0.1947 | 0.0644 | 0.2454 | 0.0560 | 0.2300 |
INFO | 0.1118 | 0.3151 | 0.1128 | 0.3163 | 0.2014 | 0.4011 | 0.1877 | 0.3905 |
OTHER | 0.0866 | 0.2813 | 0.0864 | 0.2809 | 0.1852 | 0.3885 | 0.1762 | 0.3810 |
CROP2 | 0.5125 | 0.4998 | 0.4814 | 0.4997 | 0.4252 | 0.4944 | 0.3889 | 0.4875 |
CROP3 | 0.1211 | 0.3263 | 0.1164 | 0.3207 | 0.1755 | 0.3804 | 0.1718 | 0.3772 |
CROP4 | 0.2124 | 0.4090 | 0.2322 | 0.4222 | 0.2572 | 0.4371 | 0.2859 | 0.4518 |
CROP5 | 0.0696 | 0.2545 | 0.0678 | 0.2515 | 0.0510 | 0.2199 | 0.0574 | 0.2326 |
S_PLACE1 | 0.1058 | 0.3076 | 0.0991 | 0.2988 | 0.1091 | 0.3117 | 0.1197 | 0.3246 |
S_PLACE2 | 0.2617 | 0.4396 | 0.3065 | 0.4611 | 0.3602 | 0.4801 | 0.3847 | 0.4865 |
S_PLACE3 | 0.3184 | 0.4659 | 0.3474 | 0.4762 | 0.1579 | 0.3646 | 0.1902 | 0.3925 |
S_PLACE5 | 0.1103 | 0.3132 | 0.0924 | 0.2896 | 0.0967 | 0.2955 | 0.0852 | 0.2791 |
N | 47,062 | 21,951 | 39,344 | 17,686 |
2005 | 2015 | |||
---|---|---|---|---|
Mean | S.D | Mean | S.D | |
Farm Income | 15.8159 | 1.4812 | 15.8448 | 1.4875 |
AGE | 61.5581 | 10.9929 | 65.8776 | 10.9604 |
AGE_SQ | 3910.23 | 1308.42 | 4459.99 | 1406.17 |
GENDER | 0.8261 | 0.3790 | 0.8177 | 0.3861 |
MARRY | 0.7864 | 0.4099 | 0.7646 | 0.4243 |
HHNUM | 6.5969 | 4.1304 | 7.7987 | 4.1864 |
EDUY | 60.5789 | 56.9942 | 78.3436 | 64.2047 |
EDUY_SQ | 2.5484 | 1.3222 | 2.2204 | 1.0925 |
NEW | 0.0382 | 0.1916 | 0.0520 | 0.2220 |
INFO | 0.1094 | 0.3121 | 0.1883 | 0.3910 |
OTHER | 0.0861 | 0.2805 | 0.1774 | 0.3820 |
CROP2 | 0.4761 | 0.4994 | 0.3844 | 0.4865 |
CROP3 | 0.1179 | 0.3225 | 0.1727 | 0.3780 |
CROP4 | 0.2322 | 0.4222 | 0.2812 | 0.4496 |
CROP5 | 0.0696 | 0.2545 | 0.0619 | 0.2410 |
S_PLACE1 | 0.0989 | 0.2985 | 0.1138 | 0.3176 |
S_PLACE2 | 0.3067 | 0.4611 | 0.3913 | 0.4881 |
S_PLACE3 | 0.3445 | 0.4752 | 0.1859 | 0.3890 |
S_PLACE5 | 0.0931 | 0.2905 | 0.0885 | 0.2840 |
N | 22,114 | 17,376 |
References
- Romer, P. Increasing Returns and Long-run Growth. J. Pol. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef] [Green Version]
- Romer, P. Endogenous Technological Change. J. Pol. Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R. On the Mechanics of Economic Development. J. Monet. Econ. 1998, 22, 3–42. [Google Scholar] [CrossRef]
- Margarian, A. Endogenous Rural Development: Empowerment or Abandonment? In Proceedings of the 4th International Summer Conference in Regional Sciences, Dresden, Germany, 30 June–1 July 2011. [Google Scholar]
- van der Ploeg, J.D.; Long, A. (Eds.) Born from Within: Practice and Perspectives of Endogenous Rural Development; Van Gorcum: Assen, The Netherlands, 1994. [Google Scholar]
- Oostindie, H.; Broekhuizen, R.B.; Brunori, G.; van der Ploeg, J.D. Unfolding Webs: The Dynamics of Regional Rural Development; van der Ploeg, J.D., Marsden, T., Eds.; Van Gorcum: Assen, The Netherlands, 2008. [Google Scholar]
- OECD. The New Rural Paradigm: Policies and Governance; OECD: Paris, France, 2006.
- Lee, H. Differences in Performance of Rural Development Programs and their Implications on Rural Community Development. J. Rural Soc. 2012, 22, 7–48. (In Korean) [Google Scholar]
- Hwang, J.; Park, J.; Lee, S. The Impact of the Comprehensive Rural Village Development Program on Rural Sustainability in Korea. Sustainability 2018, 10, 2436. [Google Scholar] [CrossRef] [Green Version]
- Casnaño, J.; Blanco, M.; Martinez, P. Reviewing Counterfactual Analyses to Assess Impacts of EU Rural Development Programmes: What Lessons Can Be Learned from the 2007–2013 Ex-Post Evaluations? Sustainability 2019, 11, 1105. [Google Scholar] [CrossRef] [Green Version]
- D’Alberto, R.; Zavalloni, M.; Raggi, M.; Viaggi, D. AES Impact Evaluation with Integrated Farm Data: Combining Statistical Matching and Propensity Score Matching. Sustainability 2018, 10, 4320. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.; Höjgard, S.; Rabinowicz, E. Evaluation of Results and Adaptation of EU Rural Development Programmes. Land Use Pol. 2017, 67, 298–314. [Google Scholar] [CrossRef]
- Colen, L.; Paloma, S.G.; Latacz-Lohmann, U.L.; Lefebvre, M.; Préget, R.; Thoyer, S. Economic Experiments as a Tool for Agricultural Policy Evaluation: Insights from the European CAP. Can. J. Agri. Econ. 2016, 64, 667–694. [Google Scholar] [CrossRef] [Green Version]
- Lowe, P.; Murdoch, J.; Ward, N. Networks in Rural Development: Beyond Exogenous and Endogenous Models in Beyond Modernization: Impact of Endogenous Rural Development; Phloeg, J., Dijk, G., Eds.; Van Corcum: Assen, The Netherland, 1995. [Google Scholar]
- Kim, J.; Park, S.; Kim, Y.; Lim, J. Evaluation of Rural Development Policy and New Direction; Korea Rural Economic Institute: Seoul, Korea, 2011. (In Korean) [Google Scholar]
- Ministry for Food, Agriculture, Fishery and Forestry (MIFAFF). The White Paper: Comprehensive Rural Village Development Program; MIFAFF: Seoul, Korea, 2011. (In Korean)
- Gertler, P.J.; Martinez, S.; Premand, P.; Rawlings, L.B.; Vermeersch, C.M.J. Impact Evaluation in Practice; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Leeuw, F.L.; Vaessen, J. Impact Evaluations and Development: NONIE Guidance on Impact Evaluation (Network of Networks on Impact Evaluation); NONIE: Washington, DC, USA, 2009. [Google Scholar]
- Athey, S.; Imbens, G. The State of Applied Econometrics: Causality and Policy Evaluation. J. Econ. Pers. 2017, 31, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.; Stanley, J. Experimental and Quasi-Experimental Designs for Research; Houghton Mifflin Company: Boston, MA, USA, 1963. [Google Scholar]
- Rosenbaum, P. Observation and Experiment: An Introduction to Causal Inference; Harvard University Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Angrist, J.D.; Pischke, J. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Khandker, S.R.; Koolwal, G.B. Handbook on Impact Evaluation: Quantitative Methods and Practices; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Card, D.; Krueger, A.B. Minimum Wages and Employment: A Case Study of the Fast-Food industry in New Jersey and Pennsylvania. Am. Econ. Rev. 1994, 84, 772–793. [Google Scholar]
- Angrist, J.D.; Dynarski, S.M.; Kane, T.J.; Pathak, P.A.; Walters, C.R. Who Benefits from KIPP? J. Pol. Anal. Manag. 2012, 31, 837–860. [Google Scholar]
- Carpenter, C.; Dobkin, C. The Effect of Alcohol Consumption on Mortality: Regression Discontinuity Evidence from the Minimum Drinking Age. Am. Econ. J. Appl. Econ. 2009, 1, 164–182. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Abadie, A.; Gardeazabal, J. The Economic Costs of Conflict: A Case Study of the Basque Country. Am. Econ. Rev. 2003, 93, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Abadie, A.; Diamond, A.; Hainmueller, J. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program. J. Am. Stats. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.W.; Kim, B.H.S. The Effect of Direct Payment on the Prevention of Farmland Abandonment: The Case of the Hokkaido Prefecture in Japan. Sustainaiblity 2019, 12, 334. [Google Scholar] [CrossRef] [Green Version]
- Streiner, D.L.; Norman, G.R. The Pros and Cons of Propensity Scores. Chest 2012, 142, 1380–1382. [Google Scholar] [CrossRef] [PubMed]
- Bound, J.; Jaeger, D.A.; Baker, R.M. Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogenous Explanatory Variables is Weak. J. Am. Stat. Assoc. 1995, 90, 443–450. [Google Scholar] [CrossRef]
- Becker, S.O. Using Instrumental Variables to Establish Causality. In IZA World of Labor; Institute for the Study of Labor (IZA): Bonn, Germany, 2016. [Google Scholar]
- Hwang, J.; Lee, S.W. The Effect of the Rural Tourism Policy on Non-farm Income in South Korea. Tour. Manag. 2015, 46, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.; Ryan, J.; Kelly, T. Impact Assessment of Policy-oriented International Agricultural research: Evidence and Insights from Case Studies. World Dev. 2010, 38, 1453–1461. [Google Scholar] [CrossRef]
- Olfert, M.R.; Partridge, M.D. Best Practices in Twenty-first-century Rural Development and Policy. Growth Chang. 2010, 41, 147–164. [Google Scholar] [CrossRef]
- Clemens, M.A.; Demombynes, G. When Does Rigorous Impact Evaluation Make a Difference? The Case of the Millennium Villages. J. Dev. Eff. 2011, 3, 305–339. [Google Scholar] [CrossRef]
- Esposti, R.; Sotte, F. Evaluating the Effectiveness of Agricultural and Rural Policies: An Introduction. Eur. Rev. Agri. Econ. 2013, 40, 535–539. [Google Scholar] [CrossRef]
- Blinder, A. Wage Discrimination: Reduced Form and Structural Estimates. J. Hum. Res. 1973, 8, 436–455. [Google Scholar] [CrossRef]
- Oaxaca, R. Male-female Wage Differentials in Urban Labor Markets. Int. Econ. Rev. 1973, 14, 693–709. [Google Scholar] [CrossRef]
- Fortin, N.; Lemieux, T.; Firpo, S. Decomposition Methods in Economics. In Handbook of Labor Economics; Elsevier: Amsterdam, The Netherlands, 2011; Volume 4, pp. 1–102. [Google Scholar]
- Heckman, J.J. Sample Selection Bias as a Specification Error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Vella, F. Estimating Models with Sample Selection Bias: A Survey. J. Hum. Resour. 1998, 33, 127–169. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J.J. The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models. Ann. Econ. Soc. Meas. 1976, 5, 475–492. [Google Scholar]
- Puhani, P. The Heckman Correction for Sample Selection and Its Critique. J. Econ. Surv. 2000, 14, 53–68. [Google Scholar] [CrossRef]
- Nawata, K. Estimation of Sample Selection Bias Models by the Maximum Likelihood Estimator and Heckman’s two-step estimator. Econ. Lett. 1994, 45, 33–40. [Google Scholar] [CrossRef]
- Lee, S.W.; Yun, S. Quantitative Approaches for Agricultural and Rural Policy Evaluation. J. Korean Soc. Rural Plan. 2008, 14, 97–108. (In Korean) [Google Scholar]
- Imbens, G.W. Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review. Rev. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Fernández-Val, I.; Melly, B. Inference on Counterfactual Distributions. Econometrica 2013, 81, 2205–2268. [Google Scholar] [CrossRef] [Green Version]
- Fairly, R.W. An Extension of the Blinder-Oaxaca Decomposition Technique to Logit and Probit Models. J. Econ. Soc. Meas. 2005, 30, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.Y.; Cho, J.K.; Lee, S.W. The Effects of Eco-friendly Farming and Digital Competence on Agricultural Income. J. Rural Dev. 2004, 29, 45–62. (In Korean) [Google Scholar]
- Lockhead, M.E.; Jamison, T.; Lau, L.J. Farmer Education and Farm Efficiency: A Survey. Econ. Dev. Cult. Chang. 1980, 29, 37–76. [Google Scholar] [CrossRef]
- Yu, S.J.; Cho, J.K.; Lee, S.W. The Impact of Computer Applications on the Improvement of Farm Household Income. J. Korean Soc. Rural Plan. 2006, 12, 81–95. (In Korean) [Google Scholar]
- Park, J.H.; Hwang, J.H.; Lee, S.W. The Effect of the 6th Industrialization in Agriculture on Farm and Off-farm Income. J. Korean Soc. Rural Plan. 2014, 20, 193–208. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Kagatsume, M.; Yu, J. Market Channel Choice and Its Impact on Farm Household Income: A Case Study of 243 Apple Farmers in Shaanxi province, China. Jpn. Agric. Res. Q. 2014, 48, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Statistics Korea. Agricultural Census. Available online: mdis.kostat.go.kr (accessed on 23 December 2018).
- Tauer, L.W. Productivity of Farmers at Various Ages. North Cent. J. Agric. Econ. 1984, 6, 81–87. [Google Scholar] [CrossRef]
- Huffman, W.E. Human Capital, Education, and Agriculture. In Handbook of Agricultural Economics; Gardner, B., Rausser, G., Eds.; Elsevier-Science: Amsterdam, The Netherland, 2000. [Google Scholar]
- Woods, M. Rural Geography: Process, Responses and Experiences in Rural Restructuring; Sage Publications: London, UK, 2005. [Google Scholar]
- Kimanthi, H.; Paul, H. ‘Castle in the sky’: The anomaly of the millennium villages project fixing food and markets in Sauri, western Kenya. J. Rural Stud. 2018, 57, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J. Paradoxical Utopia: The Millennium Villages Project in Theory and Practice. J. Agrar. Chang. 2017, 17, 122–143. [Google Scholar] [CrossRef]
Variable | Description | ||
---|---|---|---|
Dependent Variables | |||
(Cross-sectional) First stage = Policy implemented area (=1), Policy not-implemented area (=0) (Longitudinal) First stage = After policy implementation (=1), Before policy implementation (=0) | |||
Second stage = Log transformation of farm income | |||
Independent Variables | |||
Demographic | Age of householder | AGE1 | 19~34 (=1), otherwise (=0) (Ref.) |
AGE2 | 35~44 (=1), otherwise (=0) | ||
AGE3 | 45~54 (=1), otherwise (=0) | ||
AGE4 | 55~64 (=1), otherwise (=0) | ||
AGE5 | Over 65 (=1), otherwise (=0) | ||
AGE | Householder’s age (linear) | ||
AGE_SQ | AGE*AGE | ||
Gender | MALE | Male (=1), Female (=0.) | |
Marital status | MARRY | Married (=1), otherwise (=0) | |
Number of | HHNUM1 | 1~2 (=1), otherwise (=0) | |
family members | HHNUM2 | 3~4 (=1), otherwise (=0) | |
HHNUM3 | Over 5 (=1), otherwise (=0) (Ref.) | ||
HHNUM | Household size (linear) | ||
Socio-economic | Education | EDU1 | Below high school (=1), otherwise (=0) |
EDU2 | High school diploma or some college (=1), otherwise (=0) | ||
EDU3 | BA or higher degree (=1), otherwise (=0) (Ref.) | ||
EDUY | Years of education (linear) | ||
EDUY_SQ | EDUY*EDUY | ||
Experience | EXP1 | Under 10 years (=1), otherwise (=0) (Ref.) | |
in farming | EXP2 | 10~20 years (=1), otherwise (=0) | |
EXP3 | Over 20 years (=1), otherwise (=0) | ||
NEW | Less than 6 years (=1), otherwise (=0) | ||
Agriculture | Property | Machine | Possession of agricultural machinery (=1), otherwise (=0) |
Info | Computer usage (=1), otherwise (=0) | ||
Other | Participation in other agriculture-related businesses (=1), otherwise (=0) | ||
Crop | CROP1 | Rice (=1), otherwise (=0) | |
CROP2 | Fruit (=1), otherwise (=0) | ||
CROP3 | Other type of crops (=1), otherwise (=0) | ||
CROP4 | Upland crop (=1), otherwise (=0) (Ref.) | ||
CROP5 | Livestock (=1), otherwise (=0) | ||
Sales Place | S_PlACE1 | Wholesale market, production market (=1), otherwise (=0) | |
S_PlACE2 | NH (Korean agricultural cooperative), agricultural corporation (=1), otherwise (=0) | ||
S_PlACE3 | Government, collector, mediator (=1), otherwise (=0) | ||
S_PlACE4 | Direct sales to consumers (=1), otherwise (=0) (Ref.) | ||
S_PlACE5 | Retailer, agricultural processing company (=1), otherwise (=0) |
2005 | 2015 | Change | ||
---|---|---|---|---|
Nominal Income | ||||
Implemented | 14,648 (USD 13,000) | 22,158 (USD 20,000) | 51.27% | |
Not-Implemented | 14,521 (USD 13,000) | 19,686 (USD 18,000) | 35.57% |
Before Implementation (2005) | After Implementation (2015) | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
1st Stage | 2nd Stage | 2nd Stage | t-Test | 1st Stage | 2nd Stage | 2nd Stage | t-Test | |
Implemented | Not-Implemented | Implemented | Not-Implemented | |||||
INTERCEPT | −0.8456 *** | 13.2356 *** | 11.2578 *** | 6.7481 *** | −0.9253 *** | 13.6643 *** | 12.4904 *** | 3.1718 *** |
AGE2 | −0.0907 ** | −0.0073 | ||||||
AGE3 | −0.1844 *** | −0.1220 | ||||||
AGE4 | −0.2445 *** | −0.1875 ** | ||||||
AGE5 | −0.2423 *** | −0.2236 *** | ||||||
AGE | 0.0888 *** | 0.0679 *** | 2.2120 ** | 0.0720 *** | 0.0366 *** | 3.1701 *** | ||
AGE_SQ | −0.0009 *** | −0.0007 *** | −2.4212 ** | −0.0007 *** | −0.0004 *** | −3.5679 *** | ||
GENDER | −0.0930 *** | 0.3653 *** | 0.3826 *** | −0.3904 | −0.0508 *** | 0.3304 *** | 0.3125 *** | 0.4079 |
MARRY | 0.2806 *** | 0.2909 *** | −0.2757 | 0.1562 *** | 0.1635 *** | −0.1945 | ||
HHNUM1 | 0.2224 *** | 0.1920 *** | ||||||
HHNUM2 | 0.0884 *** | 0.0609 ** | ||||||
HHNUM | 0.1091 *** | 0.0556 *** | 5.3679 *** | 0.1228 *** | 0.0489 *** | 5.7839 *** | ||
EDU1 | 0.2976 *** | 0.2213 *** | ||||||
EDU2 | 0.1825 *** | 0.1150 *** | ||||||
EDUY | −0.0017 | 0.0465 *** | −6.7113 *** | 0.0062 | 0.0445 *** | −4.4015 *** | ||
EDUY_SQ | 0.0029 *** | −0.0021 *** | 9.5423 *** | 0.0010 ** | −0.0028 *** | 6.8621 *** | ||
EXP2 | −0.0042 | 0.0300 | ||||||
EXP3 | 0.0534 *** | 0.1619 *** | ||||||
NEW | −0.6321 *** | −0.6339 *** | 0.0358 | −0.4565 *** | −0.4913 *** | 0.7074 | ||
MECH | 0.2958 *** | 0.3086 *** | ||||||
INFO | 0.5306 *** | 0.5696 *** | −1.2029 | 0.3733 *** | 0.3391 *** | 1.1436 | ||
OTHER | 0.1009 *** | 0.1941 *** | −2.7115 *** | 0.5241 *** | 0.6066 *** | −2.7609 *** | ||
CROP1 | 0.2821 *** | 0.4278 *** | −4.2341 *** | 0.1992 *** | 0.2312 *** | −0.7997 | ||
CROP2 | 0.8897 *** | 0.9685 *** | −1.8327 * | 0.7904 *** | 0.6823 *** | 2.4538 ** | ||
CROP3 | 0.6886 *** | 0.7760 *** | −2.3379 ** | 0.4378 *** | 0.5075 *** | −1.7303 * | ||
CROP5 | 1.2110 *** | 1.5066 *** | −6.0624 *** | 1.6291 *** | 1.7152 *** | −1.4403 | ||
S_PLACE1 | 1.1357 *** | 1.4943 *** | −8.9165 *** | 1.3646 *** | 1.4971 *** | −3.2972 *** | ||
S_PLACE2 | 0.9768 *** | 1.2178 *** | −7.8822 *** | 1.1725 *** | 1.2903 *** | −3.8108 *** | ||
S_PLACE3 | 0.9457 *** | 1.1145 *** | −5.6843 *** | 1.1435 *** | 1.2361 *** | −2.6468 *** | ||
S_PLACE5 | 1.1185 *** | 1.1099 *** | 0.2180 | 0.4369 *** | 0.4352 *** | 0.0372 | ||
SIGMA | 1.8546 *** | 1.3316 *** | 1.6411 *** | 1.4430 *** | ||||
RHO | −0.9083 *** | −0.6018 *** | −0.8244 *** | −0.7693 *** | ||||
−2LL | 153,810 | 235,722 | 124,908 | 195,886 | ||||
AIC | 153,878 | 235,790 | 124,976 | 195,954 | ||||
N | 69,013 | 21,951 | 47,062 | 57,030 | 17,686 | 39,344 |
Implemented | Not-Implemented | ||
---|---|---|---|
Estimated | 17.3437 | 15.0675 | |
Hypothetical Estimates | 17.3328 | ||
Difference | 2.2762 | ||
Endowment Effect | 0.0108 | ||
Residual Effect | 2.2653 | ||
Gap (%) explained by | |||
Endowment Effect | 0.48% | ||
Residual Effect | 99.52% |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
1st Stage | 2nd Stage | 2nd Stage | t-Test | |
Before Implementation | After Implementation | |||
INTERCEPT | −0.7014 *** | 12.5738 *** | 16.1035 *** | −8.9054 *** |
AGE2 | 0.0923 | |||
AGE3 | 0.5116 *** | |||
AGE4 | 0.8579 *** | |||
AGE5 | 1.0547 *** | |||
AGE | 0.0511 *** | −0.0070 | 4.7898 *** | |
AGE_SQ | −0.0007 *** | −0.0002 *** | −4.9902 *** | |
GENDER | −0.1441 *** | 0.3532 *** | 0.3381 *** | 0.3053 |
MARRY | 0.3648 *** | 0.2380 *** | 2.8728 *** | |
HHNUM1 | 0.4380 *** | |||
HHNUM2 | 0.2256 *** | |||
HHNUM | 0.0764 *** | 0.1337 *** | −4.3269 *** | |
EDU1 | −1.1129 *** | |||
EDU2 | −0.4342 *** | |||
EDUY | 0.0581 *** | 0.0538 *** | 0.4544 | |
EDUY_SQ | −0.0049 *** | −0.0061 *** | 1.7677 * | |
EXP2 | 0.2160 | |||
EXP3 | 0.1327 *** | |||
NEW | −0.6973 *** | −0.4704 *** | −3.7039 * | |
MECH | 0.3416 *** | |||
INFO | 0.5598 *** | 0.3629 *** | 5.1936 *** | |
OTHER | 0.0581 ** | 0.4841 *** | −10.9759 *** | |
CROP1 | 0.3526 *** | 0.1575 *** | 4.5198 *** | |
CROP2 | 1.0523 *** | 0.7192 *** | 6.5673 *** | |
CROP3 | 0.7495 *** | 0.3905 *** | 8.0011 *** | |
CROP5 | 1.3135 *** | 1.4506 *** | −2.1904 ** | |
S_PLACE1 | 1.2105 *** | 1.3476 *** | −2.8228 ** | |
S_PLACE2 | 1.0813 *** | 1.1741 *** | −2.5230 ** | |
S_PLACE3 | 1.0537 *** | 1.1328 *** | −2.0319 ** | |
S_PLACE5 | 1.1643 *** | 0.3813 *** | 15.3646 *** | |
SIGMA | 1.2845 *** | 1.4427 *** | ||
RHO | −0.5347 *** | −0.7213 *** | ||
−2LL | 120,566 | 105,740 | ||
AIC | 120,634 | 105,809 | ||
N | 39,679 | 22,114 | 17,376 |
After Implementation | Before Implementation | ||
---|---|---|---|
Estimated | 16.7145 | 15.3670 | |
Hypothetical Estimates | 16.9207 | ||
Difference | 1.3475 | ||
Endowment Effect | −0.2110 | ||
Residual Effect | 1.5585 | ||
Gap (%) explained by | |||
Endowment Effect | −15.66% | ||
Residual Effect | 115.66% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, E.; Park, J.; Lee, S. The Effect of the Comprehensive Rural Village Development Program on Farm Income in South Korea. Sustainability 2020, 12, 6877. https://doi.org/10.3390/su12176877
Choi E, Park J, Lee S. The Effect of the Comprehensive Rural Village Development Program on Farm Income in South Korea. Sustainability. 2020; 12(17):6877. https://doi.org/10.3390/su12176877
Chicago/Turabian StyleChoi, Eunji, Jonghoon Park, and Seongwoo Lee. 2020. "The Effect of the Comprehensive Rural Village Development Program on Farm Income in South Korea" Sustainability 12, no. 17: 6877. https://doi.org/10.3390/su12176877
APA StyleChoi, E., Park, J., & Lee, S. (2020). The Effect of the Comprehensive Rural Village Development Program on Farm Income in South Korea. Sustainability, 12(17), 6877. https://doi.org/10.3390/su12176877