Does Adoption of Soil and Water Conservation Practice Enhance Productivity and Reduce Risk Exposure? Empirical Evidence from Semi-Arid Tropics (SAT), India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Sampling Procedure
2.2. Analytical Tools
Econometric Model of Adoption of Soil Bunds
2.3. Choice of Explanatory Variables Used in Probit Model
2.3.1. Econometric Model of Mean Yield, Risk and Downside Risk
2.3.2. Impact Estimation Technique
3. Results and Discussion
3.1. Descriptive Summary of the Variables
3.2. Determinant of the Adoption of Soil Bunds
3.3. Impact of Soil Bunds on Net Revenue, Variance and Down-Side Risk
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, S.A.; Kumar, S.; Hussain, M.Z.; Kalra, N. Climate Change, Climate Variability and Indian Agriculture: Impacts Vulnerability and Adaptation Strategies. In Climate Change and Crops; Springer: Berlin/Heidelberg, Germany, 2009; pp. 19–38. [Google Scholar]
- Venkateswarlu, B.; Singh, A.K. Climate Change Adaptation and Mitigation Strategies in Rainfed Agriculture. In Climate Change Modelling, Planning and Policy for Agriculture; Singh, A.K., Dagar, J.C., Arunachalam, A.R.G., Shelat, K.N., Eds.; Springer: New Delhi, India, 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Dar, W.D.; Bantilan, M.C.S.; Anupama, G.V.; Deepthi, H.; Padmaja, R. Dryland Agriculture in Asia: Ideas, Paradigms and Policies. In Reasserting the Rural Development Agenda: Lessons Learned and Emerging Challenges in Asia; Institute of Southeast Asian Studies: Singapore, 2007; pp. 191–226. [Google Scholar]
- Singh, N.P.; Bantilan, M.C.S.; Byjesh, K.; Murty, M.V.R. Adapting to Climate Change in Agriculture: Building Resiliency with an Effective Policy Frame in SAT India. Available online: http://oar.icrisat.org/5936/ (accessed on 14 June 2020).
- Chauhan, B.S.; Mahajan, G.; Randhawa, R.K.; Singh, H.; Kang, M.S. Chapter Two—Global Warming and Its Possible Impact on Agriculture in India. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 123, pp. 65–121. [Google Scholar] [CrossRef]
- Srinivasa Rao, C.; Lal, R.; Prasad, J.V.N.S.; Gopinath, K.A.; Singh, R.; Jakkula, V.S.; Sahrawat, K.L.; Venkateswarlu, B.; Sikka, A.K.; Virmani, S.M. Chapter Four—Potential and Challenges of Rainfed Farming in India. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 133, pp. 113–181. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.D. Rain-Fed Agriculture Could Meet the Challenges of Food Security in India. Curr. Sci. 2011, 100, 1615–1616. [Google Scholar]
- Aggarwal, P.K.; Baethegan, W.E.; Cooper, P.; Gommes, R.; Lee, B.; Meinke, H.; Rathore, L.S.; Sivakumar, M.V.K. Managing Climatic Risks to Combat Land Degradation and Enhance Food Security: Key Information Needs. Procedia Environ. Sci. 2010, 1, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Kassie, M.; Yesuf, M.; Köhlin, G. The Role of Production Risk in Sustainable Land-Management Technology Adoption in the Ethiopian Highlands. Rapp. Nr Work. Pap. Econ. 2009, 1–29. [Google Scholar]
- Lamb, R.L. Fertilizer Use, Risk, and off-Farm Labor Markets in the Semi-Arid Tropics of India. Am. J. Agric. Econ. 2003, 85, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.M. Testing the Stochastic Structure of Production: A Flexible Moment-Based Approach. J. Bus. Econ. Stat. 1983, 1, 192–201. [Google Scholar]
- Binswanger, H.P. Attitudes toward Risk: Theoretical Implications of an Experiment in Rural India. Econ. J. 1981, 91, 867–890. [Google Scholar] [CrossRef]
- Kim, K.; Chavas, J.-P. Technological Change and Risk Management: An Application to the Economics of Corn Production. Agric. Econ. 2003, 29, 125–142. [Google Scholar] [CrossRef]
- Menezes, C.; Geiss, C.; Tressler, J. Increasing Downside Risk. Am. Econ. Rev. 1980, 70, 921–932. [Google Scholar]
- Kato, E.; Ringler, C.; Yesuf, M.; Bryan, E. Soil and Water Conservation Technologies: A Buffer against Production Risk in the Face of Climate Change? Insights from the Nile Basin in Ethiopia. Agric. Econ. 2011, 42, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Pathak, P.; Laryea, K.B.; Singh, S. A Modified Contour Bunding System for Alfisols of the Semi-Arid Tropics. Agric. Water Manag. 1989, 16, 187–199. [Google Scholar] [CrossRef]
- Vittal, K.P.R.; Sinha, P.K.; Chary, G.R.; Sankar, G.M.; Srijaya, T.; Ramakrishna, Y.S.; Samra, J.S.; Singh, G. Districtwise Promising Technologies for Rainfed Rice Based Production System in India. All India Co-Ordinated Res. Proj. Dryland Agric. Cent. Res. Inst. Dryland Agric. Indian Counc. Agric. Res. Hyderabad 2004, 500, 059. [Google Scholar]
- Mishra, P.K.; Singh, M.; Kumar, G. Water Management and Conservation Innovations for Doubling Farmers’ Income. Soil Water Manag. Innov. Doubling Farmers Income 2018, 32, 23–47. [Google Scholar]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M. Soil Degradation in India: Challenges and Potential Solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.M.; Sanghi, N.K. Indigenous Soil and Water Conservation in India’s Semi-Arid Tropics; IIED International Institute for Environment and Development, Sustainable Agriculture Programme: London, UK, 1992. [Google Scholar]
- Gebrernichael, D.; Nyssen, J.; Poesen, J.; Deckers, J.; Haile, M.; Govers, G.; Moeyersons, J. Effectiveness of Stone Bunds in Controlling Soil Erosion on Cropland in the Tigray Highlands, Northern Ethiopia. Soil Use Manag. 2005, 21, 287–297. [Google Scholar] [CrossRef]
- Srinivasareddy, G.S.; Shivakumarnaiklal, H.S.; Keerthy, N.G.; Garag, P.; Jothi, E.P.; Challa, O. Drought Vulnerability Assessment in Karnataka: Through Composite Climatic Index. MAUSAM 2019, 70, 159–170. [Google Scholar]
- Ervin, C.A.; Ervin, D.E. Factors Affecting the Use of Soil Conservation Practices: Hypotheses, Evidence, and Policy Implications. Land Econ. 1982, 58, 277–292. [Google Scholar] [CrossRef]
- Shiferaw, B.; Holden, S.T. Policy Instruments for Sustainable Land Management: The Case of Highland Smallholders in Ethiopia. Agric. Econ. 2000, 22, 217–232. [Google Scholar] [CrossRef]
- Gebremedhin, B.; Swinton, S.M. Investment in Soil Conservation in Northern Ethiopia: The Role of Land Tenure Security and Public Programs. Agric. Econ. 2003, 29, 69–84. [Google Scholar] [CrossRef]
- Amsalu, A.; De Graaff, J. Determinants of Adoption and Continued Use of Stone Terraces for Soil and Water Conservation in an Ethiopian Highland Watershed. Ecol. Econ. 2007, 61, 294–302. [Google Scholar] [CrossRef]
- Adimassu, Z.; Kessler, A.; Hengsdijk, H. Exploring Determinants of Farmers’ Investments in Land Management in the Central Rift Valley of Ethiopia. Appl. Geogr. 2012, 35, 191–198. [Google Scholar] [CrossRef]
- Bekele, W.; Drake, L. Soil and Water Conservation Decision Behavior of Subsistence Farmers in the Eastern Highlands of Ethiopia: A Case Study of the Hunde-Lafto Area. Ecol. Econ. 2003, 46, 437–451. [Google Scholar] [CrossRef]
- Mango, N.; Makate, C.; Tamene, L.; Mponela, P.; Ndengu, G. Awareness and Adoption of Land, Soil and Water Conservation Practices in the Chinyanja Triangle, Southern Africa. Int. Soil Water Conserv. Res. 2017, 5, 122–129. [Google Scholar] [CrossRef]
- Pender, J.L.; Kerr, J.M. Determinants of Farmers’ Indigenous Soil and Water Conservation Investments in Semi-Arid India. Agric. Econ. 1998, 19, 113–125. [Google Scholar]
- Mbaga-Semgalawe, Z.; Folmer, H. Household Adoption Behaviour of Improved Soil Conservation: The Case of the North Pare and West Usambara Mountains of Tanzania. Land Use Policy 2000, 17, 321–336. [Google Scholar] [CrossRef]
- Pender, J.; Gebremedhin, B. Determinants of Agricultural and Land Management Practices and Impacts on Crop Production and Household Income in the Highlands of Tigray, Ethiopia. J. Afr. Econ. 2008, 17, 395–450. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Mercer, D.E.; Sills, E.; Yang, J.-C. Taking Stock of Agroforestry Adoption Studies. Agrofor. Syst. 2003, 57, 173–186. [Google Scholar] [CrossRef]
- Tenge, A.J.; De Graaff, J.; Hella, J.P. Social and Economic Factors Affecting the Adoption of Soil and Water Conservation in West Usambara Highlands, Tanzania. Land Degrad. Dev. 2004, 15, 99–114. [Google Scholar] [CrossRef]
- Atnafe, A.D.; Ahmed, H.M.; Adane, D.M. Determinants of Adopting Techniques of Soil and Water Conservation in Goromti Watershed, Western Ethiopia. J. Soil Sci. Environ. Manag. 2015, 6, 168–177. [Google Scholar]
- Belachew, A.; Mekuria, W.; Nachimuthu, K. Factors Influencing Adoption of Soil and Water Conservation Practices in the Northwest Ethiopian Highlands. Int. Soil Water Conserv. Res. 2020, 8, 80–89. [Google Scholar] [CrossRef]
- Willy, D.K.; Holm-Müller, K. Social Influence and Collective Action Effects on Farm Level Soil Conservation Effort in Rural Kenya. Ecol. Econ. 2013, 90, 94–103. [Google Scholar] [CrossRef]
- Baidu-Forson, J. Factors Influencing Adoption of Land-Enhancing Technology in the Sahel: Lessons from a Case Study in Niger. Agric. Econ. 1999, 20, 231–239. [Google Scholar]
- Teklewold, H.; Köhlin, G. Risk Preferences as Determinants of Soil Conservation Decisions in Ethiopia. J. Soil Water Conserv. 2011, 66, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Mugonola, B.; Deckers, J.; Poesen, J.; Isabirye, M.; Mathijs, E. Adoption of Soil and Water Conservation Technologies in the Rwizi Catchment of South Western Uganda. Int. J. Agric. Sustain. 2013, 11, 264–281. [Google Scholar] [CrossRef]
- Dessie, Y.; Wurzinger, M.; Hauser, M. The Role of Social Learning for Soil Conservation: The Case of Amba Zuria Land Management, Ethiopia. Int. J. Sustain. Dev. World Ecol. 2012, 19, 258–267. [Google Scholar] [CrossRef]
- Nyangena, W. Social Determinants of Soil and Water Conservation in Rural Kenya. Environ. Dev. Sustain. 2008, 10, 745–767. [Google Scholar] [CrossRef]
- Krishna, A. Moving from the Stock of Social Capital to the Flow of Benefits: The Role of Agency. World Dev. 2001, 29, 925–943. [Google Scholar] [CrossRef]
- Grootaert, C.; Narayan, D.; Jones, V.N.; Woolcock, M. Measuring Social Capital: An Integrated Questionnaire; The World Bank: Washington, DC, USA, 2004. [Google Scholar]
- Di Falco, S.; Chavas, J.-P. On Crop Biodiversity, Risk Exposure, and Food Security in the Highlands of Ethiopia. Am. J. Agric. Econ. 2009, 91, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Abro, Z.A. Technology Adoption, Productivity, Efficiency, and Risk Exposure in the Ethiopian Small Farm Sector. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2018. [Google Scholar]
- Judge, G.G.; Hill, R.C.; Griffiths, W.E.; Lütkepohl, H.; Lee, T.-C. Introduction to the Theory and Practice of Econometrics; J. Wiley: New York, NY, USA, 1988. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Zhou, T. PSweight: Package for Propensity Score Weighting. 2020. Available online: https://cran.r-project.org/web/packages/PSweight/PSweight.pdf (accessed on 15 May 2020).
- Greifer, N. WeightIt: Weighting for Covariate Balance in Observational Studies (R Package Version 0.5. 0). 2018. Available online: https://mran.microsoft.com/snapshot/2018-02-01/web/packages/WeightIt/index.html (accessed on 21 July 2020).
- Sekhon, J.S. Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R. J. Stat. Softw. Forthcom. 2008, 42, 7. [Google Scholar]
- Ho, D.; Imai, K.; King, G.; Stuart, E.; Whitworth, A. Package ‘MatchIt’. Version 3.0.2. 2018. Available online: https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf (accessed on 15 May 2020).
- Ersado, L.; Amacher, G.; Alwang, J. Productivity and Land Enhancing Technologies in Northern Ethiopia: Health, Public Investments, and Sequential Adoption. Am. J. Agric. Econ. 2004, 86, 321–331. [Google Scholar] [CrossRef]
- Hopkins, J.; Southgate, D.; Gonzalez-Vega, C. Rural Poverty and Land Degradation in El Salvador. In Abstract in American Journal Agricultural Economics, Proceedings of the Agricultural and Applied Economics Associations Annual Meeting, Nashville, Tennessee, 8–11 August 1999; University of Wisconsin Madison: Madison, WI, USA, 1999; Volume 81. [Google Scholar]
- Teshome, A.; Rolker, D.; de Graaff, J. Financial Viability of Soil and Water Conservation Technologies in Northwestern Ethiopian Highlands. Appl. Geogr. 2013, 37, 139–149. [Google Scholar] [CrossRef]
- Anley, Y.; Bogale, A.; Haile-Gabriel, A. Adoption Decision and Use Intensity of Soil and Water Conservation Measures by Smallholder Subsistence Farmers in Dedo District, Western Ethiopia. Land Degrad. Dev. 2007, 18, 289–302. [Google Scholar] [CrossRef]
- Chesterman, N.S.; Entwistle, J.; Chambers, M.C.; Liu, H.-C.; Agrawal, A.; Brown, D.G. The Effects of Trainings in Soil and Water Conservation on Farming Practices, Livelihoods, and Land-Use Intensity in the Ethiopian Highlands. Land Use Policy 2019, 87, 104051. [Google Scholar] [CrossRef]
- Kassie, M.; Pender, J.; Yesuf, M.; Kohlin, G.; Bluffstone, R.; Mulugeta, E. Estimating Returns to Soil Conservation Adoption in the Northern Ethiopian Highlands. Agric. Econ. 2008, 38, 213–232. [Google Scholar] [CrossRef]
- Abdulai, A.; Huffman, W. The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application. Land Econ. 2014, 90, 26–43. [Google Scholar] [CrossRef]
- Nkegbe, P.K. Soil and Water Conservation Practices and Smallholder Farmer Multi-Activity Technical Efficiency in Northern Ghana. Ghana J. Dev. Stud. 2018, 15, 55–91. [Google Scholar] [CrossRef]
Variables | Definition | Full Sample | Adopters | Nonadopters |
---|---|---|---|---|
BUND | Soil bunds (1 if adopted; otherwise 0) | 1204 | 532 (44.2) | 672 (55.8) |
AGE | Age (years) | 51 (13.51) | 49 * (12.87) | 52 (13.93) |
EDU | Education (number of schooling years) | 4.91 (4.78) | 5.06 (4.82) | 4.8 (4.74) |
OFFFARM | Off-farm income (1 if yes; otherwise 0) | 561 (46.6) | 303 *** (57.0) | 258 (38.4) |
FAMILY | Family size (numbers) | 5.0 (2.3) | 5.0 (2.3) | 5.0 (2.3) |
LIVESTOCK | Livestock (numbers) | 3.35 (2.2) | 3.29 (2.08) | 3.4 (2.29) |
LANDHOLDING | Size of landholding (ha) | 2.59 (2.11) | 2.64 (2.21) | 2.55 (2.03) |
CREDIT | Access to credit (1 if yes; otherwise 0) | 811 (67.4) | 394 ** (74.1) | 417 (62.1) |
FAI | Farm asset index (index scores) | 0.11 (0.16) | 0.14 * (0.19) | 0.09 (0.13) |
TENURE | Tenure (1 if owned; otherwise 0) | 795 (66.0) | 369 ** (69.4) | 426 (63.4) |
SLOPE | Slope of plot (1 if slope; otherwise 0) | 693 (57.6) | 362 *** (68.0) | 331 (49.3) |
EROSIONHIGH | Soil erosion (1 if high; otherwise 0) | 362 (30.1) | 208 ** (39.1) | 154 (22.9) |
EROSIONHIGHMED | Soil erosion (1 if medium; otherwise 0) | 358 (29.7) | 109 ** (20.5) | 249 (37.1) |
FERTIHIGH | Fertility (1 if high; otherwise 0) | 399 (33.1) | 221 *** (41.5) | 0.27 (0.44) |
FERTIMEDIUM | Fertility (1 if medium; otherwise 0) | 570 (47.3) | 196 *** (36.8)) | 374 (55.7)) |
BPI# | Benefit perception index | 3.41 (0.78) | 3.58 ** (0.73) | 3.27 (0.79) |
EXTENSION | Extension services (number of visits) | 2.7 (1.4) | 2.9 * (1.6) | 2.4 (1.2) |
TRAIN | Training (1 if yes; otherwise 0) | 577 (47.9) | 305 *** (57.3) | 272 (40.5) |
TALK | Interaction with others (1 = no interaction, 2 = often and 3 = frequently) | 1.77 (0.81) | 1.96 * (0.84) | 1.63 (0.75) |
USEFUL | Perceived usefulness of interaction (1 = not useful, 2 = useful, 3 = very useful) | 2.41 (0.59) | 2.4 (0.58) | 2.43 (0.6) |
EXPHL | Expenditure on human labor (INR/ha) | 12,185 (4347) | 12,482 ** (4579) | 11,950 (4142) |
EXPBL | Expenditure on bullock labor (INR/ha) | 3758 (2722) | 4050 *** (2927) | 3528 (2527) |
EXPSEEDS | Expenditure on seeds (INR/ha) | 1130 (993) | 1083 * (1030) | 1181 (962) |
EXPMACHINE | Expenditure on farm machinery (INR/ha) | 3171 (2150) | 3179 (2097) | 3165 (2193) |
EXPFERTI | Expenditure on fertilizers (INR/ha) | 3041 (2788) | 3253 ** (2825) | 2873 (2748) |
NETRETURN | Net return (000′INR/ha) | 27.5 (23.4) | 32.4 ***(24.6) | 23.6 (21.6) |
TUMKUR | Tumkur | 211 | 80 | 131 |
BIDAR | Bidar | 326 | 151 | 175 |
GADAG | Gadag | 316 | 152 | 164 |
Variables | Estimate | Std. Error | Marginal Effects | Std. Error |
---|---|---|---|---|
Intercept | −3.817 *** | 0.438 | – | – |
AGE | −0.008 ** | 0.003 | −0.003 ** | 0.001 |
EDU | −0.013 | 0.010 | −0.005 | 0.004 |
FAMILY | 0.006 | 0.020 | 0.002 | 0.008 |
LANDHOLDING | 0.002 | 0.023 | 0.001 | 0.009 |
FAI | 1.199 *** | 0.309 | 0.464 *** | 0.120 |
LIVESTOCK | −0.014 | 0.021 | −0.005 | 0.008 |
CREDIT | 0.295 *** | 0.104 | 0.112 *** | 0.039 |
OFFFARM | 1.564 *** | 0.104 | 0.527 *** | 0.027 |
TENURE | 0.014 | 0.098 | 0.005 | 0.038 |
SLOPE | 0.398 ** | 0.095 | 0.152 ** | 0.036 |
EROSIONHIGH | 0.312 ** | 0.112 | 0.122 ** | 0.044 |
EROSIONHIGHMED | −0.405 *** | 0.112 | −0.152 *** | 0.040 |
FERTIHIGH | −0.087 | 0.130 | −0.034 | 0.050 |
FERTIMEDIUM | −0.376 ** | 0.123 | −0.144 ** | 0.047 |
BPI | 0.377 *** | 0.063 | 0.146 *** | 0.024 |
TALK | 0.468 *** | 0.061 | 0.181 *** | 0.024 |
USEFUL | −0.024 | 0.077 | −0.009 | 0.030 |
TRAIN | 0.518 * | 0.033 | 0.199 | 0.035 |
EXTENSION | 0.168 ** | 0.032 | 0.065 ** | 0.013 |
TUMKUR | −0.234 * | 0.139 | −0.089 * | 0.052 |
BIDAR | −0.041 | 0.120 | −0.016 | 0.047 |
GADAG | 0.124 | 0.125 | 0.048 | 0.048 |
Variable | Mean Equation | Variance Equation | Skewness Equation | |||
---|---|---|---|---|---|---|
Estimate | Robust Std. Error | Estimate | Robust Std. Error | Estimate | Robust Std. Error | |
Intercept | 100.314 *** | 13.260 | 406.016 | 411.116 | 0.282 | 2.909 |
BUND | 9.26 *** | 0.730 | −49.37 ** | 20.53 | 0.255 ** | 0.162 |
AGE | 0.001 | 0.028 | 0.799 | 0.858 | 0.000 | 0.006 |
EDU | −0.023 | 0.080 | −1.250 | 2.478 | −0.003 | 0.018 |
FAMLIY | −0.090 | 0.167 | −6.154 | 5.169 | −0.062 * | 0.037 |
LANDHOLDING | 0.795 *** | 0.187 | 7.571 | 5.811 | 0.023 | 0.041 |
CREDIT | 5.749 *** | 0.844 | 43.173 * | 26.173 | 0.226 | 0.185 |
FAI | 1.621 | 2.340 | −83.433 | 72.564 | −0.634 | 0.513 |
LIVESTOCK | −0.350 ** | 0.168 | −7.288 | 5.194 | −0.068 * | 0.037 |
TENURE | 2.309 *** | 0.782 | 39.827 | 24.261 | 0.230 | 0.172 |
Slope | 1.714 ** | 0.790 | 33.370 | 24.492 | 0.023 | 0.173 |
EROISONHIGH | 1.101 | 0.902 | 42.337 * | 27.956 | 0.312 * | 0.198 |
EROISONMED | −5.241 *** | 0.906 | −19.793 | 28.100 | −0.061 | 0.199 |
FERTIHIGH | 5.242 *** | 1.068 | 44.471 | 33.121 | −0.076 | 0.234 |
FERTIMEDIUM | −2.225 ** | 1.003 | −30.797 | 31.101 | −0.353 * | 0.220 |
TRANI | 0.350 | 0.745 | 17.427 | 23.085 | 0.079 | 0.163 |
BPI | 1.527 *** | 0.495 | 3.484 | 15.353 | −0.061 | 0.109 |
EXTENSION | 1.227 *** | 0.256 | −0.997 | 7.951 | −0.026 | 0.056 |
Log EXPHL | −1.649 | 1.126 | −3.256 | 34.907 | −0.052 | 0.247 |
Log EXPBL | 2.304 *** | 0.560 | 55.225 *** | 17.365 | 0.390 *** | 0.123 |
Log EXPMACHINE | −1.394 ** | 0.560 | −21.593 | 17.365 | −0.037 | 0.123 |
Log EXPSEEDS | −5.647 *** | 0.711 | −4.661 | 22.043 | −0.009 | 0.156 |
Log EXPFERTI | −1.667 ** | 0.514 | −21.596 | 15.949 | −0.111 | 0.113 |
TUMKUR | −1.633 | 1.153 | −18.516 | 35.736 | −0.287 | 0.253 |
BIDAR | 1.550 | 1.490 | 20.290 | 46.193 | 0.199 | 0.327 |
GADAG | 3.731 ** | 1.411 | 41.014 | 43.747 | 0.258 | 0.310 |
F-statistic | 103.6 *** | 8.201 *** | 2.334 *** |
Methods | Treatment Effects | Mean | Variance | Skewness | |||
---|---|---|---|---|---|---|---|
Estimate | Robust SE | Estimate | Robust SE | Estimate | Robust SE | ||
Matching (CEM#) | ATE | 8.88 *** | 1.52 | −29.16 | 27.72 | 0.27 * | 0.15 |
ATT | 8.40 *** | 1.69 | −32.05 | 28.55 | 0.27 * | 0.15 | |
Matching (OPT#) | ATE | 7.12 *** | 1.44 | −45.33 * | 24.65 | 0.25 * | 0.14 |
ATT | 7.31 *** | 1.31 | −47.65 ** | 22.88 | 0.27 * | 0.15 | |
Matching (NNM#) | ATE | 8.73 *** | 1.29 | −45.56 * | 24.82 | 0.34 ** | 0.15 |
ATT | 9.25 *** | 1.41 | −51.07 ** | 23.02 | 0.31 ** | 0.14 | |
IPW | ATE | 8.14 *** | 1.40 | −47.15 ** | 22.15 | 0.29 ** | 0.14 |
ATT | 7.93 *** | 1.34 | −43.29 * | 24.17 | 0.32 ** | 0.15 | |
IPWRA | ATE | 7.97 *** | 1.22 | −46.82 ** | 21.75 | 0.30 ** | 0.14 |
ATT | 8.05 *** | 1.26 | −44.32 * | 23.41 | 0.32 ** | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Singh, D.R.; Singh, A.; Singh, N.P.; Jha, G.K. Does Adoption of Soil and Water Conservation Practice Enhance Productivity and Reduce Risk Exposure? Empirical Evidence from Semi-Arid Tropics (SAT), India. Sustainability 2020, 12, 6965. https://doi.org/10.3390/su12176965
Kumar S, Singh DR, Singh A, Singh NP, Jha GK. Does Adoption of Soil and Water Conservation Practice Enhance Productivity and Reduce Risk Exposure? Empirical Evidence from Semi-Arid Tropics (SAT), India. Sustainability. 2020; 12(17):6965. https://doi.org/10.3390/su12176965
Chicago/Turabian StyleKumar, Suresh, Dharam Raj Singh, Alka Singh, Naveen Prakash Singh, and Girish Kumar Jha. 2020. "Does Adoption of Soil and Water Conservation Practice Enhance Productivity and Reduce Risk Exposure? Empirical Evidence from Semi-Arid Tropics (SAT), India" Sustainability 12, no. 17: 6965. https://doi.org/10.3390/su12176965
APA StyleKumar, S., Singh, D. R., Singh, A., Singh, N. P., & Jha, G. K. (2020). Does Adoption of Soil and Water Conservation Practice Enhance Productivity and Reduce Risk Exposure? Empirical Evidence from Semi-Arid Tropics (SAT), India. Sustainability, 12(17), 6965. https://doi.org/10.3390/su12176965