Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review
Abstract
:1. Introduction
2. An Overview of China’s Agricultural Inputs and Food Production
3. Mineral Fertilizers in China
3.1. The Historical Trend of China’s Mineral Fertilizer and Its Driving Forces
3.2. Production, Consumption and International Trade of Nitrogen, Phosphate and Potash Fertilizers in China
4. Regional Use and Surpluses of Mineral Fertilizers in China
4.1. Mineral Fertilizer Use in China on Regional Level
4.2. Mineral Fertilizer Surpluses in China on Regional Level
4.3. The Zero Growth Action Plan for Fertilizer Use by 2020: Provincial Performances in Fertilizer Use Reduction
5. Conclusions, Recommendations and Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/RFN (accessed on 27 April 2020).
- The World Bank. Agriculture, Forestry, and Fishing, Value Added (current US$). Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.CD?locations=CN-EU-US (accessed on 22 June 2020).
- Carter, C.A. China’s agriculture: Achievements and challenges. ARE Update 2011, 14, 5–7. [Google Scholar]
- Ma, L.; Velthof, G.L.; Wang, F.H.; Qin, W.; Zhang, W.F.; Liu, Z.; Zhang, Y.; Wei, J.; Lesschen, J.P.; Ma, W.Q.; et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci. Total Environ. 2012, 434, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Norse, D. Non-point pollution from Crop Production: Global, regional and national issues. Pedosphere 2005, 15, 499–508. [Google Scholar]
- MEP. Bulletin of National Environmental Statistics 2009; Ministry of Environmental Protection: Beijing, China, 2010. [Google Scholar]
- Smith, L.E.D.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, L.; Zoebisch, M.A.; Chen, G.; Feng, Z. Sustainability of farmers’ soil fertility management practices: A case study in the North China Plain. J. Environ. Manag. 2006, 79, 409–419. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Notice of the Ministry of Agriculture on the Issuance of the Action Plan for Zero Growth of Fertilizer Use by 2020 and the Action Plan for Zero Growth of Pesticide Use by 2020; Ministry of Agriculture: Beijing, China, 2015. Available online: http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm (accessed on 28 August 2020).
- Jin, S.; Zhou, F. Zero Growth of Chemical Fertilizer and Pesticide Use: China’s Objectives, Progress and Challenges. Jore 2018, 9, 50–58. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Peng, Z.; Wang, Y.; Ma, S.; Guo, L.; Lin, E.; Han, X. Effects of different nitrogen fertilizer management practices on wheat yields and N2O emissions from wheat fields in North China. J. Integr. Agric. 2015, 14, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.; Jewel, Z.; Mahender, A.; Anandan, A.; Hernandez, J.; Li, Z. Molecular Genetics and Breeding for Nutrient Use Efficiency in Rice. Int. J. Mol. Sci. 2018, 19, 1762. [Google Scholar] [CrossRef] [Green Version]
- Lian, T.; Mu, Y.; Jin, J.; Ma, Q.; Cheng, Y.; Cai, Z.; Nian, H. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ 2019, 7, e6412. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Wang, J.; Gong, S.; Xu, D.; Zhang, Y.; Qin, Q. Assessment of maize yield-increasing potential and optimum N level under mulched drip irrigation in the Northeast of China. Field Crops Res. 2018, 215, 132–139. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Strokal, M.; Chu, Y.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agric. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- NBS National Data. Available online: http://data.stats.gov.cn/english/ (accessed on 8 May 2020).
- Cao, K.H.; Birchenall, J.A. Agricultural productivity, structural change, and economic growth in post-reform China. J. Dev. Econ. 2013, 104, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Huang, J.; Hu, R.; Rozelle, S. The creation and spread of technology and total factor productivity in china’s agriculture. Am. J. Agric. Econ. 2002, 84, 916–930. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Sun, H.; Chen, S.; Shao, L.; Liu, X. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Eur. J. Agron. 2013, 50, 52–59. [Google Scholar] [CrossRef]
- Ci, X.; Li, M.; Liang, X.; Xie, Z.; Zhang, D.; Li, X.; Lu, Z.; Ru, G.; Bai, L.; Xie, C.; et al. Genetic Contribution to Advanced Yield for Maize Hybrids Released from 1970 to 2000 in China. Crop Sci. 2011, 51, 13–20. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, Y.; Zhang, W. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res. 2012, 136, 65–75. [Google Scholar] [CrossRef]
- Tong, C.; Hall, C.A.S.; Wang, H. Land use change in rice, wheat and maize production in China (1961–1998). Agric. Ecosyst. Environ. 2003, 95, 523–536. [Google Scholar] [CrossRef]
- Ni, H.; Xu, H.; Yu, K.; Wang, Z.; Liu, W.; Pang, Y.; Li, T.; Zhang, Y. Challenges and policy choices faced by China’s maize industry. Issues Agric. Econ. 2014, 1, 30–36. [Google Scholar]
- Qiu, H.; Zhang, S.; Yang, J.; Jing, Y. Development of China’s maize industry, challenges in the future and policy suggestions. J. Agric. Sci. Technol. 2013, 15, 20–24. [Google Scholar]
- Li, Y.; Zhang, W.; Ma, L.; Huang, G.; Oenema, O.; Zhang, F.; Dou, Z. An Analysis of China’s Fertilizer Policies: Impacts on the Industry, Food Security, and the Environment. J. Environ. Qual. 2013, 42, 972. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, Y.; Ma, J.; Wang, Y.; Ma, W.; Zhang, F. Driving forces of fertilizer consumption in China (II Planting Structure). Resour. Sci. 2008, 30, 31–36. [Google Scholar]
- Xin, L.; Li, X.; Tan, M. Temporal and regional variations of China’s fertilizer consumption by crops during 1998–2008. J. Geogr. Sci. 2012, 22, 643–652. [Google Scholar] [CrossRef]
- Li, J. Economic incentives of the fast growth of chemical fertilizer input in the Yangtze River Delta economic zone. J. Ecol. Rural Environ. 2008, 24, 52–56. [Google Scholar]
- Jiang, L.; Li, Z. Urbanization and the Change of Fertilizer Use Intensity for Agricultural Production in Henan Province. Sustainability 2016, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.S.; Fan, M.S.; Zhang, W.F. (Eds.) Principles, Dissemination and Performance of Fertilizer Best Management Practices Developed in China. In Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives vs. Regulations: Papers Presented at the IFA International Workshop on Fertilizer Best Management Practices, Brussels, Belgium, 7–9 March 2007; International Workshop on Fertilizer Best Management Practices, Association Internationale de l’Industrie des Engrais; International Fertilizer Industry Association: Paris, France, 2007; pp. 193–201. ISBN 978-2-9523139-2-6. [Google Scholar]
- Huang, J.; Hu, R.; Cao, J.; Rozelle, S. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. J. Soil Water Conserv. 2008, 63, 165A–167A. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Lau, L.J.; Lin, J.Y.; Luo, X. The Determinants of Farm Investment and Residential Construction in Post-Reform China. Econ. Dev. Cult. Chang. 1992, 41, 1–26. [Google Scholar] [CrossRef]
- Sun, A.; Zhang, W.; Du, F.; Gao, L.; Zhang, F.; Chen, X. China’s development strategy on potash resources and fertilizer. Mod. Chem. Ind. 2009, 29, 10–16. [Google Scholar]
- He, P.; Yang, L.; Xu, X.; Zhao, S.; Chen, F.; Li, S.; Tu, S.; Jin, J.; Johnston, A.M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crops Res. 2015, 173, 49–56. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Li, Q.; Qi, X.; Yang, S. Increase in soil nutrients in intensively managed cash-crop agricultural ecosystems in the Guanting Reservoir catchment, Beijing, China. Geoderma 2013, 193, 102–108. [Google Scholar] [CrossRef]
- Chen, X.; Ma, L.; Ma, W.; Wu, Z.; Cui, Z.; Hou, Y.; Zhang, F. What has caused the use of fertilizers to skyrocket in China? Nutr. Cycl. Agroecosyst. 2018, 110, 241–255. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Zhuang, D.; Chen, X.; Li, S. Changes in the Potential Multiple Cropping System in Response to Climate Change in China from 1960–2010. PLoS ONE 2013, 8, e80990. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Chen, Y.; Veldkamp, T.A. Spatial explorations of land use change and grain production in China. Agric. Ecosyst. Environ. 2000, 82, 333–354. [Google Scholar] [CrossRef]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; He, P.; Jin, J. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture. J. Sci. Food Agric. 2013, 93, 1191–1197. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, X.; Feng, X.; Wang, E.; Li, H.; Shen, J.; Zhang, F. Management Strategies to Optimize Soil Phosphorus Utilization and Alleviate Environmental Risk in China. J. Environ. Qual. 2019, 48, 1167–1175. [Google Scholar] [CrossRef]
- Yang, F.; Li, R.; Cui, Y.; Duan, Y. Utilization and develop strategy of organic fertilizer resources in China. Soil Fertil. Sci. China 2010, 4, 77–82. [Google Scholar]
- Nogueira, T.A.R.; Franco, A.; He, Z.; Braga, V.S.; Firme, L.P.; Abreu-Junior, C.H. Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination. J. Environ. Manag. 2013, 114, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Notice of the General Office of the Ministry of Agriculture on Issuing the “<Action Plan for Zero Growth in Fertilizer Use by 2020> Promotion Plan”; Ministry of Agriculture: Beijing, China, 2015. Available online: http://www.zzys.moa.gov.cn/gzdt/201505/t20150525_6309954.htm (accessed on 28 August 2020).
- Jin, S.; Zhang, H.; Fu, R.; Liu, J. Mid-term Evaluation on the Implementation of Zero Growth Action of Chemical Fertilizers. Environ. Prot. 2019, 47, 39–43. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, H.; Wu, N. Evaluation on the Implementation of Zero-growth Action of Chemical Fertilizer and Pesticide Use of 2016. Environ. Prot. 2018, 46, 45–49. [Google Scholar] [CrossRef]
- MSB of Linan. Announcement of Local Standards and Specifications, Volume 1, 2020—“The Limit Standards of Fertilisation Rates of the Major Crops”; MSB of Linan: Hangzhou, China, 2020. [Google Scholar]
- BoARW of Wenling. Notice on “Practical Guidance on Fertilisation in Rice Cultivation of Wenling” and “Technical Plan on Green Prevention of Pests and Diseases in Main Crops of Wenling”; BoARW of Wenling: Wenling, China, 2019. [Google Scholar]
1961–1975 | 1976–1990 | 1991–2005 | 2006–2018 f | |||||
---|---|---|---|---|---|---|---|---|
China | World | China | World | China | World | China | World | |
Agricultural Inputs | ||||||||
Arable land per capita (ha/capita) | 0.13 | 0.37 | 0.10 | 0.29 | 0.09 | 0.23 | 0.08 | 0.19 |
Mineral fertilizer consumption a (kg/ha) | 35 | 44 | 150 | 85 | 275 | 92 | 407 | 115 |
Mineral fertilizer consumption per capita (kg/capita) | 4 | 17 | 16 | 26 | 28 | 23 | 37 | 25 |
Energy consumed in agriculture b (kWh/ha) | / | / | 1152.4 | 729.5 | 1689.6 | 1035.1 | 2153.8 | 1182.6 |
Energy consumed in agriculture per capita c (kWh/capita) | / | / | 130.8 | 210.5 | 171.2 | 257.6 | 193.7 | 259.4 |
Share of the land area equipped for irrigation over cropland d | 0.45 | 0.13 | 0.43 | 0.16 | 0.42 | 0.19 | 0.54 | 0.21 |
Food production | ||||||||
Cereal yield e (kg/ha) | 2101 | 1865 | 3650 | 2679 | 4946 | 3437 | 5860 | 4232 |
Cereal production per capita (kg/person) | 194 | 239 | 284 | 284 | 317 | 292 | 380 | 331 |
Meat production per capita (kg/capita) | 8.3 | 26.3 | 16.1 | 31.2 | 41.5 | 37.0 | 58.3 | 42.9 |
Egg production per capita (kg/capita) | 2.3 | 5.3 | 4.0 | 6.4 | 14.7 | 8.5 | 21.4 | 10.4 |
Year | 1987–1990 | 1991–1994 | 1995–1998 | 1999–2002 | 2003–2006 | 2007–2010 | 2011–2014 | 2015–2018 | |
---|---|---|---|---|---|---|---|---|---|
Northeast | Liaoning | 98.8 | 125.5 | 149.5 | 145.5 | 154.5 | 166.1 | 169.0 | 159.9 |
Jilin | 67.1 | 85.3 | 101.5 | 95.7 | 104.7 | 106.1 | 113.9 | 106.2 | |
Heilongjiang | 29.8 | 45.9 | 54.6 | 52.2 | 54.4 | 56.0 | 60.8 | 58.5 | |
Northcentral | Beijing | 121.4 | 173.1 | 222.7 | 248.8 | 287.5 | 269.3 | 310.3 | 389.8 |
Tianjin | 61.1 | 86.8 | 151.0 | 191.6 | 280.2 | 351.8 | 320.7 | 257.8 | |
Hebei | 88.2 | 125.6 | 166.7 | 175.8 | 192.4 | 211.7 | 215.0 | 205.7 | |
Shanxi | 70.9 | 99.3 | 124.3 | 130.6 | 147.0 | 165.5 | 175.5 | 167.7 | |
Shandong | 118.3 | 165.6 | 199.0 | 214.7 | 236.7 | 241.0 | 230.3 | 210.0 | |
Henan | 86.0 | 133.0 | 167.7 | 190.7 | 206.8 | 239.3 | 261.0 | 257.1 | |
Middle and lower reaches of Yangtze River | Shanghai | 194.9 | 220.5 | 215.1 | 246.6 | 229.0 | 195.1 | 159.8 | 167.8 |
Jiangsu | 148.7 | 191.4 | 239.2 | 255.2 | 261.3 | 317.2 | 246.7 | 222.9 | |
Zhejiang | 130.9 | 139.9 | 153.6 | 164.6 | 203.9 | 245.9 | 252.1 | 236.2 | |
Anhui | 97.8 | 120.5 | 160.8 | 165.5 | 167.1 | 174.7 | 180.9 | 178.1 | |
Jiangxi | 74.5 | 91.7 | 105.1 | 105.3 | 124.0 | 124.3 | 124.6 | 116.2 | |
Hubei | 111.7 | 150.2 | 203.9 | 203.5 | 239.3 | 267.3 | 261.6 | 219.6 | |
Hunan | 87.8 | 103.3 | 117.0 | 122.5 | 138.2 | 149.9 | 146.7 | 140.4 | |
Southeast | Fujian | 160.3 | 189.9 | 219.4 | 242.9 | 272.1 | 309.9 | 366.7 | 396.4 |
Guangdong | 160.4 | 186.8 | 197.7 | 201.5 | 236.8 | 287.5 | 306.3 | 311.0 | |
Guangxi | 85.9 | 106.1 | 123.9 | 133.7 | 160.6 | 193.7 | 208.2 | 211.0 | |
Hainan | 93.9 | 107.5 | 133.0 | 168.6 | 272.4 | 311.6 | 323.5 | 358.7 | |
Southwest | Sichuan (incl. Chongqing) | 88.4 | 109.2 | 122.3 | 136.7 | 145.1 | 164.4 | 163.8 | 153.1 |
Guizhou | 63.9 | 83.0 | 86.7 | 91.4 | 97.8 | 103.0 | 103.5 | 94.6 | |
Yunnan | 72.7 | 97.0 | 116.7 | 118.3 | 143.9 | 161.6 | 180.7 | 184.9 | |
Tibet | 41.4 | 57.1 | 85.8 | 81.4 | 112.7 | 142.5 | 146.8 | 140.5 | |
Northwest | Inner Mongolia | 37.2 | 53.5 | 72.3 | 80.6 | 105.4 | 132.7 | 141.9 | 143.6 |
Shaanxi | 69.6 | 112.7 | 155.2 | 176.4 | 209.4 | 229.1 | 306.0 | 303.1 | |
Gansu | 51.9 | 75.8 | 100.4 | 114.0 | 125.2 | 140.9 | 145.5 | 137.7 | |
Qinghai | 51.7 | 72.3 | 78.8 | 89.8 | 96.2 | 104.9 | 109.7 | 104.9 | |
Ningxia | 74.0 | 98.4 | 130.0 | 146.1 | 140.5 | 153.2 | 167.5 | 163.4 | |
Xinjiang | 59.1 | 89.3 | 125.5 | 129.2 | 149.1 | 190.8 | 206.3 | 203.8 |
Avg. Annual Growth Rate > 1% | 0 < Avg. Annual Growth Rate < 1% | Negative Avg. Annual Growth Rate | ||
---|---|---|---|---|
2013–2015 | Fertilizer input (kg ha−1) | (13): Beijing, Tibet, Hainan, Xinjiang, Fujian, Inner Mongolia, Qinghai, Yunnan, Gansu, Guangdong, Ningxia, Guangxi, Shanghai | (6): Shanxi, Jilin, Henan, Hebei, Zhejiang, Jiangxi | (11): Shaanxi, Heilongjiang, Guizhou, Anhui, Sichuan (incl. Chongqing), Hunan, Liaoning, Jiangsu, Shandong, Tianjin, Hubei |
Fertilizer N and P surpluses (kg ha−1) | (11): Beijing, Tibet, Hainan, Fujian, Qinghai, Xinjiang, Inner Mongolia, Yunnan, Guangdong, Gansu, Ningxia | (2) Shanghai, Guangxi | (17): Henan, Shanxi, Hebei, Jiangxi, Zhejiang, Shaanxi, Heilongjiang, Sichuan (incl. Chongqing), Guizhou, Anhui, Liaoning, Jilin, Hunan, Jiangsu, Shandong, Tianjin, Hubei | |
2016–2018 | Fertilizer input (kg ha−1) | (2): Beijing, Shanghai | (3): Hunan, Anhui, Hainan | (25): Guangxi, Liaoning, Shaanxi, Henan, Jilin, Heilongjiang, Hebei, Shanxi, Jiangsu, Ningxia, Shandong, Sichuan (incl. Chongqing), Yunnan, Inner Mongolia, Fujian, Hubei, Guangdong, Zhejiang, Xinjiang, Jiangxi, Guizhou, Gansu, Qinghai, Tianjin, Tibet |
Fertilizer N and P surpluses (kg ha−1) | (1): Beijing | (1): Shanghai | (28) the rest |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Li, H.; Doluschitz, R. Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review. Sustainability 2020, 12, 7028. https://doi.org/10.3390/su12177028
Yu X, Li H, Doluschitz R. Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review. Sustainability. 2020; 12(17):7028. https://doi.org/10.3390/su12177028
Chicago/Turabian StyleYu, Xiaomin, Haigang Li, and Reiner Doluschitz. 2020. "Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review" Sustainability 12, no. 17: 7028. https://doi.org/10.3390/su12177028
APA StyleYu, X., Li, H., & Doluschitz, R. (2020). Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review. Sustainability, 12(17), 7028. https://doi.org/10.3390/su12177028