Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measures in Connection with COVID-19
Abstract
:1. Introduction
2. Traffic Flow
2.1. Basic Characteristics of the Traffic Flow
2.1.1. Speed
- v is the speed of the traffic flow [km/h],
- d is the distance of the monitored section of road [km],
- t is the time [s].
2.1.2. Flow
- N is number of vehicles [veh].
2.1.3. Density
- l is a monitored section of road [km].
2.1.4. Basic Equation between Traffic Flow Characteristics
- The mean value is the best-known characteristic of the position, it describes the place on the numerical axis around which the values of the random variable fluctuate randomly. It is also referred to as expected value or mathematical hope:
- x is random variable,
- n is number of variables.
- The median is a value that divides a series of ascending results into two equally numerous halves:
- a is lower limit of median class,
- h is range of median class,
- is proceeding cumulative frequency from median class.
- is frequency of median class.
- The mode is the most frequently occurring value in the statistics file.
3. Analysis of the Addressed Section of the Road I/11
Traffic Data Collection
4. Evaluation of Online Traffic Surveys
4.1. The First Traffic Survey (5 March 2020)
4.2. The Second Traffic Survey (2 April 2020)
5. Result and Discussion
Comparison of the Flow and Speed at Monitored Points
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harrou, F.; Zeroual, A.; Sun, Y. Traffic congestion monitoring using an improved kNN strategy. Meas. J. Int. Meas. Conf. 2020, 156, 107534. [Google Scholar] [CrossRef]
- Li, G.; Lai, W.; Sui, X.; Li, X.; Qu, X.; Zhang, T.; Li, Y. Influence of traffic congestion on driver behavior in post-congestion driving. Accid. Anal. Prev. 2020, 141, 105508. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M. Traffic Flow. In Introduction to the Foundations of Applied Mathematics; Springer: Cham, Switzerland, 2019; Volume 56, pp. 233–294. [Google Scholar]
- Di Pace, R. Traffic flow theory. Dyn. Stoch. Transp. Syst. 2020, 265–324. [Google Scholar] [CrossRef]
- Vashisth, A. Traffic speed study using videography. Transp. Eng. Exp. 2019. [Google Scholar] [CrossRef]
- Portugais, B.; Khanal, M. Adaptive traffic speed estimation. Procedia Comput. Sci. 2014, 32, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Do, L.N.; Vu, H.L.; Vo, B.Q.; Liu, Z.; Phung, D. An effective spatial-temporal attention based neural network for traffic flow prediction. Transp. Res. Part C: Emerg. Technol. 2019, 108, 12–28. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, W.; Qin, L.; Li, M.; Shao, Z. Short-term prediction of lane-level traffic speeds: A fusion deep learning model. Transp. Res. Part C Emerg. Technol. 2019, 106, 1–16. [Google Scholar] [CrossRef]
- Angelelli, E.; Morandi, V.; Speranza, M.G. Minimizing the total travel time with limited unfairness in traffic networks. Comput. Oper. Res. 2020, 123, 105016. [Google Scholar] [CrossRef]
- Zhang, Y.; Smirnova, M.N.; Bogdanova, A.I.; Zhu, Z.; Smirnov, N.N. Travel time estimation by urgent-gentle class traffic flow model. Transp. Res. Part B Methodol. 2018, 113, 121–142. [Google Scholar] [CrossRef]
- Jurecki, R.; Poliak, M.; Jaśkiewicz, M. Young adult drivers: Simulated behaviour in a car-following situation. PROMET Traffic Transp. 2017, 29, 381–390. [Google Scholar] [CrossRef]
- Guo, J.; Williams, B.M.; Smith, B.L. Data collection time intervals for stochastic short-term traffic flow forecasting. Transp. Res. Rec. 2007, 2024, 18–26. [Google Scholar] [CrossRef]
- Vingilis, E.; Beirness, D.; Boase, P.; Byrne, P.; Johnson, J.; Jonah, B.; Mann, R.J.; Rapoport, M.J.; Seeley, J.; Wickens, C.M.; et al. Coronavirus disease 2019: What could be the effects on Road safety? Accid. Anal. Prev. 2020, 144, 105687. [Google Scholar] [CrossRef] [PubMed]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar]
- Changes in Transport Behaviour during the Covid-19 Crisis. Available online: https://www.iea.org/articles/changes-in-transport-behaviour-during-the-covid-19-crisis (accessed on 20 April 2020).
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Budd, L.; Ison, S. Responsible Transport: A post-COVID agenda for transport policy and practice. Transp. Res. Interdiscip. Perspect. 2020, 6, 100151. [Google Scholar] [CrossRef]
- Loske, D. The impact of COVID-19 on transport volume and freight capacity dynamics: An empirical analysis in German food retail logistics. Transp. Res. Interdiscip. Perspect. 2020, 6, 100165. [Google Scholar]
- Schmidt, M. Impacts of Covid on Urban Transport. TUMI 2020. [Google Scholar] [CrossRef]
- Hendrickson, C.; Rilett, L.R. The COVID-19 Pandemic and Transportation Engineering. J. Transp. Eng. Part A Syst. 2020, 146, 01820001. [Google Scholar] [CrossRef]
- Alatawi, H.; Nezamuddin, N.; Darandary, A. The Impact of COVID-19 on Transport and Gasoline Demand. KAPSARC. 2020. Available online: https://www.kapsarc.org/research/publications/the-impact-of-covid-19-on-transport-and-gasoline-demand/ (accessed on 20 April 2020).
- Pullano, G.; Valdano, E.; Scarpa, N.; Rubrichi, S.; Colizza, V. Population mobility reductions during COVID-19 epidemic in France under lockdown. medRxiv 2020. [Google Scholar] [CrossRef]
- Carrington, D. UK Road Travel Falls to 1955 Levels as Covid-19 Lockdown Takes Hold. The Guardian, 3. (3 April 2020). 2020. Available online: https://www.theguardian.com/uk-news/2020/apr/03/uk-road-travel-falls-to-1955-levels-as-covid-19-lockdown-takes-hold-coronavirus-traffic (accessed on 20 April 2020).
- Plumer, B.; Popovich, N. Traffic and Pollution Plummet as US Cities Shut Down for Coronavirus; The New York Times: New York, NY, USA, 22 March 2020; Available online: https://www.nytimes.com/interactive/2020/03/22/climate/coronavirus-usa-traffic.html (accessed on 20 April 2020).
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Mcauley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; Collaboration, S. Correspondence COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Liu, B. The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach; Department of Economics, University of Birmingham: Birmingham, UK, 2020. [Google Scholar]
- Isaifan, R.J. The dramatic impact of Coronavirus outbreak on air quality: Has it saved as much as it has killed so far? Glob. J. Environ. Sci. Manag. 2020, 6, 275–288. [Google Scholar]
- Teale, C. COVID-19 May Sport the Thinnest Silver Lining: A Cleaner Climate. Smart Cities Dive. 2020. Available online: https://www.smartcitiesdive.com/news/coronavirus-impact-cities-climate-change-efforts/574450/ (accessed on 20 April 2020).
- Čulík, K.; Harantová, V.; Kalašová, A. Traffic Modelling of the Circular Junction in the City of Žilina. Adv. Sci. Technol. Res. J. 2019, 13, 162–169. [Google Scholar] [CrossRef]
- Gnap, J.; Kupculjakova, J.; Semanova, S. Determination of time savings for passengers by applying the public passenger transport preference in cities. Commun. Sci. Lett. Univ. Zilina 2018, 20, 3–8. [Google Scholar]
- Leitner, B.; Sventeková, E.; Novák, L. Possibilities of traffic flow parameters testing at losing of the functionality of selected road network element. Perner’s Contacts 2014, 9, 120–131. [Google Scholar]
- Cernicky, L.; Kalasova, A. The application of telematic technologies in Slovakia–the possibility of improving road safety in the Slovak Republic. Sci. J. Sil. Univ. Technol. Ser. Transp. 2015, 86, 5–11. [Google Scholar]
- Palúch, J.; Čulík, K.; Kalašová, A. Modeling of traffic conditions at the circular junction in the city of Hlohovec. Lect. Notes Netw. Syst. 2019, 52, 65–76. [Google Scholar]
- Elefteriadou, L. Flow, Speed, Density, and Their Relationships. In An Introduction to Traffic Flow Theory. Springer Optimization and Its Applications; Springer: New York, NY, USA, 2014; Volume 84, pp. 61–91. [Google Scholar]
- Chapter IV. Road Traffic Modeling (PART 2). Project 150. Available online: http://projekt150.ha-vel.cz/node/95 (accessed on 20 April 2020).
- Gartner, N.H.; Wagner, P. Analysis of traffic flow characteristics on signalized arterials. Transp. Res. Rec. J. Transp. Res. Board 2004, 1883, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, J.; Sedlačík, M.; Kříž, O. Základy Statistiky, 2nd ed.; GRADA publishing: Praha, Czech Republic, 2016; p. 280. [Google Scholar]
- Konečný, V.; Berežný, R. The impact of the quality of transport services on passenger demand in the suburban bus transport. Procedia Eng. 2017, 192, 40–45. [Google Scholar]
- Lakhmetkina, N.; Poliak, M.; Oleinikov, A. Infrastructure development of international importance for the modern transport system. Arch. Motoryz. 2019, 84, 103–116. [Google Scholar]
- Length of Road Network as of 1.1.2020. Available online: https://www.cdb.sk/sk/Vystupy-CDB/Mapy-cestnej-siete-SR/SR.alej (accessed on 20 April 2020).
- Konecny, V.; Poliak, M. Factors determining the electronic tolling scope of road network. J. Econ. 2008, 56, 712–731. [Google Scholar]
- Harantová, V.; Kubíková, S.; Rumanovský, L. Traffic Accident Occurrence, Its Prediction and Causes. Commun. Comput. Inf. Sci. 2019, 1049, 123–136. [Google Scholar]
- National Traffic Information System of the Slovak Republic: National Traffic Information Center. Available online: https://www.asb.sk/stavebnictvo/inzinierske-stavby/doprava/narodny-system-dopravnych-informacii-sr-narodne-dopravne-informacne-centrum (accessed on 20 April 2020).
- Elliott, R.; Schumacher, I.; Withagen, C. Suggestions for a Covid-19 post-pandemic research agenda in environmental economics. Forthcom. Environ. Resour. Econ. 2020, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Traffic Reduction in Selected Cities amid Coronavirus Crisis. 2020. Available online: https://www.statista.com/statistics/1106135/change-in-daily-traffic-volume-amid-coronavirus-crisis-key-countries/ (accessed on 20 April 2020).
- Bucsky, P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020, 100141. [Google Scholar] [CrossRef]
- ETSC: COVID-19: Cities Adapting Road Infrastructure and Speed Limits to Enable Safer Cycling and Walking. Available online: https://etsc.eu/covid-19-cities-adapting-road-infrastructure-and-speed-limits-to-enable-safer-cycling-and-walking/ (accessed on 1 July 2020).
- ETSC: COVID-19: The Impact of Covid-19 Lockdowns on Road Deaths in April 2020. Available online: https://etsc.eu/wp-content/uploads/PIN-Corona-Briefing_final.pdf (accessed on 1 July 2020).
- Katrakazas, C.; Michelaraki, E.; Sekadakis, M.; Yannis, G. A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety. Transp. Res. Interdiscip. Perspect. 2020, 7, 100186. [Google Scholar] [CrossRef]
- Beňo, J.; Štefanik, D. Impact of COVID-19 Related Measures on Air Quality in the Slovak Republic-first Month 2020. Available online: http://www.shmu.sk/sk/?page=2049&id=1054 (accessed on 30 April 2020).
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef] [PubMed]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef] [PubMed]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; El Bouch, M.; Krombi, M.H. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Cadotte, M. Early evidence that COVID-19 government policies reduce urban air pollution. EarthArXiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, C.; O’Callaghan, B.; Stern, N.; Stiglitz, J.; Zenghelis, D. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Oxf. Rev. Econ. Policy 2020, 48. Available online: https://www.smithschool.ox.ac.uk/publications/wpapers/workingpaper20-02.pdf (accessed on 20 April 2020). [CrossRef]
5 March 2020 | 2 April 2020 | Comparison [%] | |||||||
---|---|---|---|---|---|---|---|---|---|
Direction | Flow [veh/15 min] | Flow [veh/15 min] | |||||||
Average | Median | Mode | Average | Median | Mode | Average | Median | ||
Point 1 | Kysucký Lieskovec–Kysucké Nové Mesto | 29 | 26 | 28 | 30 | 30 | 15 | 3.87 | 15.38 |
Kysucké Nové Mesto–Kysucký Lieskovec | 32 | 32 | 32 | 19 | 20 | 20 | −39.28 | −39.06 | |
Point 2 | Budatín–Kysucké Nové Mesto | 51 | 51 | 54 | 37 | 36 | 18 | −27.60 | −29.41 |
Kysucké Nové Mesto–Budatín | 44 | 43 | 33 | 33 | 30 | 28 | −23.97 | −30.23 |
5 March 2020 | 2 April 2020 | Comparison [%] | |||||||
---|---|---|---|---|---|---|---|---|---|
Direction | Speed [km/h] | Speed [km/h] | |||||||
Average | Median | Mode | Average | Median | Mode | Average | Median | ||
Point 1 | Kysucký Lieskovec–Kysucké Nové Mesto | 50 | 49 | 48 | 71 | 71 | 68 | 42.51 | 45.36 |
Kysucké Nové Mesto–Kysucký Lieskovec | 67 | 68 | 67 | 72 | 71 | 69 | 7.32 | 4.41 | |
Point 2 | Budatín–Kysucké Nové Mesto | 67 | 77 | 81 | 82 | 82 | 82 | 21.39 | 7.19 |
Kysucké Nové Mesto–Budatín | 80 | 80 | 81 | 84 | 85 | 85 | 4.79 | 6.25 |
5 March 2020 | 2 April 2020 | Comparison [%] | ||||||
Direction | Flow [veh/h] | |||||||
Average | Median | Mode | Average | Median | Modus | Average | Median | |
Point 1 | 61 | 62 | 68 | 49 | 48 | 46 | −18.87 | −21.95 |
Point 2 | 94 | 91 | 85 | 70 | 70 | 82 | −25.90 | −23.20 |
Direction | Speed [km/h] | |||||||
Average | Median | Mode | Average | Median | Mode | Average | Median | |
Point 1 | 58.4 | 58.0 | 55.0 | 71.4 | 71.0 | 73.0 | 22.25 | 22.41 |
Point 2 | 73.7 | 77.0 | 80.5 | 82.8 | 83.3 | 83.5 | 12.38 | 8.12 |
2 April 2019 | 2 April 2020 | Comparison [%] | ||||||
Direction | Flow [veh/15 min] | |||||||
Average | Median | Mode | Average | Median | Modus | Average | Median | |
Point 1 | 158 | 154 | 149 | 49 | 48 | 46 | −68.98 | −68.83 |
Point 2 | 186 | 191 | 197 | 70 | 70 | 82 | −62.36 | −63.35 |
Direction | Speed [km/h] | |||||||
Average | Median | Mode | Average | Median | Mode | Average | Median | |
Point 1 | 55.1 | 48.0 | 46.0 | 71.4 | 71.0 | 73.0 | 22.83 | 22.39 |
Point 2 | 75.8 | 78.5 | 80.0 | 82.8 | 83.3 | 83.5 | 9.23 | 5.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harantová, V.; Hájnik, A.; Kalašová, A. Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measures in Connection with COVID-19. Sustainability 2020, 12, 7216. https://doi.org/10.3390/su12177216
Harantová V, Hájnik A, Kalašová A. Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measures in Connection with COVID-19. Sustainability. 2020; 12(17):7216. https://doi.org/10.3390/su12177216
Chicago/Turabian StyleHarantová, Veronika, Ambróz Hájnik, and Alica Kalašová. 2020. "Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measures in Connection with COVID-19" Sustainability 12, no. 17: 7216. https://doi.org/10.3390/su12177216
APA StyleHarantová, V., Hájnik, A., & Kalašová, A. (2020). Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measures in Connection with COVID-19. Sustainability, 12(17), 7216. https://doi.org/10.3390/su12177216