Eliminating Barriers for Sustainable Transport Systems on Maritime Silk Road and Baltic–Adriatic Corridor under BRI
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
4. Results and Data Analysis
4.1. Pollution Analysis on BCA via Southern and Northern Transport Route
4.2. Time Comparison
4.3. Cost Perspective
5. Discussion
5.1. Port and Inland Infrastructure Modernization for Greener and Reliable Intermodal Transport Chains
5.2. Terminal Infrastructure and Suprastructure Maintenance and Improvement with BRI
5.3. Main Rail Infrastructural Bottlenecks Elimination on the Southern Part of BAC with BRI
5.4. Environmental Benefits of Transport Systems Improvement on STR
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Ke, Y.; Zuo, J.; Xiong, W.; Wu, P. Evaluation of sustainable transport research in 2000–2019. J. Clean. Prod. 2020, 256, 120404. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Loo, B.P.Y.; Tsoi, K.H. The sustainable transport pathway: A holistic strategy of Five Transformations. J. Transp. Land Use 2018, 11, 961–980. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev 2016, 40, 314–321. [Google Scholar]
- OECD. Business and Finance Outlook 2018; OECD iLibrary: Paris, France, 2018. [Google Scholar]
- Amighini, A.A. Beyond Ports and Transport Infrastructure: The Geo-Economic Impact of the BRI on the European Union. In Securing the Belt and Road Initiative; Arduino, A., Gong, X., Eds.; Palgrave: Singapore, 2018. [Google Scholar]
- Zhai, F. China’s belt and road initiative: A preliminary quantitative assessment. J. Asian Econ. 2018, 55, 84–92. [Google Scholar] [CrossRef]
- Chan, H.K.; Dai, J.; Wang, X.; Lacka, E. Logistics and supply chain innovation in the context of the Belt and Road Initiative (BRI). Transp. Res. E Log. 2019, 132, 51–56. [Google Scholar] [CrossRef]
- Steer Davies Gleave. Research for TRAN Committee: The New Silk Route–Opportunities and Challenges for EU Transport, European Parliament; Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2018. [Google Scholar]
- Thürer, M.; Tomašević, I.; Stevenson, M.; Blome, C.; Melnyk, S.; Chan, H.K.; Huang, G.Q. A systematic review of China’s belt and road initiative: Implications for global supply chain management. Int. J. Prod. Res. 2020, 58, 2436–2453. [Google Scholar] [CrossRef]
- Kaack, L.H.; Vaishnav, P.; Morgan, M.G.; Azevedo, I.L.; Rai, S. Decarbonizing intraregional freight systems with a focus on modal shift. Environ. Res. Lett. 2018, 13, 1–29. [Google Scholar] [CrossRef]
- Schinas, O.; von Westarp, A.G. Assessing the impact of the maritime silk road. J. Ocean Eng. Sci. 2017, 2, 186–195. [Google Scholar] [CrossRef]
- European Commission. Baltic-Adriatic Core Network Corridor Study-Final Report; EC: Brussels, Belgium, 2014. [Google Scholar]
- European Commission. Baltic-Adriatic: Third Work Plan of the European Coordinator; EC: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. Baltic-Adriatic: Work Plan of the European Coordinator; EC: Brussels, Belgium, 2018. [Google Scholar]
- Jaegler, A.; Burlat, P. Carbon friendly supply chains: A simulation study of different scenarios. Prod. Plan. Control. 2012, 23, 269–278. [Google Scholar] [CrossRef]
- Beškovnik, B.; Twrdy, E. Agile Port and Intermodal Transport Operations Model to Secure Lean Supply Chains Concept. Traff. Transp. 2011, 23, 105–112. [Google Scholar] [CrossRef]
- Elhedhli, S.; Merrick, R. Green supply chain network design to reduce carbon emissions. Transp. Res. D Transp. Environ. 2012, 17, 370–379. [Google Scholar] [CrossRef]
- Lopez-Navarro, M.A. Environmental Factors and Intermodal Freight Transportation: Analysis of the Decision Bases in the Case of Spanish Motorways of the Sea. Sustainability 2014, 6, 1544–1566. [Google Scholar] [CrossRef] [Green Version]
- Sundarakania, B.; de Souza, R.; Gohc, M.; Wagner, S.M.; Manikandan, S. Modeling carbon footprints across the supply chain. Int. J. Prod. Econ. 2010, 128, 43–50. [Google Scholar] [CrossRef]
- Herold, D.M.; Lee, K.H. Carbon management in the logistics and transportation sector: An overview and new research directions. Carbon Manag. 2017, 8, 79–97. [Google Scholar] [CrossRef]
- Qian, C.; Wang, S.; Liu, X.; Zhang, X. Low-Carbon Initiatives of Logistics Service Providers: The Perspective of Supply Chain Integration. Sustainability 2019, 11, 3233. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Agrawal, S. Analyzing disposition strategies in reverse supply chains: Fuzzy TOPSIS approach. Manag. Environ. Qual. Int. J. 2018, 29, 427–443. [Google Scholar] [CrossRef]
- Robèrt, K.H.; Borén, S.; Ny, H.; Broman, G. A strategic approach to sustainable transport system development-Part 1: Attempting a generic community planning process model. J. Clean. Prod. 2017, 140, 53–61. [Google Scholar] [CrossRef]
- Sislian, L.; Jaegler, A.; Cariou, P. A literature review on port sustainability and ocean’s carrier network problem. Res. Transp. Bus. Manag. 2016, 19, 19–26. [Google Scholar] [CrossRef]
- Cariou, P.; Parola, F.; Notteboom, T. Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping. Int. J. Prod. Econ. 2019, 208, 17–28. [Google Scholar] [CrossRef]
- Pizzol, M. Deterministic and stochastic carbon footprint of intermodal ferry and truck freight transport across Scandinavian routes. J. Clean. Prod. 2018, 224, 626–636. [Google Scholar] [CrossRef]
- Lun, Y.H.V.; Lai, K.; Wong, C.W.Y.; Cheng, T.C.E. Evaluation of Green Shipping Networks. In Green Shipping Management-Shipping and Transport Logistics; Lun, Y.H.V., Lai, K., Wong, C.W.Y., Cheng, T.C.E., Eds.; Springer: Cham, Switzerland, 2016; pp. 77–90. [Google Scholar]
- Acciaro, M.; Vanelslander, T.; Sys, C.; Ferrari, C.; Roumboutsos, A.; Giuliano, G.; Lam, J.S.L.; Kapros, S. Environmental sustainability in seaports: A framework for successful innovation. Marit. Policy Manag. 2014, 41, 480–500. [Google Scholar] [CrossRef]
- Lee, J.S.; Gu, Y.A. market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements. Int. J. Prod. Econ. 2016, 171, 266–274. [Google Scholar]
- Wiegmans, B.; Janic, M. Analysis, modeling, and assessing performances of supply chains served by long-distance freight transport corridors. Int. J. Sustain. Transp. 2019, 13, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, X. Integrated optimization of railway freight operation planning and pricing based on carbon emission reduction policies. J. Clean. Prod. 2020, 263, 121316. [Google Scholar] [CrossRef]
- Islam, D.M.Z.; Mortimer, P.N. Longer, faster and heavier freight trains: Is this the solution for European railways? Findings from a case study. Benchmark. Int. J. 2017, 24, 994–1012. [Google Scholar] [CrossRef]
- Wiśnicki, B.; Dyrda, A. Analysis of the Intermodal Transport Efficiency in the Central and Eastern Europe. Our Sea 2016, 63, 43–47. [Google Scholar]
- Stamatović, K.; de Langen, K.; Groznik, A. Port cooperation in the North Adriatic ports. Res. Transp. Bus. Manag. 2018, 26, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Beškovnik, B.; Twrdy, E.; Bauk, S. Developing Higher Berth Productivity: Comparison of Eastern Adriatic Container Terminals. Traff. Transp. 2018, 31, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Ignaccolo, M.; Inturri, G.; Giuffrida, N.; Torrisi, V.A. Sustainable Framework for the Analysis of Port Systems. Eur. Transp. 2020, 78, 8. [Google Scholar]
- DCT Gdansk-Terminal Connections. Available online: https://dctgdansk.pl/en/about-dct/connections/ (accessed on 7 May 2020).
- Port of Koper. Business in the Period 2010–2017 and Key Investments from 2014 to the Present; Luka Koper: Koper, Slovenia, 2017. [Google Scholar]
- EWI-EcoTransIT Initiative. Ecological Transport Information Tool for Worldwide Transports Methodology and Data Update; IVE mbH: Hanover, Germany, 2019. [Google Scholar]
- Ammar, N.R. Energy- and cost-efficiency analysis of greenhouse gas emission reduction using slow steaming of ships: Case study RO-RO cargo vessel. Ships Offshore Struc. 2018, 13, 868–876. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Dai, G. Review of maritime transportation air emission pollution and policy analysis. J. Ocean Univ. China 2009, 8, 283–290. [Google Scholar] [CrossRef]
- Port of Koper–Container Terminal. Available online: https://www.luka-kp.si/eng/terminals/single/container-terminal-244 (accessed on 13 May 2020).
- Port of Koper-Extension of the Container Terminal. Available online: https://luka-kp.si/eng/news/single/a-step-closer-to-the-extension-of-the-container-te-35208 (accessed on 13 May 2020).
- Port of Koper. Strategic Business Plan for 2020–2025; Luka Koper: Koper, Slovenia, 2020. [Google Scholar]
- SIA—Slovenian Infrastructure Agency. Investment Feasibility Study Second Track Divača–Koper; SIA: Ljubljana, Slovenia, 2019. [Google Scholar]
Maritime Transport & Trucking | ||||||
---|---|---|---|---|---|---|
POL | Wroclaw | Katowice | Mlawa | Gorzow | Ostrava | Žilina |
Shanghai | 78.66 | 82.81 | 55.64 | 77.28 | 91.90 | 97.18 |
Shenzen | 79.13 | 83.50 | 55.06 | 77.68 | 93.12 | 98.71 |
Qingdao | 78.41 | 82.46 | 55.89 | 77.07 | 91.30 | 96.44 |
Maritime Transport & Rail | ||||||
Wroclaw | Katowice | Mlawa | Gorzow | Ostrava | Žilina | |
Shanghai | 89.03 | 94.94 | 75.57 | 92.32 | 99.60 | 102.49 |
Shenzen | 90.45 | 96.85 | 75.98 | 94.00 | 101.93 | 105.06 |
Qingdao | 88.34 | 94.03 | 75.35 | 91.52 | 98.51 | 101.30 |
NOx Value in kg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wroclaw | Katowice | Mlawa | Gorzow | Ostrava | Žilina | |||||||
Sea route | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail |
SHA-KOP | 31.6 | 29.3 | 31.6 | 29.2 | 32.7 | 29.6 | 31.8 | 29.3 | 31.3 | 29.2 | 31.2 | 29.1 |
SHA-GDA | 30.6 | 29.6 | 30.7 | 29.7 | 29.9 | 29.3 | 30.6 | 29.7 | 31.0 | 29.7 | 31.2 | 29.8 |
SZX-KOP | 29.6 | 27.3 | 29.6 | 27.2 | 30.7 | 27.6 | 29.8 | 27.3 | 29.3 | 27.2 | 29.2 | 27.1 |
SZX-GDA | 28.6 | 27.6 | 28.7 | 27.7 | 27.9 | 27.3 | 28.6 | 27.7 | 29.0 | 27.7 | 29.2 | 27.8 |
TAO-KOP | 32.6 | 30.3 | 32.6 | 30.2 | 33.7 | 30.6 | 32.8 | 30.3 | 32.3 | 30.2 | 32.2 | 30.1 |
TAO-GDA | 30.5 | 29.5 | 30.7 | 29.7 | 29.8 | 29.3 | 30.5 | 29.6 | 31.0 | 29.7 | 31.2 | 29.7 |
SO2 Value in kg | ||||||||||||
SHA-KOP | 18.4 | 18.6 | 18.3 | 18.5 | 18.5 | 19.0 | 18.4 | 18.6 | 18.3 | 18.4 | 18.3 | 18.2 |
SHA-GDA | 17.9 | 18.3 | 17.9 | 18.4 | 17.8 | 18.0 | 17.9 | 18.4 | 17.9 | 18.5 | 18.0 | 18.6 |
SZX-KOP | 17.4 | 17.6 | 17.3 | 17.5 | 17.5 | 18.0 | 17.4 | 17.6 | 17.3 | 17.4 | 17.3 | 17.2 |
SZX-GDA | 16.9 | 17.3 | 16.9 | 17.5 | 16.8 | 17.0 | 16.9 | 17.4 | 17.0 | 17.5 | 17.0 | 17.6 |
TAO-KOP | 19.4 | 19.6 | 19.3 | 19.5 | 19.5 | 20.0 | 19.4 | 19.6 | 19.3 | 19.4 | 19.3 | 19.2 |
TAO-GDA | 17.9 | 18.3 | 17.9 | 18.4 | 17.8 | 18.0 | 17.9 | 18.4 | 17.9 | 18.5 | 18.0 | 18.6 |
POL | Wroclaw | Katowice | Mlawa | Gorzow | Ostrava | Žilina |
---|---|---|---|---|---|---|
Shanghai | 80% | 88% | 63% | 72% | 109% | 110% |
Qingdao | 77% | 83% | 60% | 69% | 104% | 106% |
Shenzen | 80% | 88% | 63% | 72% | 109% | 110% |
Best option from Gdansk | Truck | Truck | Truck | Truck | Truck | Truck |
Best option from Koper | Rail | Rail | Truck | Truck | Rail | Rail |
CO2 Value in Tons | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sea Route | Wroclaw | Katowice | Mlawa | Gorzow | Ostrava | Žilina | ||||||
Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | |
SHA-KOP | 1.89 | 1.17 | 1.87 | 1.13 | 2.29 | 1.31 | 1.94 | 1.16 | 1.78 | 1.09 | 1.74 | 1.05 |
SHA-GDA | 1.74 | 1.45 | 1.82 | 1.50 | 1.49 | 1.34 | 1.76 | 1.49 | 1.91 | 1.53 | 1.98 | 1.55 |
SZX-KOP | 1.80 | 1.08 | 1.78 | 1.04 | 2.20 | 1.22 | 1.85 | 1.07 | 1.69 | 1.00 | 1.65 | 0.96 |
SZX-GDA | 1.66 | 1.37 | 1.74 | 1.42 | 1.41 | 1.26 | 1.68 | 1.41 | 1.83 | 1.45 | 1.90 | 1.47 |
TAO-KOP | 1.91 | 1.19 | 1.89 | 1.15 | 2.31 | 1.33 | 1.96 | 1.18 | 1.80 | 1.11 | 1.76 | 1.07 |
TAO-GDA | 1.77 | 1.48 | 1.85 | 1.53 | 1.52 | 1.37 | 1.79 | 1.52 | 1.94 | 1.56 | 2.01 | 1.58 |
NOx Emission Difference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
POL | Wroclaw | Katowice | Mlawa | Gorzow | Ostrava | Žilina | ||||||
Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | Truck | Rail | |
Shanghai | 124.1 | 132.4 | 125.2 | 133.4 | 116.0 | 129.7 | 123.5 | 132.9 | 127.6 | 134.1 | 129.0 | 134.5 |
Shenzen | 126.2 | 135.6 | 127.4 | 136.8 | 117.3 | 132.6 | 125.5 | 136.2 | 130.1 | 137.5 | 131.7 | 137.9 |
Qingdao | 119.1 | 126.6 | 120.2 | 127.6 | 111.6 | 124.1 | 118.6 | 127.1 | 122.5 | 128.2 | 123.8 | 128.5 |
SO2 Emission Difference | ||||||||||||
Shanghai | 124.6 | 125.3 | 124.9 | 127.5 | 122.8 | 119.8 | 124.5 | 126.4 | 125.5 | 129.0 | 125.8 | 130.4 |
Shenzen | 126.5 | 127.2 | 126.9 | 129.7 | 124.5 | 121.3 | 126.4 | 128.4 | 127.5 | 131.3 | 127.8 | 132.8 |
Qingdao | 116.4 | 117.2 | 116.7 | 119.2 | 114.8 | 112.2 | 116.3 | 118.2 | 117.2 | 120.5 | 117.4 | 121.8 |
NMHC Emission Difference | ||||||||||||
Shanghai | 115.0 | 130.4 | 117.2 | 130.7 | 100.5 | 129.5 | 113.5 | 130.6 | 121.7 | 131.0 | 124.0 | 131.1 |
Shenzen | 116.2 | 133.5 | 118.6 | 133.9 | 100.5 | 132.5 | 114.5 | 133.7 | 123.5 | 134.1 | 126.0 | 134.3 |
Qingdao | 114.7 | 129.6 | 116.8 | 130.0 | 100.5 | 128.7 | 113.2 | 129.8 | 121.3 | 130.2 | 123.5 | 130.3 |
PM10 Emission Difference | ||||||||||||
Shanghai | 122.4 | 123.9 | 122.6 | 125.9 | 120.4 | 119.0 | 122.2 | 125.0 | 123.2 | 127.4 | 123.5 | 127.8 |
Shenzen | 124.6 | 126.2 | 124.8 | 128.4 | 122.4 | 120.7 | 124.4 | 127.4 | 125.4 | 130.0 | 125.8 | 130.5 |
Qingdao | 121.8 | 123.3 | 122.0 | 125.2 | 119.9 | 118.5 | 121.6 | 124.3 | 122.5 | 126.6 | 122.9 | 127.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beškovnik, B.; Golnar, M. Eliminating Barriers for Sustainable Transport Systems on Maritime Silk Road and Baltic–Adriatic Corridor under BRI. Sustainability 2020, 12, 7412. https://doi.org/10.3390/su12187412
Beškovnik B, Golnar M. Eliminating Barriers for Sustainable Transport Systems on Maritime Silk Road and Baltic–Adriatic Corridor under BRI. Sustainability. 2020; 12(18):7412. https://doi.org/10.3390/su12187412
Chicago/Turabian StyleBeškovnik, Bojan, and Marko Golnar. 2020. "Eliminating Barriers for Sustainable Transport Systems on Maritime Silk Road and Baltic–Adriatic Corridor under BRI" Sustainability 12, no. 18: 7412. https://doi.org/10.3390/su12187412
APA StyleBeškovnik, B., & Golnar, M. (2020). Eliminating Barriers for Sustainable Transport Systems on Maritime Silk Road and Baltic–Adriatic Corridor under BRI. Sustainability, 12(18), 7412. https://doi.org/10.3390/su12187412