Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review
Abstract
:1. Introduction
2. Expectations of Water Shortage in the Future
3. Using Solar Energy in Water Desalination to Irrigate Crops
4. Feasibility of Saltwater Desalination in Greenhouse Systems
5. Possibility of Water Desalination for Agricultural Production in the MENA Region
6. Economics of the Desalination Process
7. Environmental Impacts of the Desalination Process
8. Quality of Desalinated Water Compared with Other Non-Conventional Resources
9. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Negewo, B.D. Renewable Energy Desalination: An. Emerging Solution to Close the Water Gap in the Middle East and North Africa; World Bank Publications: Washington, DC, USA, 2012; pp. 1–145. [Google Scholar]
- Mansour, E.; Abdul-Hamid, M.I.; Yasin, M.T.; Qabil, N.; Attia, A. Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment. Agric. Water Manag. 2017, 194, 58–67. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Qabil, N.; Abdelsalam, A.; Wafa, H.A.; El Kenawy, A.; Casas, A.M.; Igartua, E. Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crop. Res. 2018, 224, 67–75. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; El-Naggar, N.Z.; Abdelsalam, A.; Igartua, E. Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop. Pasture Sci. 2018, 69, 681–690. [Google Scholar] [CrossRef]
- Elsaeed, G. Effects of Climate Change on Egypt’s Water Supply. In National Security and Human Health Implications of Climate Change; Fernando, H.J.S., Klaić, Z., McCulley, J.L., Eds.; Springer: New York, NY, USA, 2012; pp. 337–347. [Google Scholar]
- Mohie El Din, M.O.; Moussa, A.M. Water management in Egypt for facing the future challenges. J. Adv. Res. 2016, 7, 403–412. [Google Scholar]
- Mashaly, A.F.; Alazba, A.; Al-Awaadh, A.; Mattar, M.A. Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water. Agric. Water Manag. 2015, 154, 1–10. [Google Scholar] [CrossRef]
- Jeuland, M. Challenges to wastewater reuse in the Middle East and North Africa. Middle East Dev. J. 2015, 7, 1–25. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Akrami, M.; Salah, A.H.; Dibaj, M.; Porcheron, M.; Javadi, A.A.; Farmani, R.; Fath, H.E.; Negm, A. A Zero-liquid discharge model for a transient solar-powered desalination system for greenhouse. Water 2020, 12, 1440. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective. J. Geophys. Res. Atmos. 2015, 120, 6346–6378. [Google Scholar] [CrossRef]
- Negewo, B.D.; Immerzeel, W.; Droogers, P.; Terink, W.; Hoogeveen, J.; Hellegers, P.; van Beek, R. Middle-East and Northern Africa Water Outlook. FutureWater Rep. 2011, 98, 350. [Google Scholar]
- Beltrán, J.M.; Koo-Oshima, S. Water desalination for agricultural applications. In Proceedings of the FAO Expert Consultation on Water Desalination for Agricultural Applications, Rome, Italy, 26–27 April 2004; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; pp. 1–48. [Google Scholar]
- Bouras, E.; Jarlan, L.; Khabba, S.; Er-Raki, S.; Dezetter, A.; Sghir, F.; Tramblay, Y. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci. Rep. 2019, 9, 19142. [Google Scholar] [CrossRef] [PubMed]
- Chaibi, M. An overview of solar desalination for domestic and agriculture water needs in remote arid areas. Desalination 2000, 127, 119–133. [Google Scholar] [CrossRef]
- Li, C.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renew. Sustain. Energy Rev. 2013, 19, 136–163. [Google Scholar] [CrossRef]
- Alnaimat, F.; Klausner, J.; Mathew, B. Solar desalination. In Desalination and Water Treatment; Eyvaz, M., Ed.; IntechOpen: London, UK, 2018; pp. 127–150. [Google Scholar] [CrossRef] [Green Version]
- Roca, L.; Sánchez, J.A.; Rodríguez, F.; Bonilla, J.; De la Calle, A.; Berenguel, M. Predictive control applied to a solar desalination plant connected to a greenhouse with daily variation of irrigation water demand. Energies 2016, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.; Paton, C. The seawater greenhouse in the United Arab Emirates: Thermal modelling and evaluation of design options. Desalination 2005, 173, 103–111. [Google Scholar] [CrossRef]
- Salem, M.G. Solar Desalination as an Adaptation Tool for Climate Change Impacts on the Water Resources of Egypt; United Nations Education, Scientific and Cultural Organization: New York, NY, USA, 2013; pp. 1–94. [Google Scholar]
- Sain, M.K.; Kumawat, G. Performance enhancement of single slope solar still using nano-particles mixed black paint. Int. J. Adv. Sci. Technol. 2015, 1, 55–65. [Google Scholar]
- Salah, A.H.; Hassan, G.E.; Elhelw, M.; Fath, H.; Elsherbiny, S.E. Performance improvement of roof transparent solar still coupled with agriculture greenhouse. Renew. Energy Sustain. Dev. 2017, 3, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Kabeel, A.; El-Said, E.M. Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review. Eng. Sci. Technol. 2015, 18, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Types of Greenhouses. Available online: https://www.growingreenhouse.com/greenhouse-structure/ (accessed on 10 June 2020).
- Akrami, M.; Salah, A.H.; Javadi, A.A.; Fath, H.E.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Negm, A. Towards a sustainable greenhouse: Review of trends and emerging practices in analysing greenhouse ventilation requirements to sustain maximum agricultural yield. Sustainability 2020, 12, 2794. [Google Scholar] [CrossRef] [Green Version]
- Smart Greenhouse. Available online: https://www.postscapes.com/smart-greenhouses/ (accessed on 10 June 2020).
- Kim, H.; Kim, S.; Jeon, J.; Jeong, H. Effects of Irrigation with Desalinated Water on Lettuce Grown under Greenhouse in South Korea. Appl. Sci. 2020, 10, 2207. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Alvarez, V.; Gallego-Elvira, B.; Maestre-Valero, J.; Martin-Gorriz, B.; Soto-Garcia, M. Assessing concerns about fertigation costs with desalinated seawater in south-eastern Spain. Agric. Water Manag. 2020, 239, 106257. [Google Scholar] [CrossRef]
- Mansour, E.; Merwad, A.; Yasin, M.; Abdul-Hamid, M.; El-Sobky, E.; Oraby, H. Nitrogen use efficiency in spring wheat: Genotypic variation and grain yield response under sandy soil conditions. J. Agric. Sci. 2017, 155, 1407–1423. [Google Scholar] [CrossRef]
- Kafkafi, U.; Tarchitzky, J. A Tool for Efficient Fertilizer and Water Management; International Potash Institute (IPI): Paris, France, 2011; pp. 1–123. [Google Scholar]
- Nasr, P.; Sewilam, H. Fertilizer Drawn Forward Ssmosis for Irrigation. In Emerging Technologies for Sustainable Desalination Handbook; Gude, V.G., Ed.; Elsevier: Cambridge, UK, 2018; pp. 433–460. [Google Scholar]
- How to Build Smart Greenhouse. Available online: https://r-stylelab.com/company/blog/iot/iot-agriculture-how-to-build-smart-greenhouse (accessed on 5 August 2020).
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- Akrami, M.; Javadi, A.A.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Tabor, G.R.; Negm, A. Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability 2020, 12, 986. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; He, W.; Yue, C.; Pu, W. Study on desalination of zero-emission system based on mechanical vapor compression. Appl. Energy 2017, 185, 1490–1496. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Mahmoud, M.S.; Farrag, T.E. Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: A detailed review. Desalin. Water Treat. 2014, 52, 4622–4640. [Google Scholar] [CrossRef]
- Rahimi-Ahar, Z.; Hatamipour, M.S.; Ahar, L.R. Air Humidification-Dehumidification Process for Desalination: A review. Prog. Energy Combust. Sci. 2020, 80, 100850. [Google Scholar] [CrossRef]
- Radhwan, A.M.; Fath, H.E. Thermal performance of greenhouses with a built-in solar distillation system: Experimental study. Desalination 2005, 181, 193–205. [Google Scholar] [CrossRef]
- Kabeel, A.; Almagar, A.M. Seawater greenhouse in desalination and economics. In Proceedings of the Seventeenth International Water Technology Conference (IWTC17), Istanbul, Turkey, 5–7 November 2013. [Google Scholar]
- Islam, S.F.-U.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef] [PubMed]
- Sewilam, H.; Nasr, P. Desalinated Water for Food Production in the Arab Region. In The Water, Energy, and Food Security Nexus in the Arab Region; Amer, K., Adeel, Z., Böer, B., Saleh, W., Eds.; Springer: Gewerbestrasse, Cham, Switzerland, 2017; pp. 59–81. [Google Scholar]
- Hirich, A.; Choukr-Allah, R.; Rami, A.; El-Otmani, M. Feasibility of Using Desalination for Irrigation in the Souss Massa Region in the South of Morocco. In Recent Progress in Desalination, Environmental and Marine Outfall Systems; Baawain, M., Choudri, B., Ahmed, M., Purnama, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 189–203. [Google Scholar]
- Tüzel, Y.; Leonardi, C. Protected cultivation in Mediterranean region: Trends and needs. Ege Üniv. Ziraat Fak. Derg. 2009, 46, 215–223. [Google Scholar]
- FAO Corporate Statistical Database, Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 July 2020).
- Kasper, S.; Lior, N. A methodology for comparing water desalination to competitive fresh water transportation and treatment. Desalination 1979, 30, 541–552. [Google Scholar] [CrossRef]
- Chaibi, M.; Safi, M.; Hsairi, M. Performance analysis of a solar desalting unit in south Tunisia. Desalination 1991, 82, 187–196. [Google Scholar] [CrossRef]
- Chaibi, M.T.; Bourouni, K. Development of Solar Desalination Systems Concepts for Irrigation in Arid Areas Conditions. In Solar Desalination for the 21st Century; Rizzuti, L., Ettouney, H.M., Cipollina, A., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 19–32. [Google Scholar]
- Hafez, A.; El-Manharawy, S. Economics of seawater RO desalination in the Red Sea region, Egypt. Part 1. A case study. Desalination 2003, 153, 335–347. [Google Scholar] [CrossRef]
- Miller, S.; Shemer, H.; Semiat, R. Energy and environmental issues in desalination. Desalination 2015, 366, 2–8. [Google Scholar] [CrossRef]
- Lattemann, S.; Höpner, T. Environmental impact and impact assessment of seawater desalination. Desalination 2008, 220, 1–15. [Google Scholar] [CrossRef]
- Einav, R.; Harussi, K.; Perry, D. The footprint of the desalination processes on the environment. Desalination 2003, 152, 141–154. [Google Scholar] [CrossRef]
- Barnes, J. Mixing waters: The reuse of agricultural drainage water in Egypt. Geoforum 2014, 57, 181–191. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region. Desalin. Water Treat. 2013, 51, 38–43. [Google Scholar] [CrossRef]
- Al-Khatib, I.A.; Arafat, H.A. Chemical and microbiological quality of desalinated water, groundwater and rain-fed cisterns in the Gaza strip, Palestine. Desalination 2009, 249, 1165–1170. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Karydis, M.; Kitsiou, D. Eutrophication and environmental policy in the Mediterranean Sea: A review. Environ. Monit. Assess. 2012, 184, 4931–4984. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, V.; Picot, B. The distribution of phosphate in sediments and its relation with eutrophication of a Mediterranean coastal lagoon. Hydrobiologia 1995, 297, 29–41. [Google Scholar] [CrossRef]
- Soliman, N.F.; Nasr, S.M.; Okbah, M.A. Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J. Environ. Health Sci. Eng. 2015, 13, 70. [Google Scholar] [CrossRef] [Green Version]
- Said, T.O.; Hamed, M. Determination of persistent organic pollutants in water of new Damietta Harbour, Egypt. Egypt. J. Aquat. Res. 2006, 32, 235–245. [Google Scholar]
- El-Gammal, M.; Ibrahim, M.; Gad, A.; El-Zeiny, A. Integration of lab analyses and GIS techniques for assessment of some physical and chemical characteristics in different water bodies, Damietta coastal region, Egypt. Mansoura J. Environ. Sci. 2015, 44, 257–284. [Google Scholar]
- El-Zeiny, A. Monitoring and Evaluation of Some Pollutants at New Damietta–Damietta-Egypt. Ph.D. Thesis, Faculty of Science, Mansoura University, Mansoura, Egypt, 2010. [Google Scholar]
- Abdel-Azim, R.; Allam, M. Agricultural drainage water reuse in Egypt: Strategic issues and mitigation measures. In Non-Conventional Water Use: WASAMED Project; Hamdy, A., El Gamal, F., Lamaddalena, N., Bogliotti, C., Guelloubi, R., Eds.; CIHEAM/EU DG Research: Bari, Italy, 2005; pp. 105–117. [Google Scholar]
- Wolters, W.; Smit, R.; Nour El-Din, M.; Sayed Ahmed, E.; Froebrich, J.; Ritzema, H. Issues and challenges in spatial and temporal water allocation in the Nile Delta. Sustainability 2016, 8, 383. [Google Scholar] [CrossRef] [Green Version]
- Elbana, T.A.; Bakr, N.; George, B.; Elbana, M. Assessment of marginal quality water for sustainable irrigation management: Case study of Bahr El-Baqar area, Egypt. Water Air Soil Pollut. 2017, 228, 214. [Google Scholar] [CrossRef]
- El-Agha, D.E.; Molle, F.; Rap, E.; El Bialy, M.; Abou El-Hassan, W. Drainage water salinity and quality across nested scales in the Nile Delta of Egypt. Environ. Sci. Pollut. Res. 2020, 27, 32239–32250. [Google Scholar] [CrossRef]
- El Bouraie, M.M.; Motawea, E.A.; Mohamed, G.G.; Yehia, M.M. Water quality of Rosetta branch in Nile delta, Egypt. Finn. Peatl. Soc. 2011, 62, 31–37. [Google Scholar]
- Dorgham, M.M.; El-Tohamy, W.; Qin, J.; Abdel-Aziz, N.; Ghobashy, A. Water quality assessment of the Nile Delta Coast, south eastern Mediterranean, Egypt. Egypt. J. Aquat. Biol. Fish. 2019, 23, 151–169. [Google Scholar] [CrossRef] [Green Version]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- El-Rawy, M.; Fathi, H.; Abdalla, F. Integration of remote sensing data and in situ measurements to monitor the water quality of the Ismailia Canal, Nile Delta, Egypt. Environ. Geochem. Health 2019, 42, 2101–2120. [Google Scholar] [CrossRef] [PubMed]
- El Osta, M.; Masoud, M.; Ezzeldin, H. Assessment of the geochemical evolution of groundwater quality near the El Kharga Oasis, Egypt using NETPATH and water quality indices. Environ. Earth Sci. 2020, 79, 56. [Google Scholar] [CrossRef]
- Choukr-Allah, R.; Hamdy, A. Wastewater recycling and reuse in Mediterranean region as a potential resource for water saving. Options Méditerr. Sér. B Etudes Rech. 2003, 44, 89–101. [Google Scholar]
- Choukr-Allah, R. Perspectives of Wastewater Reuse in the Mediterranean Region. In Integrated Water Resources Management in the Mediterranean Region; Springer: Dordrecht, The Netherlands, 2012; pp. 125–137. [Google Scholar]
- Karef, S.; Kettab, A.; Nakib, M. Characterization of byproducts from wastewater treatment of Medea (Algeria) with a view to agricultural reuse. Desalin. Water Treat. 2014, 52, 2201–2207. [Google Scholar] [CrossRef]
- Tunisia: Demand for Wastewater Treatment Technology Is Rising. 2020. Available online: https://global-recycling.info/archives/1465 (accessed on 5 August 2020).
- Bahri, A. Water reuse in Tunisia: Stakes and prospects. In Proceedings of the Atelier du PCSI (Programme Commun Systèmes Irrigués) sur une Maîtrise des Impacts Environnementaux de l’Irrigation, Montpellier, France, 28–29 May 2002. [Google Scholar]
Climate Scenario | Average | Dry | Wet |
---|---|---|---|
Current 2000–09 | 213 | - | - |
2020–30 | 237 (+11%) | 254 (+19%) | 222 (+4%) |
2040–50 | 265 (+24%) | 283 (+33%) | 246 (+15%) |
Crop | Temperature (°C) | Relative Humidity (%) | Water (L m−2 day−1) |
---|---|---|---|
Cucumber | 20 | 60–65 | 3 |
Tomato | 15–25 | 60–65 | 3 |
Pepper | 20 | 60 | 3 |
Flower | 15–25 | 70–90 | 8 |
Lettuce | 20–25 | 60 | 3 |
Product | 2010 (ton) | 2013 (ton) | 2020 (ton) |
---|---|---|---|
Vegetables | 1480 (77%) | 1778 | 2140 |
Cereals | 385 (5%) | 283 | 287 |
Citrus | 646 (39%) | 893 | 1070 |
Olive | 27 (2%) | 28 | 43 |
Other fruits | 562 (18%) | 571 | 677 |
Country | Cauliflower and Broccoli | Melon and Cantaloupe | Potato | Tomato | Watermelon | Cucumber and Gherkin |
---|---|---|---|---|---|---|
Algeria | 207,697 | - | 4,653,322 | 1,309,745 | 2,095,757 | 193,647 |
Bahrain | 461 | 575 | 68 | 4114 | 194 | 546 |
Egypt | 127,273 | 701,071 | 4,896,476 | 6,624,733 | 1,483,255 | 457,795 |
Iraq | 11,285 | 113,538 | 294,778 | 266,294 | 222,595 | 114,828 |
Jordan | 66,034 | 40,673 | 177,431 | 839,052 | 110,417 | 209,362 |
Kuwait | 13,252 | 2811 | 36,212 | 97,991 | 749 | 58,590 |
Lebanon | 20,549 | 13,091 | 387,791 | 300,157 | 65,384 | 151,558 |
Libya | 7457 | 26,351 | 348,361 | 215,584 | 236,012 | 9269 |
Mauritania | - | - | 2260 | - | 2980 | - |
Morocco | 59,056 | 500,823 | 1,869,149 | 1,409,437 | 742,375 | 47,787 |
Oman | 28,031 | 33,463 | 15,613 | 199,232 | 56,047 | 12,545 |
Qatar | 1455 | 2463 | 17 | 25,105 | 426 | 1761 |
Saudi Arabia | - | 39,360 | 482,305 | 312,343 | 634,491 | 115,617 |
Sudan | 776 | 35,259 | 442,988 | 674,378 | 172,867 | 240,405 |
Syrian Arab Republic | 23,841 | 54,000 | 540,000 | 669,000 | 230,900 | 104,397 |
Tunisia | 14,332 | 102,546 | 423,800 | 1,357,621 | 548,649 | 76,425 |
United Arab Emirates | 6500 | 3686 | 451 | 78,607 | 2205 | 71,350 |
Yemen | - | 27,029 | 248,889 | 114,297 | 146,507 | 14,715 |
Desalination Plant | Installation Costs (US $/m3) | Water Production Cost (US $/m3) |
---|---|---|
Multistage flash distillation | 1200–1500 | 1.10–1.25 |
Multiple-effect distillation | 900–1000 | 0.75–0.85 |
Multistage flash distillation (Singapore) | 2300 | 1.50 |
Multiple-effect distillation (Metropolitan Water District, California, USA) | 660 | 0.46 |
Vapour compression distillation | 950–1000 | 0.87–0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awaad, H.A.; Mansour, E.; Akrami, M.; Fath, H.E.S.; Javadi, A.A.; Negm, A. Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review. Sustainability 2020, 12, 7592. https://doi.org/10.3390/su12187592
Awaad HA, Mansour E, Akrami M, Fath HES, Javadi AA, Negm A. Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review. Sustainability. 2020; 12(18):7592. https://doi.org/10.3390/su12187592
Chicago/Turabian StyleAwaad, Hassan A., Elsayed Mansour, Mohammad Akrami, Hassan E.S. Fath, Akbar A. Javadi, and Abdelazim Negm. 2020. "Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review" Sustainability 12, no. 18: 7592. https://doi.org/10.3390/su12187592
APA StyleAwaad, H. A., Mansour, E., Akrami, M., Fath, H. E. S., Javadi, A. A., & Negm, A. (2020). Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review. Sustainability, 12(18), 7592. https://doi.org/10.3390/su12187592