Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Measures
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nussenbaum, K.; Amso, D.; Markant, J. When increasing distraction helps learning: Distractor number and content interact in their effects on memory. Atten. Percept. Psychophys. 2017, 79, 2606–2619. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M.; Barbot, A. Spatial attention alters visual appearance. Curr. Opin. Psych. 2019, 29, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estévez-González, A.; García-Sánchez, C.; Junqué, C. La atención: Una compleja función cerebral. Rev. Neurol. 1997, 25, 1989–1997. [Google Scholar] [PubMed]
- Gray, R.; Gaska, J.; Winterbottom, M. Relationship between sustained, orientated, divided, and selective attention and simulated aviation performance: Training & pressure effects. J. Appl. Res. Mem. Cogn. 2016, 5, 34–42. [Google Scholar] [CrossRef]
- Jangmo, A.; Stålhandske, A.; Chang, Z.; Chen, Q.; Almqvist, C.; Feldman, I.; Bulik, C.M.; Lichtenstein, P.; D’Onofrio, B.; Kuja-Halkola, R.; et al. Attention-deficit/hyperactivity disorder, school performance, and effect of medication. J. Am. Acad. Child. Adolesc. Psychiatr. 2019, 58, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Hüttermann, S.; Ford, P.R.; Williams, A.M.; Varga, M.; Smeeton, N.J. Attention, perception, and action in a simulated decision-making task. J. Sport. Exerc. Psy. 2019, 41, 230–241. [Google Scholar] [CrossRef]
- Rusciano, A.; Corradini, G.; Stoianov, I. Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players. Psychophysiology 2017, 54, 916–926. [Google Scholar] [CrossRef]
- Colmenero, J.M.; Catena, A.; Fuentes, L.J. Atención visual: Una revisión sobre las redes atencionales del cerebro. Psicologia 2001, 17, 45–67. [Google Scholar]
- Mirdamadi, J.L.; Suzuki, L.Y.; Meehan, S.K. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation. Neuroscience 2017, 359, 151–158. [Google Scholar] [CrossRef]
- Etchepareborda, M.C.; Abad-Mas, L. Sustrato biológico y evaluación de la atención. Rev. Neurol. Clin. 2001, 2, 113–124. [Google Scholar]
- Holroyd, C.B.; Nieuwenhuis, S.; Mars, R.B.; Coles, M.G. Anterior cingulate cortex, selection for action, and error processing. In Cognitive Neuroscience of Attention; Posner, M.I., Ed.; Guilford Press: New York, NY, USA, 2004; pp. 219–231. [Google Scholar]
- Jiménez, J.E.; Hernández, S.; García, E.; Díaz, A.; Rodríguez, C.; Martín, R. Test de atención D-2: Datos normativos y desarrollo evolutivo de la atención en educación primaria. Eur. J. Educ. Psychol. 2012, 5, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, J.W.; Lawrence, M.A.; McConnell, M.M.; Eskes, G.A.; Klein, R.M.; Shore, D.I. Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology 2010, 24, 637. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Rothbart, M.K. Temperament and brain networks of attention. Philos. Trans. R. Soc. B-Biol. Sci. 2018, 373, 20170254. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Etchepareborda, M.C. Bases experimentales para la evaluación de la atención en el trastorno por déficit de atención con hiperactividad. Rev. Neurol. 2004, 38, 137–144. [Google Scholar] [CrossRef]
- Koppitz, E.M. The Visual Aural Digit Span Test; Grune and Stratton: New York, NY, USA, 1977. [Google Scholar] [CrossRef]
- Madoz-Gúrpide, A.; Ochoa-Mangado, E. Alteraciones de funciones cognitivas y ejecutivas en pacientes dependientes de cocaína: Estudio de casos y controles. Rev. Neurol. 2012, 54, 199–208. [Google Scholar] [CrossRef]
- Reynolds, C.R.; Bigler, E.D. TOMAL. Test. de Memoria y Aprendizaje; TEA: Madrid, Spain, 2001. [Google Scholar]
- Soprano, A.M. Cómo Evaluar la Atención y Las Funciones Ejecutivas en Los Niños y Adolescents; Paidós: Buenos Aires, Argentina, 2009. [Google Scholar]
- Wechsler, D. Escala de Inteligencia de Wechsler Para Adultos-III (WAIS-III); TEA: Madrid, Spain, 1999. [Google Scholar]
- Wechsler, D. Manual de Aplicación y Corrección del WISC-IV; TEA: Madrid, Spain, 2005. [Google Scholar]
- Bosse, M.L.; Tainturier, M.J.; Valdois, S. Developmental dyslexia: The visual attention span deficit hypothesis. Cognition 2007, 104, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Ans, B.; Carbonnel, S.; Valdois, S. A connectionist multiple-trace memory model for polysyllabic word reading. Psychol. Rev. 1998, 105, 678–723. [Google Scholar] [CrossRef]
- Souza, A.S.; Oberauer, K. The contributions of visual and central attention to visual working memory. Atten. Percept. Psychophys. 2017, 79, 1897–1916. [Google Scholar] [CrossRef] [Green Version]
- Olivers, C.N. Interactions between visual working memory and visual attention. Front. Biosci. 2008, 13, 1182–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, G.; Hartley, G.; Furley, P.A.; Wilson, M.R. Working memory capacity, visual attention and hazard perception in driving. J. Appl. Res. Mem. Cogn. 2016, 5, 454–462. [Google Scholar] [CrossRef]
- Carlisle, N.B.; Kristjánsson, Á. How visual working memory contents influence priming of visual attention. Psychol. Res. 2018, 82, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.L.; Lilburn, S.D.; Corbett, E.A.; Sewell, D.K.; Kyllingsbæk, S. The attention-weighted sample-size model of visual short-term memory: Attention capture predicts resource allocation and memory load. Cogn. Psychol. 2016, 89, 71–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, R.; López, V.; Carrasco, X.; Escobar, M.J.; García, A.M.; Parra, M.A.; Aboitiz, F. Neurocognitive mechanisms underlying working memory encoding and retrieval in Attention-Deficit/Hyperactivity Disorder. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ramey, M.M.; Henderson, J.M.; Yonelinas, A.P. The spatial distribution of attention predicts familiarity strength during encoding and retrieval. J. Exp. Psychol. Gen. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, P.; González-Castro, P.; Núñez, J.C.; González-Pineda, J.; Bernardo, A. Evaluación y control de la activación cortical en los déficit de atención sostenida. Int. J. Clin. Health Psychol. 2008, 8, 509–524. [Google Scholar]
- Peng, P.; Miller, A.C. Does attention training work? A selective meta-analysis to explore the effects of attention training and moderators. Learn. Individ. Differ. 2016, 45, 77–87. [Google Scholar] [CrossRef]
- Amir, N.; Taylor, C.T.; Elías, J.; Donohue, M.C. Predictors of response to an attention modification program in generalized social phobia. J. Consult. Clin. Psychol. 2011, 79, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Amorós-Boix, M.; Rosa Alcázar, A.I.; Olivares-Olivares, P.J. Papel de la focalización de la atención en el tratamiento de la fobia social generalizada en adolescents. Psicologia 2011, 27, 718–728. [Google Scholar]
- Goodwin, H.; Yiend, J.; Hirsch, C.R. Generalized Anxiety Disorder, worry and attention to threat: A systematic review. Clin. Psychol. Rev. 2017, 54, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Eldar, S.; Bar-Haim, Y. Neural plasticity in response to attention training in anxiety. Psychol. Med. 2010, 40, 667–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, H.; Oades, R.D. Negative priming within a stroop task in children and adolescents with attention-deficit hyperactivity disorder, their siblings, and independent controls. J. Atten. Disord. 2010, 13, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikic, A.; Leckman, J.F.; Christensen, T.Ø.; Bilenberg, N.; Dalsgaard, S. Attention and executive functions computer training for attention-deficit/hyperactivity disorder (ADHD): Results from a randomized, controlled trial. Eur. Child. Adoles. Psy. 2018, 27, 1563–1574. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, S.R.; Robbins, T.W.; Winder-Rhodes, S.; Müller, U.; Sahakian, B.J.; Blackwell, A.D.; Barnett, J.H. Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol. Psychiatry 2011, 69, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.; Babani, H.; Jon, E. Development of a computerized visual search test. Int. J. Rehabil. Res. 2009, 32, 205–212. [Google Scholar] [CrossRef]
- Kletzel, S.L.; Cary, M.P.; Ciro, C.; Berbrayer, D.; Dawson, D.; Hoffecker, L.; Machtinger, J.; Pham, P.; Thai, M.; Heyn, P.C. Brain Gaming: A User’s Product Guide for the Clinician. Arch. Phys. Med. Rehabil. 2016, 97, 1399–1400. [Google Scholar] [CrossRef]
- Morrison, G.E.; Simone, C.M.; Ng, N.F.; Hardy, J.L. Reliability and validity of the NeuroCognitive Performance Test, a web-based neuropsychological assessment. Front. Psychol. 2015, 6, 1652. [Google Scholar] [CrossRef] [Green Version]
- Rabiner, D.L.; Murray, D.W.; Skinner, A.T.; Malone, P.S. A randomized trial of two promising computer-based interventions for students with attention difficulties. J. Abnorm. Child. Psychol. 2010, 38, 131–142. [Google Scholar] [CrossRef]
- Shatil, E.; Mikulecka, J.; Bellotti, F.; Bureš, V. Novel television-based cognitive training improves working memory and executive function. PLoS ONE 2014, 9, e101472. [Google Scholar] [CrossRef] [Green Version]
- González-Ruiz, S.L.; Domínguez-Alfonso, R.; Chica-Merino, E.; Pastrana-Brincones, J.L.; Hernández-Mendo, A. Una plataforma virtual para la evaluación e investigación on-line: Menpas. Cuad. Psicol. Deporte 2018, 18, 26–48. [Google Scholar]
- González-Ruiz, S.L.; Hernández-Mendo, A.; Pastrana-Brincones, J.L. Herramienta software para la evaluación psicosocial de deportistas y entornos deportivos. EF Deportes 2010, 15, 144. Available online: http://www.efdeportes.com/efd144/evaluacion-psicosocial-de-deportistas.htm (accessed on 29 January 2020).
- Hernández-Mendo, A.; Martínez-Jiménez, M.A.; Pastrana-Brincones, J.L.; Morales-Sánchez, V. Programa informático para evaluación y entrenamiento de la atención. Rev. Iberoam. Psicol. Ejerc. Deporte 2012, 7, 339–358. [Google Scholar]
- Reigal, R.E.; González-Guirval, F.; Morillo-Baro, J.P.; Morales-Sánchez, V.; De Mier, R.J.-R.; Hernández-Mendo, A. Effects of a Computerized Training on Attentional Capacity of Young Soccer Players. Front. Psychol. 2019, 10, 2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Mendo, A.; Ramos-Pollán, R. El uso de la informática en la psicología del deporte. EF Deportes 2000, 5, 19. Available online: http://www.efdeportes.com/efd19/infpsi.htm (accessed on 15 January 2020).
- Zeki, S.; Shipp, S. The functional logic of cortical connections. Nature 1988, 335, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Zeki, S. La imagen visual en la mente y en el cerebro. Investig. Cienc. 1992, 194, 27–35. [Google Scholar]
- Shafiei, H.; Zare, H. Effectiveness of attention bias modification by computerized attention training on reducing social anxiety of adolescents. Adv. Cog. Sci. 2019, 21, 108–120. [Google Scholar] [CrossRef]
- Abend, R.; Rosenfelder, A.; Shamai, D.; Pine, D.S.; Tavor, I.; Assaf, Y.; Bar-Haim, Y. Brain structure changes induced by attention bias modification training. Biol. Psychol. 2019, 146, 107736. [Google Scholar] [CrossRef]
- González de la Torre, G.; González de la Torre, A. Evaluación de la Atención mediante el Test de Cancelación Simple y Cancelación Condicionada [Batería Neuropsicológica Sevilla (BNS)] en niños con Transtorno por Déficit de Atención e Hiperactividad (TDAH). Rev. Esp. Neuropsicol. 2003, 5, 177–193. [Google Scholar]
- Fernández-Calvo, B.; Rodríguez-Pérez, R.; Contador, I.; Rubio-Santorum, A.; Ramos, F. Eficacia del entrenamiento cognitivo basado en nuevas tecnologías en pacientes con demencia tipo Alzheimer. Psicothema 2011, 23, 44–50. [Google Scholar] [PubMed]
- Harris, D.J.; Wilson, M.R.; Vine, S.J. A systematic review of commercial cognitive training devices: Implications for use in sport. Front. Psychol. 2018, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Green, C.T.; Long, D.L.; Green, D.; Losif, A.M.; Dixon, J.F.; Miller, M.R.; Fassbender, C.; Schweitzer, J.B. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics 2012, 9, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Villaseñor, A.; Castellano, J.; Hernández-Mendo, A.; Sánchez-López, C.R.; Usabiaga, O. Aplicación de la TG en el deporte para el estudio de la fiabilidad, validez y estimación de la muestra. Rev. Psicol. Deporte 2014, 23, 131–137. [Google Scholar]
- Blanco-Villaseñor, A.; Castellano, J.; Hernández-Mendo, A. Generalizabilidad de las observaciones de la acción del juego en el fútbol. Psicothema 2000, 12, 81–86. [Google Scholar]
- Briesch, A.M.; Swaminathan, H.; Welsh, M.; Chafouleas, S.M. Generalizability theory: A practical guide to study design, implementation, and interpretation. J. Sch. Psychol. 2014, 52, 13–35. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Rajaratnam, N.; Gelser, G.C. Theory of generalizability: A liberalization of reliability theory. Brit. J. Stat. Psych. 1963, 16, 137–163. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Gleser, G.C.; Nanda, H.; Rajaratnam, N. The Dependability of Behavioral Measurements; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Mendo, A.M.; Díaz, F.; Sánchez, M. Construcción de una herramienta observacional para evaluar las conductas prosociales en las clases de educación física. Rev. Psicol. Deporte 2010, 19, 305–318. [Google Scholar]
- Maneiro, R.; Blanco-Villaseñor, Á.; Amatria, M. Analysis of the Variability of the Game Space in High Performance Football: Implementation of the Generalizability Theory. Front. Psychol. 2020, 11, 534. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of test. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Schlotzhauer, S.D.; Littell, R.C. SAS System for Elementary Statical Analysis; SAS Institute Inc.: Cary, NC, USA, 1997. [Google Scholar]
- Hernández-Mendo, A.; Blanco-Villaseñor, A.; Pastrana, J.L.; Morales-Sánchez, V.; Ramos-Pérez, F.J. SAGT: New software for generalizability analysis. Rev. Iberoam. Psicol. Ejerc. Deporte 2016, 11, 77–89. [Google Scholar]
- Hemmerle, W.; Hartley, H. Computing maximum likelihood estimates for the mixed AOV Model using the w-transformation. Technometrics 1973, 15, 819–831. [Google Scholar] [CrossRef]
- Searle, S.; Casella, G.; McCulloch, C. Variance Components; John Wiley: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Hall, G.N.; Ibaraki, A.Y.; Huang, E.R.; Marti, C.N.; Stice, E. A meta-analysis of cultural adaptations of psychological interventions. Behav. Ther. 2016, 47, 993–1014. [Google Scholar] [CrossRef] [PubMed]
- González-Guirval, F.; Reigal, R.E.; Morillo-Baro, J.P.; Juárez-de Mier, R.; Hernández-Mendo, A.; Morales-Sánchez, V. Análisis de la validez convergente de un instrumento informatizado para evaluar la atención en deportistas: Rejilla 1.0. Cuad. Psicol. Deporte 2020, 20, 83–94. [Google Scholar] [CrossRef]
- Bays, P.M.; Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 2008, 321, 851–854. [Google Scholar] [CrossRef] [Green Version]
- Adam, K.C.; Vogel, E.K.; Awh, E. Clear evidence for item limits in visual working memory. Cog. Psychol. 2017, 97, 79–97. [Google Scholar] [CrossRef]
Male n = 4997 | Female n = 6543 | |||||
---|---|---|---|---|---|---|
M | DT | α | M | DT | α | |
Hits | 8.95 | 6.31 | 8.28 | 5.71 | ||
Errors | 4.51 | 6.98 | 0.73 | 5.09 | 7.16 | 0.71 |
Structure | 11.19 | 7.08 | 10.57 | 4.88 |
Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|
[g] [e] [s]/[h] | 0.98 | 0.97 |
[h] [e] [s]/[g] | 1 | 1 |
[g] [h] [s]/[e] | 0.97 | 0.95 |
[g] [h] [e]/[s] | 0.99 | 0.99 |
Spain n = 10,609 | Europe n = 244 | America n = 651 | Africa n = 36 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | DT | α | M | DT | α | M | DT | α | M | DT | α | |
Hits | 8.56 | 5.98 | 7.70 | 6.96 | 9.25 | 5.56 | 6.11 | 5.29 | ||||
Errors | 4.66 | 6.90 | 0.72 | 6.50 | 9.19 | 0.74 | 7.18 | 8.58 | 0.68 | 4.11 | 7.18 | 0.79 |
Structure | 10.77 | 5.90 | 10.87 | 6.46 | 11.99 | 6.34 | 9.42 | 3.69 |
Components of the Model | Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|---|
n×h×e×s [n] nation-origin, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[n] | 0.99 | 0.99 |
[n] [e] [s]/[h] | 0.98 | 0.98 | |
[n] [h] [s]/[e] | 0.98 | 0.96 | |
[n] [h] [e]/[s] | 0.99 | 0.99 | |
c×h×e×s [c] continent-origin, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[c] | 0.99 | 0.99 |
[c] [e] [s]/[h] | 0.98 | 0.97 | |
[c] [h] [s]/[e] | 0.98 | 0.96 | |
[c] [h] [e]/[s] | 0.99 | 0.90 |
18 to 25 Years n = 7839 | 26 to 35 Years n = 2307 | 36 to 45 Years n = 599 | 46 to 55 Years n = 795 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | DT | α | M | DT | α | M | DT | α | M | DT | α | |
Hits | 8.35 | 6.02 | 10.03 | 5.77 | 7.55 | 4.74 | 7.31 | 6.27 | ||||
Errors | 4.71 | 6.82 | 0.72 | 5.16 | 7.28 | 0.73 | 3.03 | 4.47 | 0.73 | 6.52 | 9.80 | 0.71 |
Structure | 10.70 | 6.02 | 11.94 | 6.05 | 9.27 | 3.74 | 10.22 | 5.69 |
Components of the Model | Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|---|
a×h×e×s [a] age, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[a] | 0.97 | 0.97 |
[a] [e] [s]/[h] | 0.97 | 0.96 | |
[a] [h] [s]/[e] | 0.98 | 0.97 | |
[a] [h] [e]/[s] | 0.99 | 0.99 | |
i×h×e×s [i] age-intervals, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[i] | 1 | 1 |
[i] [e] [s]/[h] | 0.98 | 0.97 | |
[i] [h] [s]/[e] | 0.97 | 0.96 | |
[i] [h] [e]/[s] | 0.99 | 0.98 |
Primary n = 532 | Media n = 2876 | Superiors n = 8132 | |||||||
---|---|---|---|---|---|---|---|---|---|
M | DT | α | M | DT | α | M | DT | α | |
Hits | 7.15 | 5.50 | 8.64 | 6.62 | 8.64 | 5.76 | |||
Errors | 3.54 | 5.74 | 0.74 | 4.43 | 6.93 | 0.74 | 5.07 | 7.21 | 0.71 |
Structure | 9.20 | 4.51 | 11.05 | 6.66 | 10.87 | 5.74 |
Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|
[h] [e] [s]/[t] | 1 | 1 |
[t] [e] [s]/[h] | 0.98 | 0.97 |
[t] [h] [s]/[e] | 0.97 | 0.96 |
[t] [h] [e]/[s] | 0.99 | 0.99 |
Matrix | M | DT | % | A | K | K-S | r | ||
---|---|---|---|---|---|---|---|---|---|
Colors | Displayed Time | ||||||||
2 × 2 | Hits | 3.04 | 1.52 | 56.09 | −1.20 | −0.28 | 0.41 *** | −0.39 ** | 0.14 ** |
Errors | 2.38 | 4.36 | 43.91 | 3.43 | 14.35 | 0.29 *** | 0.24 ** | −0.28 ** | |
Colors | 3.61 | 1.48 | - | 3.89 | 23.36 | 0.35 *** | |||
Displayed time | 7.78 | 4.96 | - | 6.30 | 82.19 | 0.30 *** | |||
2 × 3 | Hits | 4.95 | 1.77 | 57.03 | −1.58 | 1.23 | 0.38 *** | −0.35 ** | 0.09 * |
Errors | 3.73 | 4.81 | 42.97 | 1.91 | 4.60 | 0.22 *** | 0.45 ** | −0.20 ** | |
Colors | 3.65 | 1.46 | - | 4.62 | 28.46 | 0.33 *** | |||
Displayed time | 6.52 | 3.73 | - | 3.68 | 16.97 | 0.45 *** | |||
3 × 3 | Hits | 6.34 | 3.19 | 64.43 | −0.78 | −0.86 | 0.29 *** | −0.69 ** | 0.38 ** |
Errors | 3.50 | 5.85 | 35.57 | 3.98 | 20.52 | 0.31 *** | 0.29 ** | −0.15 ** | |
Colors | 3.73 | 1.45 | - | 4.01 | 22.56 | 0.34 *** | |||
Displayed time | 7.18 | 5.95 | - | 5.31 | 46.11 | 0.43 *** | |||
3 × 4 | Hits | 10.91 | 2.69 | 72.64 | −2.63 | 6.08 | 0.47 *** | −0.48 ** | 0.22 ** |
Errors | 4.11 | 5.75 | 27.36 | 2.83 | 12.49 | 0.24 *** | 0.39 ** | −0.06 | |
Colors | 4.47 | 3.52 | - | 2.49 | 4.65 | 0.39 *** | |||
Displayed time | 9.10 | 7.33 | - | 4.59 | 33.45 | 0.30 *** | |||
4 × 4 | Hits | 14.29 | 3.72 | 65.31 | −2.36 | 4.75 | 0.42 *** | −0.30 ** | −0.11 ** |
Errors | 7.59 | 7.93 | 34.69 | 1.73 | 3.74 | 0.17 *** | 0.23 ** | −0.02 | |
Colors | 5.43 | 4.41 | - | 1.55 | 0.74 | 40 *** | |||
Displayed time | 10.10 | 8.57 | - | 3.09 | 12.47 | 0.30 *** | |||
4 × 5 | Hits | 17.10 | 4.76 | 65.22 | −1.87 | 2.87 | 0.29 *** | −0.36 ** | 0.22 ** |
Errors | 9.12 | 6.70 | 34.78 | 0.96 | 1.28 | 0.10 *** | 0.27 ** | −0.12 | |
Colors | 8.46 | 5.62 | - | 0.21 | −1.83 | 0.28 *** | |||
Displayed time | 11.60 | 11.59 | - | 4.01 | 20.58 | 0.35 *** | |||
5 × 5 | Hits | 21.37 | 6.67 | 58.42 | −1.77 | 1.89 | 0.38 *** | −0.44 ** | −0.15 ** |
Errors | 15.21 | 10.86 | 41.58 | 1.08 | 1.19 | 0.10 *** | 0.24 ** | −0.04 | |
Colors | 9.06 | 5.70 | - | 0.00 | −1.91 | 0.31 *** | |||
Displayed time | 9.01 | 8.08 | - | 2.76 | 10.13 | 0.39 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reigal, R.E.; González-Guirval, F.; Pastrana-Brincones, J.L.; González-Ruiz, S.; Hernández-Mendo, A.; Morales-Sánchez, V. Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color. Sustainability 2020, 12, 7655. https://doi.org/10.3390/su12187655
Reigal RE, González-Guirval F, Pastrana-Brincones JL, González-Ruiz S, Hernández-Mendo A, Morales-Sánchez V. Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color. Sustainability. 2020; 12(18):7655. https://doi.org/10.3390/su12187655
Chicago/Turabian StyleReigal, Rafael E., Fernando González-Guirval, José L. Pastrana-Brincones, Sergio González-Ruiz, Antonio Hernández-Mendo, and Verónica Morales-Sánchez. 2020. "Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color" Sustainability 12, no. 18: 7655. https://doi.org/10.3390/su12187655
APA StyleReigal, R. E., González-Guirval, F., Pastrana-Brincones, J. L., González-Ruiz, S., Hernández-Mendo, A., & Morales-Sánchez, V. (2020). Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color. Sustainability, 12(18), 7655. https://doi.org/10.3390/su12187655