Smart Consumers: A New Segment for Sustainable Digital Retailing in Korea
Abstract
:1. Introduction
2. Literature Reviews
2.1. Smart Consumers
2.2. Consumer Smartness
2.3. Shopping Intention, Sharing Intention
2.4. Demographics and Online Behavior
3. Methodology
3.1. Data Collection and Samples
3.2. Measures
3.3. Analysis
3.4. Validation of Measures
4. Results
4.1. Clustering Consumers
4.2. Identifying Clusters
4.3. Comparing Clusters
4.4. Cluster Summary
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
Appendix A
Constructs | Measuring Items |
---|---|
Opinion leadership | Other people come to me for advice about shopping for fashion goods. |
People that I know pick their purchases based on my suggestions about fashion goods | |
I often influence people’s opinions about shopping for fashion goods | |
Other people often change mind by my saying when they are shopping for fashion goods. | |
Self-disclosure | I often disclose my attitude or opinion online. |
I actively reveal my hobbies online. | |
I usually talk about my job or schoolwork. | |
I feel comfortable providing information about my personality online. | |
Innovativeness | If I heard about new fashion goods or brands, I would look for ways to shop for them. |
I like to experiment with new fashion goods or brands. | |
In general, I am among the first in my circle of friends to accept a new fashion item or brand when it appears. | |
In general, I am not hesitant to try new fashion items or brands. | |
Marketing literacy | When viewing advertising, I can identify the techniques being used to persuade me to buy. |
I am familiar with marketing jargon. | |
I am really good at cutting through to the truth behind the claims in advertisements. | |
Dissatisfaction | I am dissatisfied with existing online systems or services for apparel shopping. |
I have had problems with shopping that could not be solved with brands’ or retailers’ conventional offerings. | |
In my opinion, there are still unresolved problems with shopping for fashion goods. | |
Technology sophistication | Using high-tech shopping devices or apps would make it easier to do my shopping. |
Learning to use high-tech shopping devices or apps would be easy for me. | |
Overall, I believe that high-tech shopping devices or apps would be easy to use. |
References
- Casaló, L.V.; Flavián, C.; Ibáñez-Sánchez, S. Influencers on Instagram: Antecedents and consequences of opinion leadership. J. Bus. Res. 2020, 117, 510–519. [Google Scholar] [CrossRef]
- Haron, H.; Johar, E.H.; Ramli, Z.F. Online opinion leaders and their influence on purchase intentions. In Proceedings of the 2016 IEEE Conference on e-Learning, e-Management and e-Services (IC3e), Langkawi, Malaysia, 10–12 October 2016; pp. 162–165. [Google Scholar]
- Shi, M.; Wojnicki, A.C. Money talks… to online opinion leaders: What motivates opinion leaders to make social-network referrals? J. Advert. Res. 2014, 54, 81–91. [Google Scholar] [CrossRef]
- Song, S.Y.; Cho, E.; Kim, Y.-K. Personality factors and flow affecting opinion leadership in social media. Personal. Individ. Differ. 2017, 114, 16–23. [Google Scholar] [CrossRef]
- Karaarslan, M.H.; ŞükrüAkdoğan, M. Consumer innovativeness: A market segmentation. Int. J. Bus. Soc. Sci. 2015, 6, 227–237. [Google Scholar]
- Nakano, S.; Kondo, F.N. Customer segmentation with purchase channels and media touchpoints using single source panel data. J. Retail. Consum. Serv. 2018, 41, 142–152. [Google Scholar] [CrossRef]
- Park, H.J.; Burns, L.D.; Rabolt, N.J. Fashion innovativeness, materialism, and attitude toward purchasing foreign fashion goods online across national borders. J. Fash. Mark. Manag. 2007, 11, 201–214. [Google Scholar] [CrossRef]
- Vernette, E.; Kidar, L.H. Co-creation with consumers: Who has the competence and wants to cooperate? Int. J. Mark. Res. 2013, 55, 539–561. [Google Scholar] [CrossRef]
- Schuhmacher, M.C.; Kuester, S. Identification of lead user characteristics driving the quality of service innovation ideas. Creat. Innov. Manag. 2012, 21, 427–442. [Google Scholar] [CrossRef]
- Spann, M.; Ernst, H.; Skiera, B.; Soll, J.H. Identification of lead users for consumer products via virtual stock markets. J. Prod. Innov. Manag. 2009, 26, 322–335. [Google Scholar] [CrossRef]
- Macdonald, E.K.; Uncles, M.D. Consumer savvy: Conceptualisation and measurement. J. Mark. Manag. 2007, 23, 497–517. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Conduit, J.; Lu, V.N.; Rao Hill, S. Engagement in online communities: Implications for consumer price perceptions. J. Strateg. Mark. 2016, 24, 241–260. [Google Scholar] [CrossRef]
- Barnes, S.J.; Pressey, A.D. In search of the “Meta-Maven”: An examination of market maven behavior across real-life, web, and virtual world marketing channels. Psychol. Mark. 2012, 29, 167–185. [Google Scholar] [CrossRef]
- Laughlin, J.D.; MacDonald, J.B. Identifying market mavens online by their social behaviors in community-generated media. Acad. Mark. Stud. J. 2010, 14, 55–70. [Google Scholar]
- Weisfeld-Spolter, C.B.R.S.; Sussan, Y.Y.F. Is there a global multichannel consumer? Int. Mark. Rev. 2015, 32, 329–349. [Google Scholar] [CrossRef]
- Costa, C.; do Vale, R.C. To tell or not to tell? The impact of communicating consumer participation in new product development. J. Prod. Brand Manag. 2018, 27, 158–171. [Google Scholar] [CrossRef]
- Hanna, R.; Rohm, A.; Crittenden, V.L. We’re all connected: The power of the social media ecosystem. Bus. Horiz. 2011, 54, 265–273. [Google Scholar] [CrossRef]
- Hoyer, W.D.; Chandy, R.; Dorotic, M.; Krafft, M.; Singh, S.S. Consumer cocreation in new product development. J. Serv. Res. 2010, 13, 283–296. [Google Scholar] [CrossRef]
- Zvilichovsky, D.; Danziger, S.; Steinhart, Y. Making-the-product-happen: A driver of crowdfunding participation. J. Interact. Mark. 2018, 41, 81–93. [Google Scholar] [CrossRef]
- Burtch, G.; Hong, Y. What happens when word of mouth goes mobile? In Proceedings of the International Conference on Information Systems, Auckland, New Zealand, 14–17 December 2014. [Google Scholar]
- Kim, M.; Kim, J.; Choi, J.; Trivedi, M. Mobile shopping through applications: Understanding application possession and mobile purchase. J. Interact. Mark. 2017, 39, 55–68. [Google Scholar] [CrossRef]
- Voropanova, E. Conceptualizing smart shopping with a smartphone: Implications of the use of mobile devices for shopping productivity and value. Int. Rev. Retail Distrib. Consum. Res. 2015, 25, 529–550. [Google Scholar] [CrossRef]
- Groß, M. Heterogeneity in consumers’ mobile shopping acceptance: A finite mixture partial least squares modelling approach for exploring and characterising different shopper segments. J. Retail. Consum. Serv. 2018, 40, 8–18. [Google Scholar] [CrossRef]
- Kaur, P.; Dhir, A.; Bodhi, R.; Singh, T.; Almotairi, M. Why do people use and recommend m-wallets? J. Retail. Consum. Serv. 2020, 56, 102091. [Google Scholar] [CrossRef]
- Talwar, S.; Dhir, A.; Khalil, A.; Mohan, G.; Islam, A.N. Point of adoption and beyond. Initial trust and mobile-payment continuation intention. J. Retail. Consum. Serv. 2020, 55, 102086. [Google Scholar] [CrossRef]
- Correia, T. The Fluid Consumer: Next Generation Growth and Branding in the Digital Age; Kogan Page Ltd.: London, UK, 2016. [Google Scholar]
- Chen, J.; Teng, L.; Yu, Y.; Yu, X. The effect of online information sources on purchase intentions between consumers with high and low susceptibility to informational influence. J. Bus. Res. 2016, 69, 467–475. [Google Scholar] [CrossRef]
- Mangold, W.G.; Smith, K.T. Selling to Millennials with online reviews. Bus. Horiz. 2012, 55, 141–153. [Google Scholar] [CrossRef]
- Kabadayi, S.; Price, K. Consumer–brand engagement on Facebook: Liking and commenting behaviors. J. Res. Interact. Mark. 2014, 8, 203–223. [Google Scholar] [CrossRef]
- Kwon, E.S.; Kim, E.; Sung, Y.; Yoo, C.Y. Brand followers: Consumer motivation and attitude towards brand communications on Twitter. Int. J. Advert. 2014, 33, 657–680. [Google Scholar] [CrossRef]
- Phillips, B.J.; Miller, J.; McQuarrie, E.F. Dreaming out loud on Pinterest: New forms of indirect persuasion. Int. J. Advert. 2014, 33, 633–655. [Google Scholar] [CrossRef]
- Pitta, D.A.; Fowler, D. Online consumer communities and their value to new product developers. J. Prod. Brand Manag. 2005, 14, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Somerfield, K.; Mortimer, K.; Evans, G. The relevance of images in user-generated content: A mixed method study of when, and why, major brands retweet. Int. J. Internet Mark. Advert. 2018, 12, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Sudbury-Riley, L. The baby boomer market maven in the United Kingdom: An experienced diffuser of marketplace information. J. Mark. Manag. 2016, 32, 716–749. [Google Scholar] [CrossRef] [Green Version]
- Dibb, S.; Simkin, L. Implementation rules to bridge the theory/practice divide in market segmentation. J. Mark. Manag. 2009, 25, 375–396. [Google Scholar] [CrossRef]
- Goyat, S. The basis of market segmentation: A critical review of literature. Eur. J. Bus. Manag. 2011, 3, 45–54. [Google Scholar]
- Robson, K.; Pitt, L.; Wallstrom, A. Creative market segmentation: Understanding the bugs in consumer behavior. J. Public Aff. 2013, 13, 218–223. [Google Scholar] [CrossRef]
- Flynn, L.R.; Goldsmith, R.E. Introducing the super consumer. J. Consum. Behav. 2016, 15, 201–207. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P.; Stein, R. The digital consumer. In The Routledge Companion to Digital Consumption; Routledge: Abingdon, UK, 2013; pp. 28–38. [Google Scholar]
- Dey, B.L.; Yen, D.; Samuel, L. Digital consumer culture and digital acculturation. Int. J. Inf. Manag. 2020, 51, 102057. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, S.; Forney, J.A. Shifting paradigms for fashion: From total to global to smart consumer experience. Fash. Text. 2014, 1, 15. [Google Scholar] [CrossRef]
- Ryou, E.; Ahn, S. Identifying consumer smartness. In Proceedings of the 2018 Spring Conference of the Korean Society of Fashion Business, Seoul, Korea, 18 October 2018; pp. 92–95. [Google Scholar]
- Ahn, S. Measuring ‘Consumer Smartness’ for the fashion consumption environment. Res. J. Costume Cult. 2020, 28, 45–61. [Google Scholar] [CrossRef]
- Kortmann, S.; Piller, F. Open business models and closed-loop value chains: Redefining the firm-consumer relationship. Calif. Manag. Rev. 2016, 58, 88–108. [Google Scholar] [CrossRef] [Green Version]
- Dawid, H.; Decker, R.; Hermann, T.; Jahnke, H.; Klat, W.; König, R.; Stummer, C. Management science in the era of smart consumer products: Challenges and research perspectives. Central Eur. J. Oper. Res. 2017, 25, 203–230. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Dhir, A.; Nieminen, M. Uses and gratifications of digital photo sharing on Facebook. Telemat. Inform. 2016, 33, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Ashman, R.; Solomon, M.R.; Wolny, J. An old model for a new age: Consumer decision making in participatory digital culture. J. Cust. Behav. 2015, 14, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Juaneda-Ayensa, E.; Mosquera, A.; Sierra Murillo, Y. Omnichannel customer behavior: Key drivers of technology acceptance and use and their effects on purchase intention. Front. Psychol. 2016, 7, 1117. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, G.; Rao, V.; Dwivedi, K.; Cavallaro, K. To Share or Not to Share. Deloitte Insights. 2017. Available online: https://www2.deloitte.com/insights/us/en/industry/retail-distribution/sharing-personal-information-consumer-privacy-concerns.html (accessed on 4 October 2018).
- Krafft, M.; Arden, C.M.; Verhoef, P.C. Permission marketing and privacy concerns—Why do customers (not) grant permissions? J. Interact. Mark. 2017, 39, 39–54. [Google Scholar] [CrossRef]
- Lin, H.-C.; Bruning, P.F.; Swarna, H. Using online opinion leaders to promote the hedonic and utilitarian value of products and services. Bus. Horiz. 2018, 61, 431–442. [Google Scholar] [CrossRef]
- Lyons, B.; Henderson, K. Opinion leadership in a computer-mediated environment. J. Consum. Behav. 2005, 4, 319–329. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Xu, K. Who creates trends in online social media: The crowd or opinion leaders? J. Comput. Mediat. Commun. 2016, 21, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bigné-Alcañiz, E.; Ruiz-Mafé, C.; Aldás-Manzano, J.; Sanz-Blas, S. Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Inf. Rev. 2008, 32, 648–667. [Google Scholar] [CrossRef]
- Boyle, R.J.; Ruppel, C.P. The effects of personal innovativeness, perceived risk, and computer self-efficacy on online purchasing intent. J. Int. Technol. Inf. Manag. 2006, 15, 61–74. [Google Scholar]
- Blake, B.F.; Neuendorf, K.A.; Valdiserri, C.M. Innovativeness and variety of internet shopping. Internet Res. 2003, 13, 156–169. [Google Scholar] [CrossRef]
- Slade, E.L.; Dwivedi, Y.K.; Piercy, N.C.; Williams, M.D. Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending UTAUT with innovativeness, risk, and trust. Psychol. Mark. 2015, 32, 860–873. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Y.; Gupta, S.; Cao, Y.; Zhang, R. Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 2012, 28, 129–142. [Google Scholar] [CrossRef]
- Choi, J.; Kim, H.J. Influence of SNS user innovativeness and public individuation on SNS usage patterns and social capital development: The Case of Facebook. Int. J. Hum. Comput. Interact. 2016, 32, 921–930. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, H. The effect of fashion innovativenss on consumer’s online apparel customization. Int. J. Organ. Innov. 2012, 5, 263–283. [Google Scholar]
- Citrin, A.V.; Sprott, D.E.; Silverman, S.N.; Stem, D.E. Adoption of Internet shopping: The role of consumer innovativeness. Ind. Manag. Data Syst. 2000, 100, 294–300. [Google Scholar] [CrossRef]
- Huang, L.-S. Trust in product review blogs: The influence of self-disclosure and popularity. Behav. Inf. Technol. 2015, 34, 33–44. [Google Scholar] [CrossRef]
- Dhir, A.; Khalil, A.; Lonka, K.; Tsai, C.-C. Do educational affordances and gratifications drive intensive Facebook use among adolescents? Comput. Hum. Behav. 2017, 68, 40–50. [Google Scholar] [CrossRef]
- Huang, H.-Y. Examining the beneficial effects of individual’s self-disclosure on the social network site. Comput. Hum. Behav. 2016, 57, 122–132. [Google Scholar] [CrossRef]
- Dhir, A.; Tsai, C.-C. Understanding the relationship between intensity and gratifications of Facebook use among adolescents and young adults. Telemat. Inform. 2017, 34, 350–364. [Google Scholar] [CrossRef]
- Franke, N.; Von Hippel, E.; Schreier, M. Finding commercially attractive user innovations: A test of lead-user theory. J. Prod. Innov. Manag. 2006, 23, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P.D.; Roberts, J.H.; Midgley, D.F. The nature of lead users and measurement of leading edge status. Res. Policy 2004, 33, 351–362. [Google Scholar] [CrossRef]
- Urban, G.L.; Von Hippel, E. Lead user analyses for the development of new industrial products. Manag. Sci. 1988, 34, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Technology is Dramatically Improving Consumers’ Shopping Experience. Available online: https://nrf.com/media-center/press-releases/technology-dramatically-improving-consumers-shopping-experience (accessed on 20 August 2020).
- Garnier, M.; Macdonald, E.K. The savvy French consumer: A cross-cultural replication. J. Mark. Manag. 2009, 25, 965–986. [Google Scholar] [CrossRef] [Green Version]
- Nancarrow, C.; Tinson, J.; Brace, I. Profiling key purchase influencers: Those perceived as consumer savvy. J. Consum. Behav. 2011, 10, 102–110. [Google Scholar] [CrossRef]
- Goldsmith, R.E.; Flynn, L.R.; Goldsmith, E.B. Innovative consumers and market mavens. J. Mark. Theory Pract. 2003, 11, 54–65. [Google Scholar] [CrossRef]
- Ruvio, A.; Shoham, A. Innovativeness, exploratory behavior, market mavenship, and opinion leadership: An empirical examination in the Asian context. Psychol. Mark. 2007, 24, 703–722. [Google Scholar] [CrossRef]
- Consumers Want to Find What They’re Looking for, and Say Online Shipping Should be Quick and Free. Available online: https://nrf.com/media-center/press-releases/consumers-want-find-what-theyre-looking-and-say-online-shipping-should (accessed on 20 August 2020).
- Clement, J. Retail e-Commerce Sales Worldwide from 2014 to 2023. Available online: https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (accessed on 21 August 2020).
- Bilgihan, A.; Peng, C.; Kandampully, J. Generation Y’s dining information seeking and sharing behavior on social networking sites. Int. J. Contemp. Hosp. Manag. 2014, 26, 349–366. [Google Scholar] [CrossRef]
- Lin, Z.; De Oliveira, M.J. Consumer experience sharing in online social media: Individual characteristics and consumption experience. In Proceedings of the Academy of Marketing Conference 2014, Bournemouth, UK, 7–10 July 2014. [Google Scholar]
- Lee, M.K.; Cheung, C.M.; Lim, K.H.; Sia, C.L. Understanding customer knowledge sharing in web-based discussion boards. Internet Res. 2006, 16, 289–303. [Google Scholar] [CrossRef]
- Belk, R. Sharing. J. Consum. Res. 2010, 36, 715–734. [Google Scholar] [CrossRef]
- Michaelidou, N.; Reynolds, N.; Greenacre, L.; Hassan, L.M.; Park, C.; Jun, J.; Lee, T. Consumer characteristics and the use of social networking sites. Int. Mark. Rev. 2015, 32, 414–437. [Google Scholar] [CrossRef]
- Sukhu, A.; Bilgihan, A. Why travellers share information online: A model of trust, innovativeness and loyalty in Generation Y travellers. Int. J. Serv. Econ. Manag. 2014, 6, 115–131. [Google Scholar] [CrossRef]
- Darley, W.; Lim, J.-S. Mavenism and e-maven propensity: Antecedents, mediators and transferability. J. Res. Mark. 2018, 12, 293–308. [Google Scholar] [CrossRef]
- Bertrandias, L.; Goldsmith, R.E. Some psychological motivations for fashion opinion leadership and fashion opinion seeking. J. Fash. Mark. Manag. 2006, 10, 25–40. [Google Scholar] [CrossRef]
- Feick, L.F.; Price, L.L. The market maven: A diffuser of marketplace information. J. Mark. 1987, 51, 83–97. [Google Scholar] [CrossRef]
- Goodey, C.; East, R. Testing the market maven concept. J. Mark. Manag. 2008, 24, 265–282. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, W.-N. Testing the concepts of market mavenism and opinion leadership in China. Am. J. Bus. 2015, 30, 178–195. [Google Scholar] [CrossRef]
- Walsh, G.; Gwinner, K.P.; Swanson, S.R. What makes mavens tick? Exploring the motives of market mavens’ initiation of information diffusion. J. Consum. Mark. 2004, 21, 109–122. [Google Scholar] [CrossRef]
- Yoo, K.H.; Gretzel, U.; Zach, F. Travel opinion leaders and seekers. In Proceedings of the Information and Communication Technologies in Tourism, Innsbruck, Austria, 26–28 January 2011; pp. 525–535. [Google Scholar]
- Chaney, I.M. Opinion leaders as a segment for marketing communications. Mark. Intell. Plan. 2001, 19, 302–308. [Google Scholar] [CrossRef]
- Flynn, L.R.; Goldsmith, R.E. Filling some gaps in market mavenism research. J. Consum. Behav. 2017, 16, 121–129. [Google Scholar] [CrossRef]
- Sung, H.; Sung, J. An analysis of market maven’s shopping behavior and multi-channel usage in the fashion retailing market. J. Fash. Bus. 2016, 20, 134–148. [Google Scholar] [CrossRef] [Green Version]
- Schreier, M.; Prügl, R. Extending lead-user theory: Antecedents and consequences of consumers’ lead userness. J. Prod. Innov. Manag. 2008, 25, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Silver, L. Smartphone Ownership Is Growing Rapidly around the World, but Not Always Equally. Available online: https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ (accessed on 20 August 2020).
- 2019 Survey on the Internet Usage; National Information Society Agency: Seoul, Korea, 2020.
- Clement, J. Mobile Retail Commerce Sales as Percentage of Retail e-Commerce Sales Worldwide from 2016 to 2021. Available online: https://www.statista.com/statistics/806336/mobile-retail-commerce-share-worldwide/ (accessed on 20 August 2020).
- Oberlo. Top Online Shopping Categories. Available online: https://www.oberlo.com/statistics/top-online-shopping-categories (accessed on 20 August 2020).
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Strähle, J.; Grünewald, A.-K. The prosumer concept in fashion retail: Potentials and limitations. In Green Fashion Retail; Springer: Berlin/Heidelberg, Germany, 2017; pp. 95–117. [Google Scholar]
- Singh, J.P.; Irani, S.; Rana, N.P.; Dwivedi, Y.K.; Saumya, S.; Roy, P.K. Predicting the “helpfulness” of online consumer reviews. J. Bus. Res. 2017, 70, 346–355. [Google Scholar] [CrossRef]
- Kerr, G.; Mortimer, K.; Dickinson, S.; Waller, D.S. Buy, boycott or blog: Exploring online consumer power to share, discuss and distribute controversial advertising messages. Eur. J. Mark. 2012, 46, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Li, X.; Kim, H.; Kim, Y.H. Social shopping website quality attributes increasing consumer participation, positive eWOM, and co-shopping: The reciprocating role of participation. J. Retail. Consum. Serv. 2015, 24, 1–9. [Google Scholar] [CrossRef]
- Filieri, R.; McLeay, F.; Tsui, B.; Lin, Z. Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services. Inf. Manag. 2018, 55, 956–970. [Google Scholar] [CrossRef]
- Lou, C.; Yuan, S. Influencer marketing: How message value and credibility affect consumer trust of branded content on social media. J. Interact Advert. 2019, 19, 58–73. [Google Scholar] [CrossRef]
- Stokburger-Sauer, N.E.; Hoyer, W.D. Consumer advisors revisited: What drives those with market mavenism and opinion leadership tendencies and why? J. Consum. Behav. 2009, 8, 100–115. [Google Scholar] [CrossRef]
Smartness | Cluster 1 (n = 212) | Cluster 2 (n = 137) | Cluster 3 (n = 83) | Cluster 4 (n = 109) | F | p |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |||
Opinion leadership | 3.619 (0.514) | 4.293 (0.594) | 2.361 (0.745) | 2.544 (0.679) | 259.616 | 0.000 |
B | A | C | C | |||
Self-disclosure | 3.777 (0.629) | 4.697 (0.586) | 2.889 (0.796) | 3.624 (0.744) | 134.498 | 0.000 |
B | A | C | B | |||
Innovativeness | 3.564 (0.523) | 4.493 (0.573) | 2.289 (0.820) | 2.624 (0.735) | 279.762 | 0.000 |
B | A | D | C | |||
Marketing literacy | 3.418 (0.605) | 4.436 (0.608) | 2.502 (0.724) | 3.630 (0.730) | 158.951 | 0.000 |
B | A | C | B | |||
Dissatisfaction | 3.236 (0.697) | 3.844 (0.843) | 2.815 (0.841) | 3.685 (0.947) | 35.319 | 0.000 |
B | A | C | A | |||
Technology sophistication | 3.830 (0.656) | 4.747 (0.616) | 2.900 (0.814) | 4.180 (0.683) | 135.098 | 0.000 |
C | A | D | B |
Intention | Cluster 1 (n = 212) | Cluster 2 (n = 137) | Cluster 3 (n = 83) | Cluster 4 (n = 109) | F | p |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |||
Shopping intention | 4.530 (0.663) | 4.967 (0.624) | 4.298 (0.735) | 4.725 (0.638) | 21.193 | 0.000 |
BC | A | C | B | |||
Sharing intention | 3.685 (0.585) | 4.466 (0.732) | 2.954 (0.696) | 3.528 (0.770) | 92.757 | 0.000 |
B | A | C | B |
Demographic Characteristics | Total n = 541 (100%) | Cluster 1 n = 212 (39.2%) | Cluster 2 n = 137 (25.3%) | Cluster 3 n = 83 (15.3%) | Cluster 4 n = 109 (20.1%) | χ2 | p |
---|---|---|---|---|---|---|---|
Age | |||||||
20 to 29 | 123 (22.7) | 51 (24.1) | 35 (25.5) | 15 (18.1) | 22 (20.2) | 5.286 (df = 9) | 0.809 |
30 to 39 | 138 (25.5) | 54 (25.5) | 31 (22.6) | 21 (25.3) | 32 (29.4) | ||
40 to 49 | 140 (25.9) | 48 (22.6) | 39 (28.5) | 24 (28.9) | 29 (26.6) | ||
50 to 59 | 140 (25.9) | 59 (27.8) | 32 (23.4) | 23 (27.7) | 26 (23.9) | ||
Gender | |||||||
Male | 262 (48.4) | 98 (46.2) | 62 (45.3) | 43 (51.8) | 59 (54.1) | 2.761 (df = 3) | 0.430 |
Female | 279 (51.6) | 114 (53.8) | 75 (54.7) | 40 (48.2) | 50 (45.9) | ||
Occupation | |||||||
Employed | 351 (64.9) | 135 (63.7) | 92 (67.2) | 48 (57.8) | 76 (69.7) | 10.297 (df = 12) | 0.590 |
Student | 55 (10.2) | 27 (12.7) | 13 (9.5) | 7 (8.4) | 8 (7.3) | ||
Homemaker | 77 (14.2) | 26 (12.3) | 20 (14.6) | 17 (20.5) | 14 (12.8) | ||
Self-employed | 36 (6.7) | 17 (8.0) | 8 (5.8) | 6 (7.2) | 5 (4.6) | ||
Unemployed | 22 (4.1) | 7 (3.3) | 4 (2.9) | 5 (6.0) | 6 (5.5) | ||
Monthly Income | |||||||
Less than USD 2 thousand | 20 (3.7) | 7 (3.3) | 2 (1.5) | 6 (7.2) | 5 (4.6) | 29.167 (df = 12) | 0.004 |
USD 2 to 4 thousand | 135 (25.0) | 57 (26.9) | 20 (14.6) | 28 (33.7) | 30 (27.5) | ||
USD 4 to 6 thousand | 211 (39.0) | 85 (40.1) | 51 (37.2) | 30 (36.1) | 45 (41.3) | ||
USD 6 to 8 thousand | 104 (19.2) | 41 (19.3) | 36 (26.3) | 9 (10.8) | 18 (16.5) | ||
Over USD 8 thousand | 71 (13.1) | 22 (10.4) | 28 (20.4) | 10 (12.0) | 11 (10.1) | ||
Education level | |||||||
High school graduate | 81 (15.0) | 36 (17.0) | 14 (10.2) | 21 (25.3) | 10 (9.2) | 19.033 (df = 9) | 0.019 |
College graduate | 70 (12.9) | 31 (14.6) | 12 (8.8) | 7 (8.4) | 20 (18.3) | ||
University graduate | 330 (61.0) | 125 (59.0) | 93 (67.9) | 46 (55.4) | 66 (60.6) | ||
Graduate or higher | 60 (11.1) | 20 (9.4) | 18 (13.1) | 9 (10.8) | 13 (11.9) | ||
Family size | |||||||
1 person | 54 (10.0) | 20 (9.4) | 14 (10.2) | 8 (9.6) | 12 (11.0) | 7.078 (df = 12) | 0.852 |
2 people | 83 (15.3) | 25 (11.8) | 28 (20.4) | 12 (14.5) | 18 (16.5) | ||
3 people | 145 (26.8) | 56 (26.4) | 33 (24.1) | 26 (31.3) | 30 (27.5) | ||
4 people | 207 (38.3) | 89 (42.0) | 49 (35.8) | 29 (34.9) | 40 (36.7) | ||
5 or more people | 52 (9.6) | 22 (10.4) | 13 (9.5) | 8 (9.6) | 9 (8.3) |
Shopping Behavior | Total n = 541 | Cluster 1 (n = 212) | Cluster 2 (n = 137) | Cluster 3 (n = 83) | Cluster 4 (n = 109) | χ2 | p |
---|---|---|---|---|---|---|---|
Monthly expenditure on apparel | |||||||
Less than USD 100 | 69 (12.8) | 22 (10.4) | 6 (4.4) | 20 (24.1) | 21 (19.3) | 76.496 (df = 12) | 0.000 |
USD 100 to 200 | 160 (29.6) | 62 (29.2) | 27 (19.7) | 29 (34.9) | 42 (38.5) | ||
USD 200 to 300 | 145 (26.8) | 66 (31.1) | 30 (21.9) | 26 (31.3) | 23 (21.1) | ||
USD 300 to 400 | 84 (15.5) | 33 (15.6) | 32 (23.3) | 5 (6.0) | 14 (12.8) | ||
USD 400 or over | 83 (15.3) | 29 (13.7) | 42 (30.7) | 3 (3.6) | 9 (8.3) | ||
Regular shopping place for apparel | |||||||
Internet/mobile | 340 (62.8) | 139 (65.6) | 84 (61.3) | 47 (56.6) | 70 (64.2) | 21.525 (df = 12) | 0.045 |
Department stores | 55 (10.2) | 20 (9.4) | 25 (18.2) | 5 (6.0) | 5 (4.6) | ||
Discount stores | 91 (16.8) | 32 (15.1) | 17 (12.4) | 20 (24.1) | 22 (20.2) | ||
Independent stores | 35 (62.8) | 14 (6.6) | 7 (5.1) | 7 (8.4) | 7 (6.4) | ||
Other | 20 (3.7) | 7 (3.3) | 4 (2.9) | 4 (4.8) | 5 (4.6) | ||
Average number of weekly visits to online stores for apparel shopping | |||||||
Less than 5 times | 347 (64.1) | 137 (64.6) | 71 (51.8) | 63 (75.9) | 76 (69.7) | 18.469 (df = 6) | 0.005 |
5 to 8 times | 147 (27.2) | 61 (28.8) | 47 (34.3) | 16 (19.3) | 23 (21.1) | ||
Over 9 times | 47 (8.7) | 14 (6.6) | 19 (13.9) | 4 (4.8) | 10 (9.2) | ||
Length of stay at online stores per visit | |||||||
Less than an hour | 390 (72.1) | 155 (73.1) | 92 (67.2) | 71 (85.5) | 72 (66.1) | 14.694 (df = 9) | 0.100 |
Up to 2 h | 88 (16.3) | 35 (16.5) | 22 (15.3) | 8 (9.6) | 23 (21.1) | ||
Up to 3 h | 30 (5.5) | 9 (4.2) | 11 (8.0) | 3 (3.6) | 7 (6.4) | ||
Over 3 h | 33 (6.1) | 13 (6.1) | 12 (8.8) | 1 (1.2) | 7 (6.4) | ||
Search for information including price | |||||||
Yes | 537 (99.3) | 209 (98.9) | 136 (99.3) | 83 (100.0) | 109 (100.0) | 2.749 (df = 3) | 0.432 |
No | 4 (0.7) | 3 (1.1) | 1 (0.7) | 0 (0) | 0 (0) | ||
Read product reviews | |||||||
Yes | 499 (92.2) | 197 (92.9) | 130 (94.9) | 73 (88.0) | 99 (90.8) | 3.919 (df = 3) | 0.270 |
No | 42 (7.8) | 15 (7.1) | 7 (5.1) | 10 (12.0) | 10 (9.2) | ||
Visit brand sites to get information | |||||||
Yes | 317 (58.6) | 130 (61.3) | 92 (67.2) | 33 (39.8) | 62 (56.9) | 17.055 (df = 3) | 0.001 |
No | 224 (41.4) | 82 (38.7) | 45 (32.8) | 50 (60.2) | 47 (43.1) | ||
Ask store managers for more information | |||||||
Yes | 239 (44.2) | 99 (46.7) | 80 (58.4) | 26 (31.3) | 34 (31.2) | 24.786 (df = 3) | 0.000 |
No | 302 (55.8) | 113 (53.3) | 57 (41.6) | 57 (68.7) | 75 (68.8) | ||
Visit blogs/cafes to read reviews/information | |||||||
Yes | 449 (83.0) | 180 (84.9) | 124 (90.5) | 57 (68.7) | 88 (80.7) | 18.486 (df = 3) | 0.000 |
No | 92 (17.2) | 32 (15.1) | 13 (9.5) | 26 (31.9) | 21 (19.3) | ||
Visit professional review sites to get performance information | |||||||
Yes | 325 (60.1) | 134 (63.2) | 98 (71.5) | 35 (42.2) | 58 (53.2) | 21.603 (df = 3) | 0.000 |
No | 216 (39.9) | 78 (36.8) | 39 (28.5) | 48 (57.8) | 51 (46.8) | ||
Write product reviews | |||||||
Yes | 380 (70.2) | 142 (67.0) | 107 (78.1) | 52 (62.7) | 79 (72.5) | 7.676 (df = 3) | 0.053 |
No | 161 (29.8) | 70 (33.0) | 30 (21.9) | 31 (37.3) | 30 (27.5) | ||
Write product reviews with photos | |||||||
Yes | 198 (36.6) | 70 (33.1) | 65 (47.4) | 24 (28.9) | 39 (35.8) | 10.206 (df = 3) | 0.016 |
No | 343 (63.4) | 142 (66.9) | 72 (52.6) | 59 (71.1) | 70 (64.2) | ||
Share information through blogs/SNSs | |||||||
Yes | 167 (30.9) | 58 (27.4) | 76 (55.5) | 9 (10.8) | 24 (22.1) | 59.691 (df = 3) | 0.000 |
No | 37.4 (69.1) | 154 (72.6) | 61 (44.5) | 74 (89.2) | 85 (77.9) | ||
Share experiences through blogs/SNSs | |||||||
Yes | 160 (29.6) | 64 (30.2) | 65 (47.4) | 6 (7.2) | 25 (22.9) | 43.250 (df = 3) | 0.000 |
No | 381 (70.4) | 148 (69.8) | 72 (52.6) | 77 (92.8) | 84 (77.1) | ||
Share information through messaging/talking | |||||||
Yes | 247 (45.7) | 98 (46.2) | 94 (68.6) | 15 (18.1) | 40 (36.7) | 58.107 (df = 3) | 0.000 |
No | 294 (54.3) | 114 (53.8) | 43 (31.4) | 68 (81.9) | 69 (63.3) | ||
Sign up for free product trials | |||||||
Yes | 210 (38.8) | 92 (43.4) | 63 (46.0) | 18 (21.7) | 37 (33.9) | 16.181 (df = 3) | 0.001 |
No | 331 (61.2) | 120 (56.6) | 74 (53.4) | 65 (78.3) | 72 (66.1) | ||
Group buying | |||||||
Yes | 80 (14.8) | 38 (17.9) | 35 (25.5) | 0 (0) | 7 (6.4) | 34.701 (df = 3) | 0.000 |
No | 461 (85.2) | 174 (82.1) | 102 (74.5) | 83 (100.0) | 102 (93.6) | ||
Enter product idea challenges | |||||||
Yes | 48 (8.9) | 22 (10.4) | 21 (15.3) | 2 (2.4) | 3 (2.8) | 16.994 (df = 3) | 0.001 |
No | 493 (91.1) | 190 (89.6) | 116 (84.7) | 81 (97.6) | 106 (97.2) | ||
Advise stores on solutions for problems/improvement ideas | |||||||
Yes | 130 (24.0) | 52 (24.5) | 43 (31.4) | 10 (12.0) | 25 (22.9) | 10.689 (df = 3) | 0.014 |
No | 411 (76.0) | 160 (75.5) | 94 (68.6) | 73 (88.0) | 84 (77.1) |
SNS Use | Total n = 541 | Cluster 1 (n = 212) | Cluster 2 (n = 137) | Cluster 3 (n = 83) | Cluster 4 (n = 109) | χ2 | p |
---|---|---|---|---|---|---|---|
Yes | 443 (81.9) | 172 (81.1) | 118 (86.1) | 69 (83.1) | 84 (77.1) | 3.541 (df = 3) | 0.315 |
No | 98 (18.1) | 40 (18.9) | 19 (13.9) | 14 (16.9) | 25 (22.9) | ||
Yes | 304 (56.2) | 123 (58.0) | 92 (67.2) | 38 (45.8) | 51 (46.8) | 14.542 (df = 3) | 0.002 |
No | 237 (43.8) | 89 (42.0) | 45 (32.8) | 45 (54.2) | 58 (53.2) | ||
Yes | 193 (35.7) | 67 (31.6) | 58 (42.3) | 23 (27.7) | 45 (41.3) | 7.969 (df = 3) | 0.047 |
No | 348 (64.3) | 145 (68.4) | 79 (57.7) | 60 (72.3) | 64 (58.7) | ||
KakaoStory | |||||||
Yes | 370 (68.4) | 135 (63.7) | 112 (81.8) | 54 (65.1) | 69 (63.3) | 15.222 (df = 3) | 0.002 |
No | 171 (31.6) | 77 (36.3) | 25 (18.2) | 29 (34.9) | 40 (36.7) | ||
Yes | 44 (8.1) | 16 (7.5) | 13 (9.5) | 3 (3.6) | 12 (11.0) | 3.909 (df = 3) | 0.271 |
No | 497 (91.9) | 196 (92.5) | 124 (90.5) | 80 (96.4) | 97 (89.0) | ||
KakaoTalk | |||||||
Yes | 532 (98.3) | 210 (99.1) | 134 (97.8) | 81 (97.6) | 107 (98.2) | 1.206 (df = 3) | 0.752 |
No | 9 (1.7) | 2 (0.9) | 3 (2.2) | 2 (2.4) | 2 (1.8) | ||
Line | |||||||
Yes | 218 (40.3) | 76 (35.8) | 65 (47.4) | 26 (31.3) | 51 (46.8) | 9.340 (df = 3) | 0.025 |
No | 323 (59.7) | 136 (64.2) | 72 (52.6) | 57 (68.7) | 58 (53.2) | ||
Yes | 17 (3.1) | 6 (2.8) | 4 (2.9) | 2 (0.4) | 5 (0.9) | 0.984 (df = 3) | 0.805 |
No | 524 (96.9) | 206 (97.2) | 133 (97.1) | 81 (15.0) | 104 (19.2) | ||
Yes | 36 (6.7) | 12 (5.7) | 10 (7.3) | 6 (7.2) | 8 (7.3) | 0.555 (df = 3) | 0.907 |
No | 505 (93.3) | 200 (94.3) | 127 (92.7) | 77 (92.8) | 101 (92.7) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-k. Smart Consumers: A New Segment for Sustainable Digital Retailing in Korea. Sustainability 2020, 12, 7682. https://doi.org/10.3390/su12187682
Ahn S-k. Smart Consumers: A New Segment for Sustainable Digital Retailing in Korea. Sustainability. 2020; 12(18):7682. https://doi.org/10.3390/su12187682
Chicago/Turabian StyleAhn, Soo-kyoung. 2020. "Smart Consumers: A New Segment for Sustainable Digital Retailing in Korea" Sustainability 12, no. 18: 7682. https://doi.org/10.3390/su12187682
APA StyleAhn, S. -k. (2020). Smart Consumers: A New Segment for Sustainable Digital Retailing in Korea. Sustainability, 12(18), 7682. https://doi.org/10.3390/su12187682