GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda
Abstract
:1. Introduction
2. Advances in Material Stock Accounting (MSA) Research
3. Socio-Metabolic Research on Islands
4. Study Area: Antigua and Barbuda
5. Methods
5.1. Material Stock Analysis (MSA) of Buildings
5.2. Residential Material Intensity Distribution
5.3. Estimating Vulnerable Building Stocks
6. Results
6.1. Material Intensity Typologies, Height Assumption, and Residential MITs
6.2. Material Stock (MS) of Buildings
6.3. Sea Level Rise (SLR) Scenario
7. Discussion
7.1. Resource Efficiency in the Tourism Sector: Maintenance and Replacement Requirements
7.2. The Influence of Tourism Material Stocks on the Growth of Island Services
7.3. The Importance of Building Resilience
8. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haberl, H.; Wiedenhofer, D.; Erb, K.H.; Görg, C.; Krausmann, F. The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum. Sustainability 2017, 9, 1049. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Kowalski, M.; Weisz, H. The Archipelago of Social Ecology and the Island of the Vienna School. Soc. Ecol. 2016. [Google Scholar] [CrossRef]
- Thomas, D. The Caribbean Tourism Industry in the 21st Century: An Assessment. In Kimberley Green Latin American and Public Affairs; Caribbean Center: Miami, FL, USA, 2015. [Google Scholar]
- Economic Impact|World Travel & Tourism Council (WTTC). Available online: https://wttc.org/Research/Economic-Impact (accessed on 24 August 2020).
- Scott, D.; Hall, C.M.; Gössling, S. Global tourism vulnerability to climate change. Ann. Tour. Res. 2019, 77, 49–61. [Google Scholar] [CrossRef]
- CRED. UNISDR Economic Losses, Poverty & Disasters: 1998–2017—UNDRR. Available online: https://www.unisdr.org/we/inform/publications/61119 (accessed on 1 January 2019).
- UNDESA Partnerships Briefs for Small Island Developing States Climate Change & Disaster Risk Management Division for Sustainable Development UNDESA 2014 UN Conference on Small Island Developing States. 2014. Available online: https://sustainabledevelopment.un.org/content/documents/1344SIDS_BRIEFS_ClimateChange.pdf (accessed on 2 January 2020).
- Caribbean Small States—Challenges of High Debt and Low Growth. Policy Pap. 2013, 2013. [CrossRef]
- Eastern Caribbean Central Bank DashboardDatas|Eastern Caribbean Central Bank. Available online: https://www.eccb-centralbank.org/statistics/dashboard-datas/ (accessed on 1 January 2020).
- Bueno, R.; Herzfeld, C.; Stanton, E.; Ackerman, F. The Caribbean and Climate Change: The Costs of Inaction; Stockholm Environment Institute, US Center and Global Development and Environment Institute, Tufts University: Medford, MA, USA, 2008. [Google Scholar]
- Rasmussen, D.J.; Bittermann, K.; Buchanan, M.K.; Kulp, S.; Strauss, B.H.; Kopp, R.E.; Oppenheimer, M. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 2018, 13, 034040. [Google Scholar] [CrossRef]
- Popescu, R.; Beraud, H.; Barroca, B. The Impact of Hurricane Irma on the Metabolism of St. Martin’s Island. Sustainability 2020, 12, 6731. [Google Scholar] [CrossRef]
- Van der Ploeg, J.; Sukulu, M.; Govan, H.; Minter, T.; Eriksson, H. Sinking Islands, Drowned Logic; Climate Change and Community-Based Adaptation Discourses in Solomon Islands. Sustainability 2020, 12, 7225. [Google Scholar] [CrossRef]
- Krausmann, F.; Lauk, C.; Haas, W.; Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Glob. Environ. Change 2018, 52, 131–140. [Google Scholar] [CrossRef]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-based Analysis of Vienna’s Material Stock in Buildings. J. Ind. Ecol. 2017, 21, 368–380. [Google Scholar] [CrossRef]
- Lanau, M.; Liu, G.; Kral, U.; Wiedenhofer, D.; Keijzer, E.; Yu, C.; Ehlert, C. Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environ. Sci. Technol. 2019, 53, 8499–8515. [Google Scholar] [CrossRef]
- Schiller, G.; Müller, F.; Ortlepp, R. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resour. Conserv. Recycl. 2017, 123, 93–107. [Google Scholar] [CrossRef]
- Mesta, C.; Kahhat, R.; Santa-Cruz, S. Quantification of lost material stock of buildings after an earthquake. A case study of Chiclayo, Peru. In Proceedings of the 16th World Conference on Earthquake Engineering, 16WCEE, Santiago, Chile, 9–13 January 2017; pp. 1–12. [Google Scholar]
- Kalcher, J.; Praxmarer, G.; Teischinger, A. Quantification of future availabilities of recovered wood from Austrian residential buildings. Resour. Conserv. Recycl. 2017, 123, 143–152. [Google Scholar] [CrossRef]
- Müller, E.; Hilty, L.M.; Widmer, R.; Schluep, M.; Faulstich, M. Modeling metal stocks and flows: A review of dynamic material flow analysis methods. Environ. Sci. Technol. 2014, 48, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, M.; Allwood, J. The flow of steel into the construction sector. Resour. Conserv. Recycl. 2012, 68, 88–95. [Google Scholar] [CrossRef]
- Sartori, I.; Bergsdal, H.; Müller, D.; Brattebø, H. Towards modelling of construction, renovation and demolition activities: Norway’s dwelling stock, 1900–2100. Build. Res. Inf. 2008, 36, 412–425. [Google Scholar] [CrossRef]
- Zhu, X. GIS and Urban Mining. Resources 2014, 3, 235–247. [Google Scholar] [CrossRef]
- Tanikawa, H.; Hashimoto, S. Urban stock over time: Spatial material stock analysis using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Tanikawa, H.; Managi, S.; Lwin, C.M. Estimates of Lost Material Stock of Buildings and Roads Due to the Great East Japan Earthquake and Tsunami. J. Ind. Ecol. 2014, 18, 421–431. [Google Scholar] [CrossRef]
- Merschroth, S.; Miatto, A.; Weyand, S.; Tanikawa, H.; Schebek, L. Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands. Sustainability 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Augiseau, V.; Barles, S. Studying construction materials flows and stock: A review. Resour. Conserv. Recycl. 2017, 123, 153–164. [Google Scholar] [CrossRef]
- Wallsten, B.; Magnusson, D.; Andersson, S.; Krook, J. The economic conditions for urban infrastructure mining: Using GIS to prospect hibernating copper stocks. Resour. Conserv. Recycl. 2015, 103, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Heeren, N.; Fishman, T. A database seed for a community-driven material intensity research platform. Sci. Data 2019, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Symmes, R.; Fishman, T.; Telesford, J.N.; Singh, S.J.; Tan, S.; De Kroon, K. The weight of islands: Leveraging Grenada’s material stocks to adapt to climate change. J. Ind. Ecol. 2019, 24, 369–382. [Google Scholar] [CrossRef]
- Pott, K.; Tan, S.-Y.; Singh, S.; Symmes, R.; Fishman, T.; Telesford, J. A Study of Building Material Stocks and the Service-Nexus in the City of Kitchener from a 4D GIS perspective. J. Ind. Ecol. 2020. [Google Scholar]
- Pauliuk, S.; Müller, D.B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Change 2014, 24, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, E.; Singh, S.J.; Habib, K. Electronic waste in the Caribbean: An impending environmental disaster or an opportunity for a circular economy? Resour. Conserv. Recycl. 2020, 164, 105106. [Google Scholar] [CrossRef]
- Taylor, M.A.; Clarke, L.A.; Centella, A.; Bezanilla, A.; Stephenson, T.S.; Jones, J.J.; Campbell, J.D.; Vichot, A.; Charlery, J. Future Caribbean Climates in a World of Rising Temperatures: The 1.5 vs 2.0 Dilemma. J. Clim. 2018, 31, 2907–2926. [Google Scholar] [CrossRef]
- Hay, J.E. Small island developing states: Coastal systems, global change and sustainability. Sustain. Sci. 2013, 8, 309–326. [Google Scholar] [CrossRef]
- Pichler, A.; Striessnig, E. Differential Vulnerability to Hurricanes in Cuba, Haiti, and the Dominican Republic: The Contribution of Education. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Pelling, M.; Uitto, J.I. Small island developing states: Natural disaster vulnerability and global change. Environ. Hazards 2001, 3, 49–62. [Google Scholar] [CrossRef]
- Wallner, H.P.; Narodoslawsky, M.; Moser, F. Islands of Sustainability: A Bottom-up Approach towards Sustainable Development. Environ. Plan. Econ. Space 1996, 28, 1763–1778. [Google Scholar] [CrossRef]
- Deschenes, P.J.; Chertow, M. An island approach to industrial ecology: Towards sustainability in the island context. J. Environ. Plan. Manag. 2004, 47, 201–217. [Google Scholar] [CrossRef]
- Noll, D.; Wiedenhofer, D.; Miatto, A.; Singh, S.J. The expansion of the built environment, waste generation and EU recycling targets on Samothraki, Greece: An island’s dilemma. Resour. Conserv. Recycl. 2019, 150, 104405. [Google Scholar] [CrossRef]
- Singh, S.J.; Grünbühel, C.M.; Schandl, H.; Schulz, N. Social metabolism and labour in a local context: Changing environmental relations on Trinket Island. Popul. Environ. 2001, 23, 71–104. [Google Scholar] [CrossRef]
- Singh, S.J.; Fischer-Kowalski, M.; Haas, W. The Sustainability of Humanitarian Aid: The Nicobar Islands as a Case of ‘Complex Disaster. Asian Tsunami Post-Disaster Aid 2018. [Google Scholar] [CrossRef]
- Krausmann, F.; Richter, R.; Eisenmenger, N. Resource Use in Small Island States. J. Ind. Ecol. 2014, 18, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.U.; Niles, K.; Ali, S.H.; Surroop, D.; Jaggeshar, D. Plastics Waste Metabolism in a Petro-Island State: Towards Solving a “Wicked Problem” in Trinidad and Tobago. Sustainability 2019, 11, 6580. [Google Scholar] [CrossRef] [Green Version]
- Okoli, A. Socioeconomic Metabolism of Biomass in Jamaica in the Context of Trade and National Food Security: A Time Series Biophysical Analysis (1961–2013). Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2016. [Google Scholar]
- Marcos-Valls, A.; Kovacic, Z.; Giampietro, M.; Kallis, G.; Rieradevall, J. Isolated yet open: A metabolic analysis of Menorca. Sci. Total Environ. 2020, 738, 139221. [Google Scholar] [CrossRef]
- Petridis, P.; Fischer-Kowalski, M. Island Sustainability: The Case of Samothraki. Soc. Ecol. 2016. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Löw, M.; Noll, D.; Petridis, P.; Skoulikidis, N. Samothraki in Transition: A Report on a Real-World Lab to Promote the Sustainability of a Greek Island. Sustainability 2020, 12, 1932. [Google Scholar] [CrossRef] [Green Version]
- Martinico-Perez, M.F.G.; Fishman, T.; Okuoka, K.; Tanikawa, H. Material Flow Accounts and Driving Factors of Economic Growth in the Philippines. J. Ind. Ecol. 2016, 21, 1226–1236. [Google Scholar] [CrossRef]
- Bogadóttir, R. The Social Metabolism of Quiet Sustainability in the Faroe Islands. Sustainability 2020, 12, 735. [Google Scholar] [CrossRef] [Green Version]
- The Commonwealth Antigua and Barbuda|The Commonwealth. Available online: https://thecommonwealth.org/our-member-countries/antigua-and-barbuda (accessed on 1 January 2020).
- UNEP Sustainable Island Resource Management Zoning Plan for Antigua and Barbuda (Including Redonda). 2011. Available online: https://www.unenvironment.org/resources/report/sustainable-island-resource-management-zoning-plan-antigua-and-barbuda-including (accessed on 2 February 2020).
- World Bank Group World Bank Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/antigua-and-barbuda (accessed on 1 January 2020).
- UN-OHRLLS SIDS in Numbers Climate Change Edition 2015. Available online: http://unohrlls.org/sids-in-numbers-climate-change-edition-2015/ (accessed on 2 January 2020).
- De Albuquerque, K.; McElroy, J.L. Antigua and Barbuda: A Legacy of Environmental Degradation, Policy Failure, and Coastal Decline. 1995. Available online: https://ageconsearch.umn.edu/record/11913 (accessed on 1 January 2020).
- Montevago, J. Antigua and Barbuda Tourism Boom Continues. Available online: https://www.travelmarketreport.com/articles/Antigua-and-Barbuda-Tourism-Boom-Continues (accessed on 1 January 2020).
- Atkins, J.P.; Mazzi, S.; Easter, C.D. A Commonwealth Vulnerability Index for Developing Countries; Economic Paper; OECD Publishing: London, UK, 2000; ISBN 978-1-84859-716-7. [Google Scholar]
- Simpson, M.C. Quantification and Magnitude of Losses and Damages Resulting from the Impacts of Climate Change: Modelling the Transformational Impacts and Costs of Sea Level Rise in the Caribbean (Key Points and Summary for Policy Makers Document). In Quantification and Magnitude of Losses and Damages Resulting from the Impacts of Climate Change: Modelling the Transformational Impacts and Costs of Sea Level Rise in the Caribbean (Key Points and Summary for Policy Makers Document); United Nations Development Programme (UNDP): Barbados, Caribbean, 2010. [Google Scholar]
- Daigo, I.; Igarashi, Y.; Matsuno, Y.; Adachi, Y. Accounting for Steel Stock in Japan. ISIJ Int. 2007, 47, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Fishman, T.; Schandl, H.; Tanikawa, H.; Walker, P.; Krausmann, F. Accounting for the material stock of nations. J. Ind. Ecol. 2014, 18, 407–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condeixa, K.; Haddad, A.; Boer, D. Material Flow Analysis of the Residential Building Stock at the city of Rio de Janeiro. J. Clean. Prod. 2017, 149, 1249–1267. [Google Scholar] [CrossRef]
- Department of Environment Building. Footprint of Antigua & Barbuda-Shapefile; Department of Environment: St. Johns, Antigua & Barbuda, 2012. [Google Scholar]
- Statistics Division Population and Housing Census Antigua & Barbuda. 2001. Available online: https://statistics.gov.ag/wp-content/uploads/2017/11/2011-Antigua-and-Barbuda-Population-and-Housing-Census-A-Demographic-Profile.pdf (accessed on 4 October 2018).
- Parris, A.S.; Bromirski, P.; Burkett, V.; Cayan, D.R.; Culver, M.E.; Hall, J.; Horton, R.M.; Knuuti, K.; Moss, R.H.; Obeysekera, J. Global sea level rise scenarios for the United States National Climate Assessment. NOAA Technical Report OAR CPO-1 2012. Available online: https://scenarios.globalchange.gov/sites/default/files/NOAA_SLR_r3_0.pdf (accessed on 5 May 2020).
- Lichter, M.; Felsenstein, D. Assessing the costs of sea-level rise and extreme flooding at the local level: A GIS-based approach. Ocean Coast. Manag. 2012, 59, 47–62. [Google Scholar] [CrossRef]
- Poulter, B.; Halpin, P.N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Sci. 2008, 22, 167–182. [Google Scholar] [CrossRef]
- Gesch, D.B. Analysis of Lidar Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise. J. Coast. Res. 2009, 53, 49–58. [Google Scholar] [CrossRef]
- Urosevic, Z. Making Tourism Work for Small Island Developing States; World Tourism Organization (WTO): Madrid, Spain, 2004; ISBN 92-844-0782-6. [Google Scholar]
- Apergis, N.; Payne, J.E. Tourism and Growth in the Caribbean—Evidence from a Panel Error Correction Model. Tour. Econ. 2012, 18, 449–456. [Google Scholar] [CrossRef]
- Guo, J.; Fishman, T.; Wang, Y.; Miatto, A.; Wuyts, W.; Zheng, L.; Wang, H.; Tanikawa, H. Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China. J. Ind. Ecol. 2020. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Spataru, C.; VanDeveer, S.D.; Obersteiner, M.; van der Voet, E.; Johnson, C.; Andrews-Speed, P.; Boersma, T.; Hoff, H.; van Vuuren, D.P. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 2018, 1, 737. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Shen, L.; Liu, L.; Zhao, J.; Zhong, S.; Kong, H.; Sun, Y. Estimating the in-use cement stock in China: 1920–2013. Resour. Conserv. Recycl. 2017, 122, 21–31. [Google Scholar] [CrossRef]
- Allwood, J.M. Unrealistic techno-optimism is holding back progress on resource efficiency. Nat. Mater. 2018, 17, 1050–1051. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Serrenho, A.; Allwood, J.M. Material Stock Demographics: Cars in Great Britain. Environ. Sci. Technol. 2016, 50, 11403–11413. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.C.; Fishman, T.; Miatto, A.; Tanikawa, H. Estimating the Material Stock of Roads: The Vietnamese Case Study. J. Ind. Ecol. 2018, 23, 663–673. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol. 2015, 19, 538–551. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E. Touristic craft ribbon development in Thailand. Tour. Manag. 1995, 16, 225–236. [Google Scholar] [CrossRef]
- Eco-union. Sustainable Blue Tourism Blue Tourism Study. 2019. Available online: http://www.ecounion.eu/wp-content/uploads/2019/06/TRIPA_Angles_2_p.pdf (accessed on 10 February 2020).
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 1–12. [Google Scholar]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and regional sea level rise scenarios for the United States. In NOAA Technical Report NOS CO-OPS 083; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2017; 75p. [Google Scholar]
- Monioudi, I.Ν.; Asariotis, R.; Becker, A.; Bhat, C.; Dowding-Gooden, D.; Esteban, M.; Feyen, L.; Mentaschi, L.; Nikolaou, A.; Nurse, L.; et al. Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): The case of Jamaica and Saint Lucia. Reg. Environ. Change 2018, 18, 2211–2225. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Simpson, M.C.; Sim, R. The vulnerability of Caribbean coastal tourism to scenarios of climate change related sea level rise. J. Sustain. Tour. 2012, 20, 883–898. [Google Scholar] [CrossRef]
- Moore, W.R. The impact of climate change on Caribbean tourism demand. Curr. Issues Tour. 2010, 13, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; Taylor, M.A.; Spencer, N.; Jones, J.; Stephenson, T.S. Estimating damages from climate-related natural disasters for the Caribbean at 1.5 °C and 2 °C global warming above preindustrial levels. Reg. Environ. Change 2018, 18, 2297–2312. [Google Scholar] [CrossRef]
- United Nations Environment Program. Green Climate Fund-GCF Resilience to Hurricanes, Floods and Droughts in the Building Sector in Antigua and Barbuda; United Nations Environment Program: Antigua and Barbuds, Caribbean, 2017. [Google Scholar]
- Destin, D. Antigua and Barbuda Meteorological Services- Hurricanes and Storms- 1851 to 2019. Available online: http://www.antiguamet.com (accessed on 1 January 2020).
- Pang, S.F.H.; McKercher, B.; Prideaux, B. Climate Change and Tourism: An Overview. Asia Pac. J. Tour. Res. 2013, 18, 4–20. [Google Scholar] [CrossRef]
- Brown, N.A.; Rovins, J.E.; Feldmann-Jensen, S.; Orchiston, C.; Johnston, D. Exploring disaster resilience within the hotel sector: A systematic review of literature. Int. J. Disaster Risk Reduct. 2017, 22, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Handy, G. Antigua: Sprawling “Chinese Colony” Plan across Marine Reserve Ignites Opposition. The Guardian. 2019. Available online: https://www.theguardian.com/world/2019/jun/20/antigua-yida-project-chinese-colony-controversy (accessed on 25 May 2020).
- Antigua Hotel and Tourist Association-AHTA Tourism Statistics for Antigua & Barbuda: Tourist Arrivals by Country. Available online: http://members.antiguahotels.org/tourism-statistics-for-antigua-and-barbuda/ (accessed on 1 January 2020).
- UNWTO. Tourism in Small Island Developing States (SIDS)—Building a more Sustainable Future for the People of Islands; World Trade Organization: Madrid, Spain, 2014. [Google Scholar] [CrossRef]
- Caribbean Group for Cooperation in Economic Development Caribbean Economic Overview 2002: Macroeconomic Volatility, Household Vulnerability, and Institutional and Policy Responses; World Bank: Washington, DC, USA, 2002.
- Weaver, D.B. The evolution of a ‘plantation’ tourism landscape on the caribbean island of antigua. Tijdschr. Voor Econ. En Soc. Geogr. 1988, 79, 319–331. [Google Scholar] [CrossRef]
- Grydehøj, A.; Hayward, P. Social and economic effects of spatial distribution in island communities: Comparing the Isles of Scilly and Isle of Wight, UK. J. Mar. Isl. Cult. 2014, 3, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Rutty, M.; Gössling, S.; Scott, D.; Hall, C. The Global Effects and Impacts of Tourism. An Overview in the Routledge Handbook of Tourism and Sustainability; Hall, C.M., Gössling, S., Scott, D., Eds.; Routledge: Abingdon, UK, 2015; pp. 36–62. [Google Scholar]
- Schandl, H.; Marcos-Martinez, R.; Baynes, T.; Yu, Z.; Miatto, A.; Tanikawa, H. A spatiotemporal urban metabolism model for the Canberra suburb of Braddon in Australia. J. Clean. Prod. 2020, 265, 121770. [Google Scholar] [CrossRef]
- Adenle, A.A.; De Steur, H.; Hefferon, K.; Wesseler, J. Two Decades of GMOs: How Modern Agricultural Biotechnology Can Help Meet Sustainable Development Goals. In Science, Technology, and Innovation for Sustainable Development Goals; Oxford University Press: Oxford, UK, 2020; ISBN 0-19-752890-2. [Google Scholar]
- Gössling, S.; Scott, D. Scenario planning for sustainable tourism: An introduction. J. Sustain. Tour. 2012, 20, 773–778. [Google Scholar] [CrossRef]
Construction Style | Aggregate (kg/m2) | Wood (kg/m2) | Concrete (kg/m2) | Steel (kg/m2) | Building Use Type Classes |
---|---|---|---|---|---|
Concrete Structure 1 | |||||
Foundation pad footing | 76.2 | 0.9 | 91.5 | 30.5 |
|
Foundation—column and beam | 0.0 | 0.0 | 0.0 | 0.0 | |
Ground slab | 0.0 | 0.0 | 227.3 | 13.8 | |
Floors (suspended) | 0.0 | 0.0 | 227.3 | 13.8 | |
Walls | 110.0 | 7.7 | 9.0 | ||
Roof frame | 0.0 | 15.4 | 55.8 | 5.6 | |
Roof covering | 0.0 | 0.0 | 0.0 | 3.9 | |
Total | 186.2 | 24.0 | 610.9 | 67.6 | |
Concrete Structure 2 | |||||
Foundation—strip foundation | 110.0 | 1.6 | 116.8 | 45.4 |
|
Foundation—concrete blocks | 0 | 0 | 9.0 | 0 | |
Ground slab | 0 | 0 | 227.3 | 13.8 | |
Floors (suspended) | 0 | 0 | 227.3 | 13.8 | |
Walls | 110.0 | 7.7 | 9.0 | 0 | |
Roof frame | 0 | 15.4 | 55.8 | 5.6 | |
Roof covering | 0 | 0 | 0 | 3.9 | |
Total | 220.0 | 24.7 | 645.2 | 82.5 | |
Concrete Structure 3 | |||||
Foundation—pile | 0 | 1.2 | 152.6 | 30.1 |
|
Foundation—pile cap and beam | 0 | 0 | 0 | 0 | |
Ground slab | 0 | 0 | 227.3 | 13.8 | |
Floors (suspended) | 0 | 0 | 227.3 | 13.8 | |
Walls | 110.0 | 7.7 | 9.0 | 0 | |
Roof frame | 0 | 15.4 | 55.8 | 5.6 | |
Roof covering | 0 | 0 | 0 | 3.9 | |
Total | 110.0 | 24.3 | 672.0 | 67.2 | |
Timber | |||||
Foundation—strip foundation/concrete pillars | 110.0 | 1.6 | 117.4 | 45.4 |
|
Floors | 0 | 4.6 | 0 | 0 | |
Walls | 0 | 6.2 | 0 | 0 | |
Roof frame | 0 | 15.4 | 0 | 0.8 | |
Roof covering | 0 | 0 | 0 | 3.9 | |
Total | 110.0 | 27.7 | 117.4 | 50.0 | |
Concrete/Timber Mixed Structure | |||||
Foundation—strip foundation | 110.0 | 1.6 | 116.8 | 45.4 |
|
Foundation—concrete blocks | 0 | 0 | 3.0 | 0 | |
Ground slab | 0 | 0 | 115.4 | 6.2 | |
Floors | 0 | 0 | 115.4 | 6.2 | |
Walls | 111.7 | 3.9 | 3.0 | 0 | |
Roof frame | 0 | 15.4 | 55.8 | 5.6 | |
Roof-Covering | 0 | 0 | 0 | 3.9 | |
Total | 221.7 | 20.9 | 409.4 | 67.3 | |
Cut-stone Historical Buildings | |||||
Foundation—strip footing | 110.0 | 1.6 | 116.8 | 45.4 |
|
Ground slab—concrete | 0 | 0 | 227.3 | 13.8 | |
Floors (suspended) | 0 | 0 | 0 | 0 | |
Walls—cut stone and concrete | 0 | 0 | 0 | 0 | |
Roof frame—timber | 0 | 15.4 | 55.8 | 5.6 | |
Roof covering—galvanized | 0 | 0 | 0 | 3.9 | |
Total | 110.0 | 17.0 | 399.9 | 68.7 | |
Steel Structure | |||||
Foundation—column beam and foundation pad | 76.2 | 0.9 | 91.5 | 30.5 |
|
Floor slab | 0 | 0 | 0 | 0 | |
Walls—concrete block walls | 0 | 0 | 0 | 0 | |
Roof covering—galvanized sheeting and steel | 0 | 0 | 0 | 0 | |
Roof frame—steel | 0 | 0 | 0 | 0 | |
Roof covering | 0 | 0 | 0 | 3.9 | |
Total | 76.2 | 0.9 | 91.5 | 34.4 |
Building Use Type | 1 m Sea Level Rise Scenario | 2 m Sea Level Rise Scenario | ||
---|---|---|---|---|
MS Exposed (kt) | % of Use Type MS Exposed | MS Exposed (kt) | % of Use Type MS Exposed | |
Institutional | 3.0 | 0.6% | 5.1 | 1.1% |
Transport | 7.4 | 17.0% | 6.2 | 14.3% |
Tourism | 143.3 | 16.7% | 161.4 | 18.8% |
Commercial | 7.7 | 1.0% | 13.3 | 1.7% |
Sports and Recreation | 0.1 | 0.7% | 0.1 | 0.7% |
Historical Sites and Protected Areas | 2.4 | 14.7% | 2.3 | 14.5% |
Residential | 7.7 | 0.3% | 9.4 | 0.4% |
Industrial | 0.1 | 0.4% | 0.1 | 0.4% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradshaw, J.; Jit Singh, S.; Tan, S.-Y.; Fishman, T.; Pott, K. GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda. Sustainability 2020, 12, 8090. https://doi.org/10.3390/su12198090
Bradshaw J, Jit Singh S, Tan S-Y, Fishman T, Pott K. GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda. Sustainability. 2020; 12(19):8090. https://doi.org/10.3390/su12198090
Chicago/Turabian StyleBradshaw, Johnella, Simron Jit Singh, Su-Yin Tan, Tomer Fishman, and Kristen Pott. 2020. "GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda" Sustainability 12, no. 19: 8090. https://doi.org/10.3390/su12198090
APA StyleBradshaw, J., Jit Singh, S., Tan, S. -Y., Fishman, T., & Pott, K. (2020). GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda. Sustainability, 12(19), 8090. https://doi.org/10.3390/su12198090