Evaluation of Climatic and Anthropogenic Impacts on Dust Erodibility: A Case Study in Xilingol Grassland, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Meteorological Data and an Erodibility Index (DOR)
2.3. Standardized Precipitation Evapotranspiration Index (SPEI)
2.4. Statistical Data of Livestock
3. Results
3.1. Variations in DOF, SWF, and DOR
3.2. Variations in Climate Change and Human Activities
3.3. Contributive Factors for Recent Land Restoration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion, 2nd Revised and Expanded ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2008; pp. 2–7. [Google Scholar]
- Otani, S.; Kurosaki, Y.; Kurozawa, Y.; Shinoda, M. Dust storms from degraded drylands of Asia: Dynamics and health impacts. Land 2017, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Kurosaki, Y.; Mikami, M. Effect of snow cover on threshold wind velocity of dust outbreak. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, C.H. Roles of surface wind, NDVI and snow cover in the recent changes in Asian dust storm occurrence frequency. Atmos. Environ. 2012, 59, 366–375. [Google Scholar] [CrossRef]
- Guan, Q.; Sun, X.; Yang, J.; Pan, B.; Zhao, S.; Wang, L. Dust storms in northern China: Long-term spatiotemporal characteristics and climate controls. J. Clim. 2017, 30, 6683–6700. [Google Scholar] [CrossRef]
- Wu, J.; Kurosaki, Y.; Shinoda, M.; Kai, K. Regional characteristics of recent dust occurrence and its controlling factors in East Asia. SOLA 2016, 12, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, M.; Gillies, J.; Mikami, M.; Shao, Y. Temperate grasslands as a dust source: Knowledge, uncertainties, and challenges. Aeolian Res. 2011, 3, 271–293. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Mikami, M. Recent frequent dust events and their relation to surface wind in East Asia. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Wu, J.; Kai, K. Characteristics of dust outbreaks and their relation to strong wind and land surface conditions in the Gobi desert and northern China, 1999–2013. J. Arid Land Stud. 2016, 26, 51–57. [Google Scholar]
- Igarashi, Y.; Inomata, Y.; Aoyama, M.; Hirose, K.; Takahashi, H.; Shinoda, Y.; Chiba, M. Possible change in Asian dust source suggested by atmospheric anthropogenic radionuclides during the 2000s. Atmos. Environ. 2009, 43, 2971–2980. [Google Scholar] [CrossRef]
- Lee, E.H.; Sohn, B.J. Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Kurosaki, Y.; Shinoda, M.; Mikami, M. What caused a recent increase in dust outbreaks over East Asia? Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Shinoda, M.; Mikami, M.; Nandintsetseg, B. Effects of soil and land surface conditions in summer on dust outbreaks in the following spring in a Mongolian grassland. SOLA 2011, 7, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R.; Shinoda, M. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia. Geomorphology 2010, 114, 319–325. [Google Scholar] [CrossRef]
- Hoffmann, C.; Funk, R.; Wieland, R.; Li, Y.; Sommer, M. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J. Arid Land Stud. 2008, 72, 792–807. [Google Scholar] [CrossRef]
- Wang, T.; Han, P.; Wu, S.; Bu, X.; Guan, Y.; Yang, S. Deserts and Aeolian Desertification in China; Science Press: Beijing, China, 2011; pp. 699–706. [Google Scholar]
- Tan, M.; Li, X. Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy 2015, 43, 42–47. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Yan, C. Assessing the role of policies on land-use/cover change from 1965 to 2015 in the Mu Us Sandy Land, northern China. Sustainability 2017, 9, 1164. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, F.; Hasi, E.; Li, J. Desertification in China: An assessment. Earth-Sci. Rev. 2008, 88, 188–206. [Google Scholar] [CrossRef]
- Middleton, N. Rangeland management and climate hazards in drylands: Dust storms, desertification and the overgrazing debate. Nat. Hazards 2018, 92, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- World Meteorological Organization. Manual on Codes, International Codes, Volume I.1 (Annex II to WMO Technical Regulations), Part A, Alphanumeric Codes; World Meteorological Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Tegen, I.; Fung, I. Contribution to the atmospheric mineral aerosol load from land surface modification. J. Geophys. Res. Atmos. 1995, 100, 18707–18726. [Google Scholar] [CrossRef]
- Statistic Yearbook of Abaga-Qi. Available online: http://tjj.xlgl.gov.cn/ywlm/tjsj/ (accessed on 15 January 2020).
- Vicente-Serrano, S.M.; Beguería, S.; López, M.J.I. A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index–SPEI. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1984, 38, 55–94. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T. Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China. Environ. Geol. 2007, 51, 1057–1064. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T. Climate change and local adaptation strategies in the middle Inner Mongolia, northern China. Environ. Earth Sci. 2012, 66, 1449–1458. [Google Scholar] [CrossRef]
- Middleton, N.; Rueff, H.; Sternberg, T.; Batbuyan, B.; Thomas, D. Explaining spatial variations in climate hazard impacts in western Mongolia. Landsc. Ecol. 2015, 30, 91–107. [Google Scholar] [CrossRef]
- Li, W. Contemporary Ecology Research in China; Springer: Beijing, China, 2015; pp. 382–386. [Google Scholar]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar]
- Nandintsetseg, B.; Shinoda, M.; Kimura, R.; Ibaraki, Y. Relationship between soil moisture and vegetation activity in the Mongolian steppe. SOLA 2010, 6, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tian, Z.; Zhang, A.; Zhao, A.; Liu, H. Impacts of Climate on Spatiotemporal Variations in Vegetation NDVI from 1982–2015 in Inner Mongolia, China. Sustainability 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, N. Controls of eolian dune size and spacing. Geology 1988, 16, 972–975. [Google Scholar] [CrossRef]
- Qian, W.; Quan, L.; Shi, S. Variations of the dust storm in China and its climatic control. J. Clim. 2002, 15, 1216–1229. [Google Scholar] [CrossRef]
- Kawamura, K.; Akiyama, T. Simultaneous monitoring of livestock distribution and desertification. Glob. Environ. Res. 2010, 14, 29–36. [Google Scholar]
- Ci, L.; Yang, X. Desertification and Its Control in China; Higher Education Press: Beijing, China, 2010; pp. 323–324. [Google Scholar]
- Tóth, E.; Deák, B.; Valkó, O.; Kelemen, A.; Miglécz, T.; Tóthmérész, B.; Török, P. Livestock type is more crucial than grazing intensity: Traditional cattle and sheep grazing in short-grass steppes. Land Degrad. Dev. 2018, 29, 231–239. [Google Scholar] [CrossRef]
- Rook, A.J.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.F.; Parente, G.; Mills, J. Matching type of livestock to desired biodiversity outcomes in pastures—A review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- Jerrentrup, J.S.; Seither, M.; Petersen, U.; Isselstein, J. Little grazer species effect on the vegetation in a rotational grazing system. Agric. Ecosyst. Environ. 2015, 202, 243–250. [Google Scholar] [CrossRef]
- Abulaiti, A.; Kimura, R.; Shinoda, M.; Kurosaki, Y.; Mikami, M.; Ishizuka, M.; Yamada, Y.; Nishihara, E.; Gantsetseg, B. An observational study of saltation and dust emission in a hotspot of Mongolia. Aeolian Res. 2014, 15, 169–176. [Google Scholar] [CrossRef]
- Ishizuka, M.; Mikami, M.; Yamada, Y.; Kimura, R.; Kurosaki, Y.; Jugder, D.; Gantsetseg, B.; Cheng, Y.; Shinoda, M. Does ground surface soil aggregation affect transition of the wind speed threshold for saltation and dust emission? SOLA 2012, 8, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tsunekawa, A.; Tsubo, M. Identification of dust hot spots from multi-resolution remotely sensed data in eastern China and Mongolia. Water Air Soil Pollut. 2015, 226, 117. [Google Scholar] [CrossRef]
- Chi, M.; Zhang, B.; Zhao, J.; Peng, J.; Guo, J. Identification of hydrological controls on dust emissions from Xilingol Grassland of Inner Mongolia, China. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Sanya, China, 19–21 November 2018; IOP Publishing: Beijing, China, 2019; Volume 227, p. 052035. [Google Scholar]
- Han, L.; Tsunekawa, A.; Tsubo, M. Monitoring near-surface soil freeze—Thaw cycles in northern China and Mongolia from 1998 to 2007. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 375–384. [Google Scholar] [CrossRef]
- Munkhtsetseg, E.; Shinoda, M.; Ishizuka, M.; Mikami, M.; Kimura, R.; Nikolich, G. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland. Atmos. Chem. Phys. 2017, 17, 11389–11401. [Google Scholar] [CrossRef] [Green Version]
Explanatory Variables | Dependent Variables | |||
---|---|---|---|---|
Equation (1) | Equation (2) | |||
t Statistic | p-Value | t Statistic | p-Value | |
Psp | −1.92 | 0.08 | 1.76 | 0.12 |
Psu | −3.52 | 0.00 ** | −1.27 | 0.24 |
Pau | −1.77 | 0.10 | ||
Pwi | 1.69 | 0.13 | ||
Tsu | 1.64 | 0.14 | ||
Tau | 1.93 | 2.89 | 0.02 * | |
Twi | −2.57 | 0.03 * | ||
SGJ | −2.72 | 0.03 * | ||
CJ | 4.53 | 0.002 ** | ||
R-squared | 0.79 | 0.92 | ||
Adjusted R-squared | 0.50 | 0.83 | ||
Significance F | 0.02 * | 0.003 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Kurosaki, Y.; Du, C. Evaluation of Climatic and Anthropogenic Impacts on Dust Erodibility: A Case Study in Xilingol Grassland, China. Sustainability 2020, 12, 629. https://doi.org/10.3390/su12020629
Wu J, Kurosaki Y, Du C. Evaluation of Climatic and Anthropogenic Impacts on Dust Erodibility: A Case Study in Xilingol Grassland, China. Sustainability. 2020; 12(2):629. https://doi.org/10.3390/su12020629
Chicago/Turabian StyleWu, Jing, Yasunori Kurosaki, and Chunling Du. 2020. "Evaluation of Climatic and Anthropogenic Impacts on Dust Erodibility: A Case Study in Xilingol Grassland, China" Sustainability 12, no. 2: 629. https://doi.org/10.3390/su12020629
APA StyleWu, J., Kurosaki, Y., & Du, C. (2020). Evaluation of Climatic and Anthropogenic Impacts on Dust Erodibility: A Case Study in Xilingol Grassland, China. Sustainability, 12(2), 629. https://doi.org/10.3390/su12020629